WiF1 Authentication through Social Networks
— a Decentralized and Context-Aware Approach —

Yunus Durmus

Koen Langendoen

Delft University of Technology, The Netherlands
Email: {y.durmus,k.g.langendoen} @tudelft.nl

Abstract—With the proliferation of WiFi-enabled devices,
people expect to be able to use them everywhere, e.g., at work,
while commuting, and when visiting friends. In the latter case,
home owners are confronted with the hassle of controlling the
access to their WiFi router, and usually resort to simply sharing
the password. Although convenient, this solution breaches basic
security principles, and puts the burden on the friends who have
to enter the password in each and every of their devices. The
use of social networks, specifying the trust relations between
people and devices, provides for a more secure and more friendly
authentication mechanism.

In this paper, we progress the state-of-the-art by abandoning
the centralized solutions to embed social networks in WiFi
authentication; we introduce EAP-SocTLS, a decentralized ap-
proach for authentication and authorization of WiFi access points
and other devices, exploiting the embedded trust relations. In
particular, we address the (quadratic) search complexity when
indirect trust relations, like the device of a friend’s kid, are
involved. We show that the simple heuristic of limiting the
search to friends and devices in physical proximity makes for a
scalable solution. Our prototype implementation, which is based
on WebID and EAP-TLS, uses WiFi probe requests to determine
the pool of neighboring devices and was shown to reduce the
search time from 1 minute for the naive policy down to 11 seconds
in the case of granting access over an indirect friend.

Keywords—Social Devices, WiFi Authentication and Authoriza-
tion, WebID, EAP-TLS, EAP-SocTLS

I. INTRODUCTION

With the uprise of social networks like Facebook and
Twitter, users have become dependent on the Internet with
WiFi being the dominant access network technology due to its
high capacity. This trend has put the burden of access control
on home owners as visiting family and friends expect to be
able to use the owner’s WiFi Access Point (AP) as if at home,
in the office, or while commuting. The quick fix is to share
the AP’s password with the visitors, who can then enter it in
their WiFi-enabled devices (tablets, smartphones, etc.). This
behavior compromises basic security, as passwords are shared
with many, which is aggravated by the habit of selecting short
passwords that are easy to crack. To reduce the burden, and as-
sociated risks, of manual access control it has been proposed to
use the trust relations embedded in social networks to automate
device authentication and authorization [1], [2]. A promising
idea that deserves additional attention as the integration of
the social network in the basic AP authentication mechanisms
completely removes the need for password management. We
will refer to such integrated systems as social WiFi APs.

Existing solutions for social network integration assign a
centralized system to control the authentication process. For

example, WIMAN !, a young startup, lets users access WiFi
networks by using Facebook Platform, a popular single-sign-
on technology managed by a (large) pool of servers. A second
example is Instabridge?, who created its own centralized
online social network, and used that to distribute the WiFi
password among the friends of an AP owner. In a wider
perspective, researchers are broadening the scope of online
social networks by integrating even more devices. The Social
Internet of Things [1] and social access controller [2] are two
inspiring works that initiate the sharing of device functional-
ities like location information over centralized proxy servers.
Through registration these centralized servers are made aware
of the complete social network of the device owner and
this information is used to safeguard the proper use of the
integrated devices.

Although convenient and readily available, centralized ap-
proaches for creating social WiFi APs cannot be used offline
(i.e., fail without Internet connectivity). Some of them are
prone to single-point-of-failure, scalability problems and gen-
erally they raise privacy concerns. To address these drawbacks
we advocate a decentralized approach in which individual
APs take full control and perform the device authorization
themselves; access will be granted when a trust relation can
be established between the AP owner and the owner of the
client device as recorded in a social network. Creating a
decentralized social WiFi AP entails two main challenges:

e system design: the fundamental design questions are
(i) how to integrate devices into (existing) distributed
online social networks, and (ii) how to manage the
associated credentials in a secure and decentralized
way.

e search complexity: as information is scattered across
devices searching for a (transitive) trust relation be-
tween AP (owner) and (client) device will incur
communication delays. Crawling the social network
needs to be optimized as the search space grows
exponentially with the length of the trust chain.

