PRD Review by Changhai Ke, May 18, 2009
PRD

Document title:

RIF Production Rule Dialect

Editors

Christian de Sainte Marie, ILOG

Adrian Paschke, Freie Universitaet Berlin

Gary Hallmark, Oracle

Abstract

This document specifies RIF-PRD, a Rule Interchange Format (RIF) dialect to enable the interchange of production rules.

Status of this Document

@@update This is an automatically generated Mediawiki page, made from some sort of W3C-style spec.

Copyright © 2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

	Contents

[hide]
· 1 Overview

· 1.1 Production rule interchange
· 1.2 Running example
· 2 Conditions

· 2.1 Abstract syntax

· 2.1.1 Terms
· 2.1.2 Atomic formulas
· 2.1.3 Formulas
· 2.1.4 Well-formed formulas
· 2.2 Semantics of condition formulas

· 2.2.1 Semantic structures
· 2.2.2 Interpretation of condition formulas
· 2.2.3 Condition satisfaction
· 2.2.4 Pattern matching
· 2.2.5 Correspondence between condition satisfaction and pattern matching
· 3 Actions

· 3.1 Abstract syntax

· 3.1.1 Atomic actions
· 3.1.2 Action blocks
· 3.1.3 Well-formed action blocks
· 3.2 Operational semantics of atomic actions
· 4 Production rules and rule sets

· 4.1 Abstract syntax

· 4.1.1 Rules
· 4.1.2 Groups
· 4.1.3 Well-formed rules and groups
· 4.2 Operational semantics of rules and rule sets

· 4.2.1 Motivation and example
· 4.2.2 Definitions and notational conventions
· 4.2.3 Operational semantics of a production rule system
· 4.2.4 Conflict resolution
· 4.2.5 Halting test
· 5 Built-in functions, predicates and actions

· 5.1 Built-in actions

· 5.1.1 act:print
· 6 Conformance and interoperability

· 6.1 Semantics-preserving transformations
· 6.2 Conformance Clauses
· 6.3 Interoperability
· 7 XML Syntax

· 7.1 Notational conventions

· 7.1.1 Namespaces
· 7.1.2 BNF pseudo-schemas
· 7.1.3 Syntactic components
· 7.2 Conditions

· 7.2.1 TERM

· 7.2.1.1 Const
· 7.2.1.2 Var
· 7.2.1.3 List
· 7.2.1.4 External
· 7.2.2 ATOMIC

· 7.2.2.1 Atom
· 7.2.2.2 Equal
· 7.2.2.3 Member
· 7.2.2.4 Subclass
· 7.2.2.5 Frame
· 7.2.2.6 External
· 7.2.3 FORMULA

· 7.2.3.1 ATOMIC
· 7.2.3.2 And
· 7.2.3.3 Or
· 7.2.3.4 INeg
· 7.2.3.5 Exists
· 7.3 Actions

· 7.3.1 ATOMIC_ACTION

· 7.3.1.1 Assert
· 7.3.1.2 Retract
· 7.3.1.3 Modify
· 7.3.1.4 Execute
· 7.3.2 ACTION_BLOCK

· 7.3.2.1 New
· 7.3.2.2 Do
· 7.4 Rules and Groups

· 7.4.1 RULE

· 7.4.1.1 ACTION_BLOCK
· 7.4.1.2 Implies
· 7.4.1.3 Forall
· 7.4.2 Group
· 7.5 Document and directives

· 7.5.1 Import
· 7.5.2 Document
· 7.6 Constructs carrying no semantics

· 7.6.1 Annotation
· 8 Presentation syntax
· 9 References
· 10 Appendix: XML schema
· 11 Appendix: Complete RIF-PRD XML example

[image: image1.png]

1 Overview
This document specifies the production rule dialect of the W3C rule interchange format (RIF-PRD), a standard XML serialization format for the production rule languages.

The production rule dialect is one in a set of rule interchange dialects that comprises, at this point: the RIF Core dialect ([RIF-Core]) and the RIF basic logic dialect ([RIF-BLD]).

