[bookmark: h.9o1g1cbb5hm6].RDF Stream Processing Model
RDP Stream Processing Community Group Note
http://www.w3.org/community/rsp/

Authors
Please add your name and affiliation to the list below (in alphabetical order of surname)
· Jean-Paul Calbimonte, EPFL, Switzerland
· Alasdair J G Gray, Heriot-Watt University, UK
· Monika Solanki, Aston University, UK

Table of Contents	Comment by Alasdair Gray: This is automatically generated from headings. Please use appropriate styles (from the drop down menu at the top) for the headings
Introduction
Requirements
Functional Requirements
Non-Functional Requirements
Time Model
Stream Data Model
Serialisation
Query Language
Operators
Time Operators
Windowing Operators: Streams to Bag-of-Triples
Inverse Window Operators: Bag of Triples to Streams
Stored Data Windows
Semantics
References
[bookmark: h.vogkf2191io3]Introduction
Set up the context (briefly) 	Comment by Alasdair Gray: We can club together and write a journal article that compares the community model to previous approaches
Goal: define common core model for RDF stream processors that is extensible.
(Not going for a one-size fits all approach)
In concrete: an RDF stream extensions (stream data model) and SPARQL stream extensions (query language) that operate over the RDF stream model.
[bookmark: h.sw7dq131xe50]Requirements
(Stated at a high level, not the nitty gritty of all the use cases. Enough to allow a reader to understand what the systems that implement this model are capable of doing.)

http://www.w3.org/community/rsp/wiki/Use_cases
Not entirely copy them here, but abstract them as requirements.
How the use cases map to the requirements. An idea may be to identify requirements and number them so that we can relate the use cases to the requirement numbers. In this document or a different one?

[bookmark: h.9xr2422mdmm2]Functional Requirements
Need to be able to process a stream of data without first storing it.

[bookmark: h.zaj7vgung9j3]Non-Functional Requirements

[bookmark: h.lsdv4gfqodl2]Time Model
Time abstractions, notion of time and ordering
(We will avoid specifying mechanism for dealing with delayed and out of order triples. These are left for the implementations to decide for themselves.)
Time as point-in-time
Time as an interval (point in time is a special case of this)
[bookmark: h.soulxnxwsmaf]Stream Data Model
Extend RDF model:
Add Interval/ time annotations to RDF graphs.
Resulting in time annotated RDF graphs
semi-informal:
A graph G defined as a set of triples:
G = {(subj, pred, obj)}

A stream is a sequence (G, τ) where τ ∈ T the set of all intervals (timestamps).	Comment by Alasdair Gray: Do we not want to have the stream being a sequence of triples (G, p, τ) where p is some predicate capturing the nature of the timestamp?

The content of the stream can be seen then as a sequence of quads (s, p, o, G) where G is the context/graph of the triple.

RDF streams without an explicit timestamp/interval can be processed, if a system timestamp/interval is assigned to them as they arrive to the system.

Refs: http://www.w3.org/community/rsp/wiki/RDF_Stream_Model
[bookmark: h.rrc24n2dc0t8]Serialisation
How can the model be serialised? 	Comment by Jean-Paul Calbimonte: I suggest we do not impose a serialisation, but we can provide hints of how this can be done?
(The Stream Data Model is defined independently of the various serialisations.)
[bookmark: h.l8xfskibjbja]Query Language
Based on SPARQL, defined to pose queries to a dataset, composed of (potentially)
- RDF streams (one or more)
- RDF graphs (one or more)

Existing SPARQL 1.1 operators are included (semantics for RDF streams need to be defined) Other operators required, detailed below.
[bookmark: h.lkgpsahf7ua5]Operators
New or additional operators.
We can define a tentative syntax, even for pedagogic reasons, but in every case explain the semantics of the introduced operators.
[bookmark: h.ys408yc37iam]Time Operators
These operators are important as we are dealing (potentially) with intervals.
Allen’s Operators (1983) and derivations
· Before: X before Y if end time of X is earlier than start time of Y
· Equal: X equal Y if start and end times are the same
· After: X after Y if start time of X is later than the end time of Y
· During: X during Y if start time of X is later than the start time of Y and the end time of X is eariler than the end time of Y
· Contains: Inverse of during
· Overlaps: X overlaps Y if the start time of X is earlier than the start time of Y, the end time of X is earlier than the end time of Y, and the end time of X is later than the start time of Y
· Overlapped by: Inverse of Overlaps
· Meets: X meets Y if the end time of X is the start time of Y
· Met by: Inverse of Meets
· Starts: X starts Y if the start time of X and Y are the same
· Started by: Inverse of Starts
· Finishes: X finishes Y if the end time of X and Y are the same
· Finished by: Inverse of Finishes

[bookmark: h.81jpfzxqdhew]Windowing Operators: Streams to Bag-of-Triples	Comment by Emanuele Della Valle: it can be even to mappings
Making finite something that is infinite. The window term may be changed (working name for the time being).
Distinction between the window and the window operator.
Time-based (sliding) windows
Graph-based? number of graphs (akin to tuple based windows)
Jumping/sliding/tumbling/historic: analyze if these are only special cases of previous ones.
[bookmark: h.z8jolamdimfd]Inverse Window Operators: Bag of Triples to Streams
When the output of a query is also a stream
Produce streams back, could feed a new query
RSTREAM, DSTREAM, ISTREAM
[bookmark: h.iltglficaxc2]Stored Data Windows
[bookmark: _GoBack]How ofter do you refresh stored data?
Is stored data a different type from the output type of a windowing operator?

[bookmark: h.i0ku3cocqrqc]Semantics	Comment by Jean-Paul Calbimonte: This section may not be necessary as it will be explained for every operator?	Comment by Alasdair Gray: I think this is referring to evaluation semantics, i.e. do you do periodic evaluation or event based evaluation
Semantics of the query language and its operators
Abstract of any serialisations or implementations

[bookmark: h.j9q7p1ggix29]References
[bookmark: id.9krvnzex4ke7]Allen, J.F., 1983. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), pp.832–843. Available at: http://dl.acm.org/citation.cfm?id=358434 [Accessed June 6, 2014].