The first challenge, system design, is addressed by leverag-
ing the WebID standard [3]. WebID uses well-known ontolo-
gies like Friend-of-a-Friend (FOAF) that are designed to solve
the interoperability problem among online social networks [4].
Instead of shared secrets (i.e. passwords), X509v3 certificates
are used for authentication. These certificates are adapted
to connect the devices they represent to a social network
by including a link (URI) to a social profile on the web.
Both devices and humans must publish their social relations
(owners, friends) in these profiles to allow for an integrated

lwww.wiman.me
2www.instabridge.com



solution. In Section III we will detail how we adapted the
Extensible Authentication Protocol-Transport Layer Security
(EAP-TLS) authentication framework to work with the WebID
certificates and social profiles. The resulting system is dubbed
EAP-Social TLS (EAP-SocTLS).

The second challenge, search complexity, is addressed
by a context-aware approach to bound the search space to
probable candidates when searching for indirect relations like
the smartphone of a friend’s child. Limiting the number of
candidate friends linking the AP and the device is crucial
as verifying credentials and collecting profiles is expensive.
We employ the simple heuristic that it makes most sense to
check only those devices (and owners) who are in the direct
vicinity of the AP. After all, it is highly unusual for people
to grant access to random acquaintances if not accompanied
by a “known” mutual friend. This intuition is corroborated
in [5], where it is shown that the likelihood of having a social
connection to a person is inversely proportional to actual dis-
tance to that person. In our EAP-SocTLS implementation we
track regular IEEE 802.11 probe requests to determine which
devices are in the vicinity, and sort them according to time
of arrival, checking the most recent ones first. This strategy
was experimentally verified to greatly reduce the search time;
for a social network of neighbor degree 4, the worst case
performance of an indirect friend search was decreased from
one minute to a mere 11 seconds.

In summary, the contributions of the work presented in this
paper are as follows:

e we describe the first decentralized social WiFi AP
design freeing the average home owner from the
burden of manual access control (see Section III).

e we introduce the use of context information to reduce
the search complexity for establishing indirect trust
relations in a distributed online social network, and
detail an implementation based on tracking standard
probe request messages (see Section IV).

e we provide experimental results validating the feasi-
bility of our design, and report on the effectiveness of
using context information (see Section V).

II. BACKGROUND INFORMATION

In this section, the WebID protocol, and WiFi probe
requests are explained briefly. The WebID protocol is used for
distributed social network integration and WiFi probe requests
are used to detect the presence of direct friends in the vicinity.

Before explaining the WebID, we should explain a crucial
semantic vocabulary called Friend-of-a-Friend (FOAF). FOAF
is a vocabulary with which a person can publish its social
network in a profile document on the web. An example is
shown in Fig. 1. In this example, Alice declares her friendship
to Bob and Charlie using “foaf:knows” statements. URIs are
used to identify people instead of their plane names. It is a
distributed alternative to the centralized social networks.

A. The WebID Protocol

WebID is a single-sign-on and distributed authentication
standard. It was designed for humans and distributed online
social networks (DOSN). WebID uniquely identifies a per-
son, company, organization or any other thing with a URI
and the URI is placed in a X509v3 certificate. Its protocol
for authentication and authorization works as embedded in

<rdf:RDF xmlns:rdf=

<foaf:Person rdf:about= >
<foaf:name>alice </foaf:name>
<foaf:givenName>alice</foaf:givenName>

<foaf:img rdf:resource= />
<foaf:nick>alice</foaf:nick>
<foaf:mbox rdf:resource

<foaf:knows rdf:resource= />
<foaf:knows rdf:resource= />
<cert:key>
<cert :RSAPublicKey>
<cert:modulus rdf:datatype=
>
c2e98ceadf831ab308735c8b30e54a76fe76a9d6. ..
</cert:modulus>
<cert:exponent rdf:datatype=

65537</cert :exponent>
</cert:RSAPublicKey>
</cert:key>
</foaf:Person>
</rdf :RDF>

Fig. 1. Example public profile of Alice. The profile contains the public
key information via “cert:key” and the social network via “foaf:knows”
declarations.

Transport Layer Security (TLS). It simply replaces certificate
authority (CA) based certificate verification step of TLS with
a social network based one. Instead of a CA, social profiles
and trusts between the people verify a certificate. It resembles
Web of Trust (WoT), but social networks are used to establish
trust instead of people signing the certificates of their trusted
friends. As a result, WebID with its protocol, enables us to
involve social networks in authentication.