RIF-Core, the core dialect of the W3C rule interchange format, is designed to support the interchange of definite Horn rules without function symbols ("Datalog"), with a standard first-order semantics that can be described operationally, as well, e.g. using a fixpoint semantics [FIT02]. Syntactically, RIF-Core has a number of Datalog extensions to support features such as frames as in F-logic [KLW95], internationalized resource identifiers (or IRIs, defined by [RFC-3987]) as identifiers for concepts, and XML Schema datatypes [XML-SCHEMA2]. RIF-Core is based on a rich set of datatypes and built-ins that are designed to be well aligned with Web-aware rule system implementations [RIF-DTB]. In addition, RIF RDF and OWL Compatibility [RIF-RDF+OWL] defines the syntax and semantics of RIF-Core/RDF and RIF-Core/OWL combinations.

RIF-Core is intended to be the common core of all RIF dialects, and it has been designed, in particular, to be a useful common subset of RIF-BLD and RIF-PRD. RIF-PRD includes and extends RIF-Core, and, therefore, RIF-PRD inherits all RIF-Core features. These features make RIF-PRD a Web-aware (even a semantic Web-aware) language. However, it should be kept in mind that RIF is designed to enable interoperability among rule languages in general, and its uses are not limited to the Web.

This document is mostly intended for the designers and developers of RIF-PRD implementations, that is, applications that serialize production rules as RIF-PRD XML (producer applications) and that deserialize RIF-PRD XML documents into their proprietary production rules languages (consumer applications).

1.1 Production rule interchange
Production rules are rule statements defined in terms of both individual facts or objects, and groups of facts or classes of objects
. They have an if part, or condition, and a then part, or action. The condition is like the condition part of logic rules (as covered by RIF-Core and its basic logic dialect extension, RIF-BLD). The then part contains actions: that is different from the conclusion part of logic rules, which contains only logical statements. However, the conclusion of rules interchanged using RIF-Core can also be interpreted, according to RIF-PRD operational semantics,. In RIF-PRD, the set of primitive actions is extended to cover those that can add, delete, or modify facts in the knowledge base, as well as some useful primitives.

Example 1.1. The following are examples of production rules:
· «A customer becomes a "Gold" customer when his cumulative purchases during the current year reaches $5000»;
· «Customers that become "Gold" customers must be notified immediately, and a golden customer card will be printed and sent to them within one week»;
· «For shopping carts worth more than $1000, "Gold" customers receive an additional discount of 10% of the total amount». ☐

As a production rule interchange format, RIF-PRD specifies an abstract syntax that shares most features with many concrete production rule languages, and it associates the abstract constructs with normative semantics and a normative XML concrete syntax. Some annotation constructs, however, are not associated with a formal semantics in RIF,they are intended to attach meta-information to the semantically describedconstructs.

The abstract syntax is specified in mathematical English, and the abstract syntactic constructs defined in the sections Abstract Syntax of Conditions, Abstract Syntax of Actions and Abstract Syntax of Rules and Rulesets, are mapped one to one onto the concrete XML syntax in Section XML syntax. A lightweight notation
is also defined along with the abstract syntax, to allow for a human-friendlier specification of the semantics. A more complete presentation syntax is specified using an EBNF in Section Presentation Syntax. However, only the XML syntax and the associated semantics are normative. The normative XML schema is included in Appendix: XML Schema.

Example 1.2. In RIF-PRD presentation syntax, the first rule in example 1.1. might be represented as follows:
Prefix(ex http://example.com/2008/prd1#)

(* ex:rule_1 *)

Forall ?customer ?purchasesYTD (

 If And(?customer#ex:Customer

 ?customer[ex:purchasesYTD->?purchasesYTD]

 External(pred:numeric-greater-than(?purchasesYTD 5000)))

 Then Do(Modify(?customer[ex:status->"Gold"])))

☐

Production rules are statements of programming logic that specify the execution of one or more actions in the case their conditions are satisfied. Production rules have an operational semantics, formalizing state changes, e.g., on the basis of a state transition system formalism. The OMG Production Rule Representation specification [PRR] summarizes it as follows:

1. Match: the rules are instantiated based on the definition of the rule conditions and the current state of the data source;

2. Conflict resolution: a decision algorithm, often called the conflict resolution strategy, is applied to select which of the rule instances will be executed;

3. Act: the state of the data source is changed, by executing the selected rule instances’
actions. If a terminal state has not been reached, the control loops back to the first step (Match).