In the WebID protocol there are no passwords. A client
claims its identity by just using a certificate. Initially, TLS
ensures that client holds the corresponding private key for
the public key in the certificate. Then the WebID protocol
takes over the control. There are two steps: identity verifi-
cation and trust. In the identity verification step, which is
the authentication step, certificate verification is done with
social web profiles. Certificate contains the URI address of the
personal profile document of the client in the optional Subject
Alternative Name (SAN) field. When the authenticating server
receives the certificate, it follows the URI link in the SAN
field and fetches the profile document such as in the example
shown in Fig. 1. SPARQL, the semantic web query language,
is used to query the profiles. Server checks the equality of the
public key provided in the certificate and the personal profile
document. If the public keys are the same, it concludes that
the client is the owner of both the certificate and the personal
profile document. The URI serves as the identity of the
authentication requester; the name, surname or email address
fields are not taken into account. Although the identity of the
client is verified as the URI, the server still cannot trust the
information presented in the profile document. Therefore, an
authorization (trust) step is required. In this authorization step,
authenticating server crawls every profile on web to discover a
social tie between the client and the server. The social network
ties are declared by the “foaf:knows” statements. As presented
in Fig. 1, Alice declares that she knows Bob by using the
“foaf:knows” statement. The time consuming part is this trust



(a) Direct Trust

Fig. 2. Different types of trust. Oval shapes represent the owners of the devices.

and authorization step where a social tie from the AP owner
to the client device owner is discovered. After the identity
verification and trust steps, TLS takes the control back and
proceeds further to encrypt the channel with a symmetric key.

B. WiFi Probe Requests

Wireless client devices (supplicants) detect the APs by
scanning the WiFi channels. There are two modes of scanning:
passive and active. Passive scanning sniffs every channel for
AP beacons, whereas active scanning sends probe requests
to APs to check their presence. Active scanning is preferred
over passive since it decreases the AP detection time, hence
the duration for AP association. In the 802.11 standard the
frequency and burst size of the probe requests is left to the
vendor. The standard states that on every WiFi channel the
supplicant sends one or more probe request and waits for the
replies from APs for some time before moving to the next
channel. In Section III-B, the analysis of inter-arrival times of
probe requests from some devices show that with less than
200 sec APs get a probe request from a supplicant.

III. DECENTRALIZED SOCIAL WIFI ACCESS POINT

In this section we explain our proposal for decentralized
social WiFi access point that uses distributed social networks
for authentication. The WebID protocol replaces the certificate
authority based certificate verification in TLS with a distributed
social networks based one for HTTPS connections. EAP-
TLS (RFC-5216) is a WiFi authentication standard that also
uses TLS. We combine these EAP-TLS and WebID for our
decentralized social WiFi AP and renamed EAP-TLS as EAP-
Social TLS (EAP-SocTLS). With the EAP-TLS standard, both
parties can authenticate the peer, however due to the replication
of steps at both sides, we only explain the AP side. In
EAP-TLS, the client device (supplicant) sends a certificate
to the AP (authenticator) and the AP passes the certificate
to the authenticating server which can be the AP itself (as
in our case). The authenticating server verifies the certificate
by checking the signature of the certificate authority. Then
based on authorization rules the supplicant is allowed to
join to the WLAN. The difference of EAP-SocTLS is the
certificate verification and trust. The certificate is verified and
the supplicant is authorized by the use of WebID and DOSNS.
Certificates can be self-signed since only WebID verification
is required. Authorization, which is based on trust to the
supplicant, is established by the use of social networks.

Assume that the supplicant is a smartphone owned by Alice
and it tries to access the AP of Bob. When the AP gets the
certificate of the smartphone, first it verifies the certificate by

(b) Indirect Trust

(c) Same Owner

following the profile URI in the certificate and checks if the
keys “match”. After verification, the AP learns the owner of
the smartphone, Alice, by checking the social web profile of
the smartphone. As the AP knows its owner, Bob, a trust
(friendship) relation can be discovered now. There are three
possibilities:

e Direct Friends: Alice and Bob are direct friends. In
their social web profiles, they declare that they know
each other by “foaf:knows” statements (Fig. 2(a)),

e Indirect Friends: Alice and Bob are not direct
friends, but they have a common friend called Charlie
(Fig. 2(b)). The AP should search the social profiles of
Bob and Alice for Charlie or any other mutual friend,

e Same Owner: Bob owns both the smartphone and the
AP and he tries to access to his own AP (Fig. 2(c)).

For the sake of simplicity, we assume that having a social
connection to a person is enough for trust. However, in real
life, we may not want to grant access to our complete social
network to access our WLAN. The chain of access control
rules should be involved in the process. The role of the
supplicant’s owner may become crucial in authorization. We
left access control as future work. However, the AP still needs
to crawl the DOSNs to find out relations that comply with
these access control rules. Therefore, the social network search
explained in the following section is still a valid problem.

+k
W +1
eril i
NO» Verify Human> .
WebID Q Device ownershi VES

VES YES " =
+1 +1
Get Auth Get Supp
Owners Owners

NO COMMO
Friends?
YES
+nk

Verify Common
nows Supp OwneJ

SAME Fetch Friends of
each Auth Owner

YES
+n

Fetch Friends of
each Supp Owner

N NES

YES

erify Supp
owner knows
upp device

Fig. 3. Steps for searching social trust. In shaded areas, the set of
friends/owners are checked serially in a loop which stops on the first success.



A. Social Network Search and Its Analysis

In the authentication and authorization process the ex-
change of the EAP messages are effected by the channel
quality; but still, all the messages take so little time compared
to HTTPS connections to the social networks (See Section V).
The most time consuming and also varying part of the process
is the trust, searching for relations on the DOSNs. Therefore,
in this section we present an analysis of the search, and
concentrate on it in the experiments.

A diagram of the search steps is given in Fig. 3. After
certificate verification, first the same owner relation is checked.
Since devices may have more than one owner, same owners
can be multiple too. For each common owner, the posses-
sion of the supplicant is checked (possesion is declared by
“foaf:knows” statements). In the first verified possession, the
search completes successfully. Possession check is required to
verify the device owner. For instance, in case of a stolen device,
if possession is not checked, the “new” owner can access all
the APs that the previous owner can. When there is no same
owner relationship, the friends of each AP owner are fetched
and compared to the supplicant owners to find direct friend(s).
In case of matches, all the direct friends are again checked
for possession of the supplicant. In the absence of a trusted
direct friend, the indirect friend relationship is checked. All the
friends of the supplicant owner(s) are fetched and compared
to the friend list of authenticator owners’. Then each common
friend (direct friend) is verified if it knows the indirect friend.

Each friend fetch, certificate verification and possession
check are separate HTTPS connections. To decrease HTTPS
connections, the AP can store in cache the URIs of the
owner(s) of the AP, and the URIs of the other devices with
the public keys. Additionally, if there is enough storage, URIs
of the direct friends can also be cached. However, it is not
feasible to cache all the indirect friends due to their abundance
(See Section V). If we assume that the number of owners
is n and common friends/owners are k, then the worst case
performances are detailed in Fig. 3 and summarized in Table I:

TABLE 1. THE NUMBER OF HTTPS CONNECTIONS REQUIRED FOR
AUTHENTICATION AND AUTHORIZATION WHERE n IS THE NUMBER OF THE
OWNERS PER CLIENT AND SERVER, k IS THE INTERSECTION OF FRIENDS
OR OWNERS DEPENDING ON THE CASE (SEE FIG. 3).

Number of HTTPS connections

Without Cache With Cache
Same Owner 3+ k
Direct Friend 3+n+k 2+k
Indirect Friend 3+ 2n + 2nk 2+ n+2nk

Assume that a tablet has 4 owners (a small family), each of
them has around 100 friends. In such a case 3+2x4+2x4xk,
if k becomes 100 too, in worst case 811 HTTPS connections
are required in the indirect friend case. If the device-human
relation were many-to-one, devices might not have their own
social profiles and the certificates of their owner might be
placed directly into the device. Consequently, in the indirect
friend case, the required number of HTTPS connections would
have been 3 + 1 X k connections. However, to cover many-to-
many relations between the devices and humans, the devices
should have separate profiles at where their owners are defined.
As a consequence, the search problem alters from linear O(k)
to quadratic O(nk).