In the section Operational semantics of rules and rule sets, the semantics for rules and rule sets are specified, accordingly, as a labeled terminal transition system (PLO04), where state transitions result from executing the action part of instantiated rules. When several rules are found to be executable at the same time, during the rule execution process, a conflict resolution strategy is used to select the rule to execute, and to determine the order of execution (if more than one rule is selected)
. Sub-section Instance Selection specifies how an intended conflict resolution strategy can be attached to a rule set interchanged with RIF-PRD. RIF-PRD defines a default conflict resolution strategy.

Because most of them inherits the semantics of condition formulas as specified in RIF-Core, and to emphasize the broad overlap between the rule conditions that can be represented using RIF-BLD and RIF-PRD, the semantics associated with the syntactic constructs used for representing the condition part of rules in RIF-PRD is specified in terms of a model theory, in the section Semantics of condition formulas. In addition to exploiting the overlap between the three dialects, it allows them to share the same RIF definitions for datatypes and built-ins [RIF-DTB].

In the section Operational semantics of actions, the semantics associated with the constructs used to represent the action part of rules in RIF-PRD is specified in terms of a transition relation between successive states of the data source, as defined by the condition formulas that they entail
, thus making the link between the model-theoretic semantics of conditions and the operational semantics of rules and rule sets.

1.2 Running example
The same example rules will be used throughout the document to illustrate the syntax and the semantics of RIF-PRD. The complete RIF XML document corresponding to the example rule set is attached as Appendix: Complete RIF-PRD XML example.

The rules are about the status of customers at a shop, and the discount granted to them. The rule set contains four rules, to be applied when a customer checks out:

1. the first rule says that: «a "Silver" customer with a shopping cart worth at least $2,000 is upgraded to the "Gold" status». That rule is named: Gold rule:

2. the second rule says that: «"Silver" and "Gold" customers are granted a 5% discount on the total worth of their shopping cart». That rule is named: Discount rule;

3. the third rule says that: «a "New" customer who buys a widget is granted a 10% discount on the total worth of her shopping cart, but she looses any voucher she may have been awarded». That rule is named: New customer and widget rule;

4. finally, the last rule says that:«a message must be printed, identiying any customer whose status is unknown (that is, neither "New", "Bronze", "Silver" or "Gold"), and the customer must be assigned the status: "New"». That rule is named: Unknown status rule.

The Gold rule must be applied first; that is, e.g., a customer with "Silver" status and a shopping cart worth exactly $2,000 should be promoted to "Gold" status, before being given the 5% discount that would disallow the application of the Gold rule (since the total worth of his shopping cart would then be only $1,900).

In the remainder of this document, the prefix ex1 stands for the fictitious namespace of this example: http://example.com/2009/prd2#.

2 Conditions
This section specifies the language of the rule conditions that can be serialized using RIF-PRD, by specifying:

· the abstract syntax that all production rule languages interchanging rules using RIF-PRD must have in common for expressing conditions;

· and the intended semantics of the condition formulas in a RIF-PRD document.

Note to the reader: this section depends on Section Constants, Symbol Spaces, and Datatypes of RIF data types and builtins [RIF-DTB].

2.1 Abstract syntax
For a production rule language to be able to interchange rules using RIF-PRD, its alphabet for expressing the condition parts of a rule must, at the abstract syntax level, consist of:

· a countably infinite
set of constant symbols Const;

· a countably infinite set of variable symbols Var (disjoint from Const);

· syntactic constructs to denote:

· Lists;

· Function calls;

· Operators, including equality, class membership and subclass relations;

· conjunction, disjunction and negation;

· existential conditions.

For the sake of readibility and simplicity, this specification introduces a notation for these constructs. That notation is not intended to be a concrete syntax, so it leaves out many details: the only concrete syntax for RIF-PRD is the XML syntax.

Notice that the production rule systems for which RIF-PRD aims to provide a common XML serialization use only externally specified functions, e.g. builtins. RIF-BLD specifies, in addition, a construct to denote uninterpreted function symbols, which RIF-PRD does not require.

Notice, also, that RIF-PRD does support a form of negation. Neither RIF-Core nor RIF-BLD do support negation, because logic rule languages use many different kinds of negations, and none of them is prevalent enough to justify its inclusion in the basic logic dialect of RIF, let alone RIF-Core
(see also the RIF framework for logic dialects [RIF-FLD]).

2.1.1 Terms
The most basic construct that can be serialized using RIF-PRD is the term. RIF-PRD defines several kinds of terms: constants, variables, lists and positional terms.