B. Collecting Presence Information

450 - -

Inter—arrival times (Seconds)

150 H o _
1001 TRs Tl 4
’ T g‘%‘T i QED\\\++\‘%'QQB+%\?\ T, g

7 9 11 13 15 17 19 21 23 25 27 29 31 3
Device IDs

L
35

Iy
1 3

w

Fig. 4. Inter-arrival times of the probe requests from 35 devices in 2.4 GHz
frequency band in two hours. Originally 87 devices have been recognized.
However to have enough data to present statistical results, only the devices
with more than 20 probe request readings are displayed.

As explained in the previous section, social network crawl-
ing for trust may take quadratic time. In Section V it is shown
that even for a small social network, indirect friend search can
take more than one minute. Intuitively, in WiFi authentication,
direct friends who bridge the indirect friends to the AP, are
probably in the close proximity at the time of association. We
can bound the number of common direct friends by sensing
the ones who are now in the vicinity of the AP. Moreover, by
including the time of arrival, we can sort the common direct
friends according to their temporal distance to the indirect
friend.

We use WiFi probe requests (see Section II-B) to sense
the direct friends in the vicinity of the AP. From previous
authentications the AP stores the URIS of the direct friends
with their devices’ MAC addresses in its local cache. When
the AP catches a probe request for the first time from a
device or the device was absent for a while, time of arrival
of the device is updated. When an indirect friend initiates the
authentication, the time of arrival and the presence of direct
friends are used to improve search performance. The crucial
part in this context-aware system is the detection time of the
devices in the vicinity. It is no use, if detection takes hours. As
explained in Section II-B, there is no standard for frequency
and burst size of probe requests. In [6], it is told that expected
frequency is around 50-60 seconds. To verify their assumption
we collected WiFi probe requests in an office environment
for two hours. As shown in Fig. 4, due to the firmware of
the WiFi card and also due to the channel noise, while some
devices has almost constant intervals like the first device, some
has extremely variable inter-arrival times like device #9. The
results do not indicate a common frequency range as in [6].
Nevertheless, we can still conclude that frequencies are less
than 10 minutes and mostly even less than 200 seconds.

IV. IMPLEMENTATION

To validate our design of decentralized social WiFi APs
and to determine the significance of sniffing probe requests
to bound the search for indirect friends, we implemented a
prototype version and tested it on real hardware. We altered the
EAP-TLS source, part of Hostapd® as the basis for our EAP-

3http://w1.fi/hostapd/



SocTLS code*. In certificate verification part of the Hostapd
code, we compare the public key to the one in social web
profile. After verification, we call an external Python library >
for the authorization part (i.e., searching for trust relations).
Although all the extensions can be placed in Hostapd with C
language, Python was selected for its ease-of-use. The lines of
code required to complete EAP-SocTLS are about 450 for the
Python library and 400 for Hostapd. An Sqlite3 database stores
the probe requests. Note that our modification is completely
transparent to the client side, who follows the normal EAP-
TLS process when requesting service from the AP.

Our experimental setup consists of a Samsung Galaxy S2
smartphone (supplicant) connecting to a Dell Ultrabook with
the Intel Centrino Advanced-N 6230 network card (802.11g)
serving as the AP. For the tests, we created an artificial
social network with uniform structure in the https://rww.io
website, which is designed for semantic web applications
and supports WebID. Although that web site has SPARQL
support, for convenience our EAP-SocTLS implementation
fetches complete profiles and processes them locally at the
AP.

V. EVALUATION

In the following experiments we show the performance
of EAP-SocTLS, in particular with respect to the size of
the social network (scalability). We study the three different
trust types (same owner, direct/indirect friend), and vary the
neighbor degree (number of friends/owners) from 1 to 4. In all
scenarios we report worst case performance where all possible
links (relations) are crawled. The number of common owners
increases from 1 to 4 in the same owner case. In the direct
friend case the number of owners on both sides increase,
while each of the AP owners know all supplicant owners and
vice-versa. In the indirect friend case the device owners and
common friends increase together. Note that while the number
of owners is increased in sequence for all types of trust, the
effective number of common friends in the indirect friend case
increases quadratically (from 1 to 16).

The duration required for legacy EAP messaging depends
on the quality of wireless channel (inducing packet loss and
retransmits) and was found to typically take less than one
second. With respect to the duration of search for trust relations
(Fig. 5) as implemented in the external Python library, EAP
messages do not contribute much to the results. This prompted
us to focus on the search part.

The duration of the search with different trust types and
with increasing neighbor (friend) degree is given in Fig. 5(a),
Following the analysis in Section III-A, the normal case
indicates a linear increase in number of (same) owners and
direct friends, and a quadratic trend for the indirect friend
relation. We also present results for the case of an AP with a
cache large enough to store the details of AP’s owners and their
respective friend lists. Usage of cache for the same owner case
reduces the search time to zero as a simple lookup suffices; we
do not plot these results for clarity. For the other trust types,
the performance decreases a little, but the does not change the
fundamental linear and quadratic behavior. One might argue
that friends-of-friends information can also be cached, which

“https://github.com/yunus/Hostapd-with- WebID
Shttps://github.com/yunus/python-webid

-
=)

T T T
- Normal
F Cached -

Search Duration (Seconds)
vow s w o
=] =] =] =] =]

—
o
T

InDirect Friend

Direct Friend
Relation Type

Same Owner

(a) Social relation search with increasing neighbor degree
from 1 to 4.

I Bounded
’ Bounded+Cached

70

=N
=)

@1
=)

N
=)
T

w
=)
T

Number of Common Friends

Search Duration (Seconds)
N
=3

=
15

o

(b) Indirect friend search with context Information.

Fig. 5. Durations for social relation discovery with different relations.
Neighbor degree increases from 1 to 4 in Fig. 5(a) for each relation type.
Neighbor degree is 4 in Fig. 5(b) while the number of common friends
increase.

would bring down the search time to near zero, but the amount
of storage requirement would then become prohibitive. In [7],
for example, it is shown that in Facebook, friends-of-friends
grow even faster than quadratic. For a person with 100 friends
in Facebook, the number of unique friends-of-friends averages
to 27500.

Observe that, even with caching enabled, the search time
for indirect friends grows to over one minute for a neighbor
degree of 4. In order to bound the indirect friend search, the AP
collects the presence information as explained in Section III-B.
To show the effect, we placed one direct friend in the vicinity
and then add more direct friends linearly up-to 4. Fig. 5(b)
shows that the use of context information has reduced the
complexity for an indirect friend to a linear search.

Creating a large social network is costly. Therefore, we
resorted to extrapolating the linear/quadratic search times to
study the effects of scalability. In Table II, the estimated
time required for searches with a neighbor degree of 10 and
100 are given. The naive Indirect Friend search becomes
infeasible; even with degree of just 10, already 9 minutes are
required. However, when applying context information only
12 seconds are needed. In real life we expect to obtains even
better performances as we only reported worst case results.
Moreover, search performance can be further improved by
using more intelligent caching and parallel processing.



TABLE II. PREDICTIONS FOR SEARCH DURATION OF HIGHER
NEIGHBOR DEGREES. INDIRECT FRIEND RELATION IS ASSUMED TO BE
QUADRATIC AND THE REST AS LINEAR.

Worst Case Search Duration (Seconds)

Neighbor Degree 10 100
Same Owner 9 82
Same Owner Cached ~ 0 ~ 0
Direct Friend 23 224
Direct Friend Cached 10 96
Indirect Friend 537 5279
*Indirect Friend Bounded & Cached 12 88

*: Based on neighbor degree: 4; only number of common friends changes.

VI. DISCUSSION

With the proper use of caches, offline operation, without
Internet connection, becomes possible at least for the same
owner and direct friend relationships. For the indirect friend
relationship, there must be an Internet connection.

Our decentralized social WiFi AP approach can be ap-
plied to any other authentication protocol that incorporates
certificates such as WiFi Direct, SSH, IPsec. For instance,
we have also created a WebID library® for AllJoyn peer-2-
peer framework 7, which abstracts the communication layer for
mobile devices. By including other systems, we can create a
social network of devices where passwords are not used and
all the authentication is automated.

In our current implementation, all the friendship informa-
tion is assumed to be public for everyone, which may raise
privacy concerns. To find the intersection of friend lists private
set intersection techniques like multi party computation can be
used [8]. However, to employ such techniques, end points at
the web profiles should implement the SPARQL protocol. Then
the endpoints are able to apply the techniques instead of just
serving raw data.