Definition (Term).

1. Constants and variables. If t ∈ Const or t ∈ Var then t is a simple term;

2. List terms. A list has the form List(t0 ... tm-1), where m≥0 and t0, ..., tm-1 are terms. A list of the form List() (i.e., a list in which m=0) is called the empty list;

3. Positional terms. If t ∈ Const and t1, ..., tn, n≥1, are terms then t(t1 ... tn) is a positional term.
Here, the constant t represents a function and t1, ..., tn represent argument values. ☐

To emphasize interoperability with RIF-BLD, positional terms may also be written: External(t(t1 ... tn)): this notation is used in RIF-BLD to differentiate externally defined functions from uninterpreted ones
. As mentionned earlier, RIF-PRD covers only externally defined functions.

Examples 2.1.
· List("New" "Bronze" "Silver" "Gold") is a term that represents the list of the values for a customer's status that are known to the system. The elements of the list, "New", "Bronze", "Silver" and "Gold" are terms denoting string constants;
· func:numeric-multiply(?value, 0.90) is a positional term that represent the product of the value assigned to the variable ?value and the constant 0.90. That positional term can be used, for instance, to represent the new value, taking the discount into account, to be assigned a customer's shopping cart, in the rule New customer and widget rule. An alternative notation
 is: External(func:numeric-multiply(?value, 0.90)) ☐

2.1.2 Atomic formulas
Atomic formulas are the basic tests that can be used in the rule condition parts.
The atomic truth-valued constructs that can be serialized using RIF-PRD are called atomic formulas.

Definition (Atomic formula). An atomic formula can have several different forms and is defined as follows:

1. Positional atomic formulas. If t ∈ Const and t1, ..., tn, n≥1, are terms then t(t1 ... tn) is a positional atomic formula (or simply an atom);

2. Equality atomic formulas. t = s is an equality atomic formula (or, simply, an equality), if t and s are terms;

3. Class membership atomic formulas (or just membership). t#s is a membership atomic formula if t and s are terms. the term t is the object and the term s is the class;

4. Subclass atomic formulas. t##s is a subclass atomic formula if t and s are terms; t##s is true is t is a subclass of s.
5. Frame atomic formulas. t[p1->v1 ... pn->vn] is a frame atomic formula (or simply a frame) if t, p1, ..., pn, v1, ..., vn, n ≥ 0, are terms. The term t is the object of the frame; the pi are the property or attribute names; and the vi are the property or attribute values. In this document, an attribute/value pair is sometimes called a slot;

6. Externally defined atomic formulas. If t is a positional atomic formula then External(t) is an externally defined atomic formula. ☐

Class membership, subclass, and frame atomic formulas are used to represent classifications, class hierarchies and object-attribute-value relations.

Externally defined atomic formulas are used, in particular, for representing built-in predicates.

Note that atomic formulas are sometimes also called terms, e.g. in the realm of logic languages: the specification of RIF-BLD, in particular, follows that usage. The abstract syntactic elements that are called terms in this specification, are called basic terms in the specification of RIF-BLD.

Example 2.2.
· The class membership atom: ?customer # ex1:Customer represents the atomic condition that the individual bound to the variable ?customer is of the class denoted by the constant ex1:Customer;
· The fact that a customer represented by the variable ?customer has the "Gold" status can be represented using a positional predicate: ex1:Gold(?customer);
· It can also be represented using a frame, in a way that is closer to an object-oriented representation: ?customer[ex1:status->"Gold"];
· The following atom uses the built-in predicate pred:list-contains to represent the condition that the status of a customer, presented by the variable ?status, belongs to the list of predefined customer statuses: External(pred:list-contains(List("New", "Bronze", "Silver", "Gold"), ?status)). ☐

2.1.3 Formulas
Composite truth-valued constructs that can be serialized using RIF-PRD are called formulas.

Note that terms (constants, variables, lists and functions) are not formulas.

More general formulas are constructed out of atomic formulas with the help of logical operators.

Definition (Condition formula). A condition formula can have several different forms and is defined as follows:

1. Atomic formula: If φ is an atomic formula then it is also a condition formula.

2. Conjunction: If φ1, ..., φn, n ≥ 1, are condition formulas then so is And(φ1 ... φn), called a conjunctive formula. As a special case, And() is allowed and is treated as a tautology, i.e., a formula that is always true.