VII. RELATED WORK

As briefly discussed in the introduction, WIMAN enables
user access to WLAN by the Facebook Platform single-sign-on
technique. It is a heavily centralized system, which based on
only one type of social network, suffers from the single point
of failure. Another company, Instabridge combines several
social networks in their own centralized servers and distributes
WLAN passwords to the friends of the device owner. It has
an ambitious strategy to combine all the social networks
and still suffers from a single point of failure. Differently
from WIMAN, Instabridge supports offline operation however,
password changes are costly. To revoke a password all the
friends should be notified which entails quite a bit of overhead.

Like EAP-SocTLS there are other research efforts on
socializing devices, which try to create social machine-to-
machine access control. SenseShare [9] is one of the initial
works, which is a common data store for sensor readings.
All the sensors push their data to SenseShare, which stores
and shares them with friends. SBone [10] and Social Access
Controller [2] architectures transform the idea of sharing
sensor readings to resource sharing. Both architectures have a

Ohttps://github.com/yunus/WebIDforAllJoyn
"http://alljoyn.org

central manager for access control. Our work, on the contrary,
is the first social WiFi AP that incorporates a decentralized
authentication procedure. With respect to privacy, centralized
architectures can record all the accesses to the AP. Therefore,
decentralization is required to protect privacy.

VIII. CONCLUSIONS

People share the passwords for their WiFi APs with their
real-life social network. Smart devices can automate this
process, and let friends access to WLAN without manual
involvement. Centralized solutions have to deal with scal-
ability, single point of failure problems and raise concerns
on privacy. Our proposal of decentralized social WiFi APs
uses the WebID authentication standard to connect devices to
distributed social networks. Each device has its own social
profile on the web, where it presents its owners. A significant
challenge is the social network search complexity, which is
quadratic for indirect friend relationships. To decrease the
complexity, the set of direct friends who bridge the AP to
the indirect friends are bounded using context information.
That is, only friends in the direct vicinity are considered as
derived from monitoring regular WiFi probe requests. The
search space is bounded and sorted based on the existence and
time of arrival of the direct friends. For a social network of
neighbor degree 4, this heuristic decreases the search time from
one minute to 11 seconds. Our design on top of the WebID
protocol can be applied to any certificate-based authentication
to automate the access control. However, it is crucial to come
up with context-aware solutions to decrease the DOSN search
complexity for trust.

ACKNOWLEDGMENTS

This work is supported by the Trans-sector Research
Academy for complex Networks and Services (TRANS)
project. We would like to thank Zekeriya Erkin and Alessandro
Bozzon for their invaluable comments.

REFERENCES

[1] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of
things (siot), when social networks meet the internet of things: Concept,
architecture and network characterization,” Computer Networks, vol. 56,
no. 16, pp. 3594 — 3608, 2012.

[2] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in
a composable web of things,” in PERCOM Workshops, 29 2010-april
2 2010, pp. 702 -707.

[3] M. Sporny, T. Inkster, H. Story, B. Harbulot, and R. Bachmann-Gmur,
WebID 1.0, Web Identification and Discovery, W3C Std., Rev.
Editor’s Draft, Dec 2011. [Online]. Available: http://www.w3.0rg/2005/
Incubator/webid/spec/

[4] C. man Au Yeung, L. Liccardi, K. Lu, O. Seneviratne, and T. Berners-
lee, “Decentralization: The future of online social networking,” in In
W3C Workshop on the Future of Social Networking Position Papers,
2009.

[5] L. Adamic and E. Adar, “How to search a social network,” Social
Networks, vol. 27, no. 3, pp. 187 — 203, 2005.

[6] M. Cunche, M.-A. Kaafar, and R. Boreli, “I know who you will meet
this evening! linking wireless devices using wi-fi probe requests,” in
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2012
IEEE International Symposium on a, 2012, pp. 1-9.

[7] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy of
the facebook social graph,” CoRR, vol. abs/1111.4503, 2011.



[8]

[10]

E. Cristofaro and G. Tsudik, “Practical private set intersection protocols
with linear complexity,” in Financial Cryptography and Data Security,
ser. Lecture Notes in Computer Science. Springer, 2010, vol. 6052,
pp. 143-159.

T. Schmid and M. B. Srivastava, “Exploiting social networks for sensor
data sharing with senseshare,” Posters, Center for Embedded Network
Sensing, UC Los Angeles, Oct 2007.

P. Shankar, B. Nath, L. Iftode, V. Ananthanarayanan, and L. Han,

“Sbone: Personal device sharing using social networks,” Technical
Report, Tech. Rep., 2010.