3. Disjunction: If φ1, ..., φn, n ≥ 1, are condition formulas then so is Or(φ1 ... φn), called a disjunctive formula. As a special case, Or() is permitted and is treated as a contradiction, i.e., a formula that is always false.

4. Negation: If φ is a condition formula, then so is Not(φ), called a negative formula.

5. Existentials: If φ is a condition formula and ?V1, ..., ?Vn, n>0, are variables then Exists ?V1 ... ?Vn(φ) is an existential formula. ☐

In the definition of a formula, the component formulas φ and φi are said to be subformulas of the respective condition formulas that are built using these components.

The function Var(e) that maps a term, atomic formula or formula e to the set of its free variables is defined as follows:

· if e ∈ Const, then Var(e) = {};

· if e ∈ Var, then Var(e) = {e};

· if p and argi, i = 1...n, n ≥ 0, are terms, then, Var(p(arg1...argn) = Var(p) ∪i=0...n Var(argi);

· if p and argi, i = 1...n, n ≥ 0,
are terms, then, Var(External(p(arg1...argn)) = Var(p) ∪i=0...n Var(argi);

· if t1 and t2 are terms, then Var(t1 [=|#|##] t2) Var(t1) ∪ Var(t2);

· if o', ki, i = 1...n, and vi, i = 1...n, n ≥ 1, are terms, then Var(o[k1->v1 ... kn->vn]) Var(o) ∪i=1...n Var(ki) ∪i=1...n Var(vi);

· if fi, i = 0...n, n ≥ 0, are condition formulas, then Var([And|Or](f1...fn)) ∪i=0...n Var(fi);

· if f is a condition formula, then Var(Not(f)) Var(f);

· if f is a condition formula and xi ∈ Var for i = 1...n, then, Var(Exists x1 ... xn (f)) = Var(f) - {xi | i = 1...n}.

Example 2.3.
· The condition of the New customer and widget rule: «a "New" customer who buys a widget», can be represented by the following RIF-PRD condition formula:
And(?customer # ex1:Customer

 ?customer[ex1:status->"New"]

 Exists ?shoppingCart ?item (And (?customer[ex1:shoppingCart->?shoppingCart]

 ?shoppingCart[ex1:containsItem->?item]

 ?item # ex1:Widget))

)

)

☐

Definition (Ground formula). A condition formula φ is a ground formula if and only if Varφ = {} and φ does not contain any existential subformula. ☐

In other words, a ground formula does not contain any variable term.

2.1.4 Well-formed formulas
The specification of RIF-PRD does not assign a standard meaning to all the formulas that can be serialized using its concrete XML syntax: formulas that can be meaningfully serialized are said well-formed. Not all formulas are well-formed with respect to RIF-PRD: it is required that no constant appear in more than one context
. What this means precisely is explained below.

The set of all constant symbols, Const, is partitioned into the following subsets:

· A subset of individuals. The symbols in Const that belong to the primitive datatypes are required to be individuals;

· A subset for external function symbols;

· A subset of plain predicate symbols;

· A subset for external predicate symbols.

As seen from the following definitions, these subsets are not specified explicitly but, rather, are inferred from the occurrences of the symbols.

Definition (Context of a symbol). The context of an occurrence of a symbol, s∈Const, in a formula, φ, is determined as follows:

· If s occurs as a predicate in an atomic subformula of the form s(...) (positional or named-argument) then s occurs in the context of a (plain) predicate symbol;

· If s occurs as a predicate in an atomic subformula External(s(...)) then s occurs in the context of an external predicate symbol;

· If s occurs as a function in a term (which is not a subformula) s(...) (or External(s(...))) then s occurs in the context of an (external) function symbol;

· If s occurs in any other context (e.g. in a frame: s[...], ...[s->...], or ...[...->s]; or in a positional atom: p(...s...)), it is said to occur as an individual. ☐

Definition (Well-formed formula). A formula φ is well-formed iff:

· every constant symbol mentioned in φ occurs in exactly one context;

· whenever a formula contains a positional term, t (or External(t)), or an external atomic formula, External(t), t must be an instance of a schema in the coherent set of external schemas (Section Schemas for Externally Defined Terms of [RIF-DTB]) associated with the language of RIF-PRD;

· if t is an instance of a schema in the coherent set of external schemas associated with the language then t can occur only as an external term or atomic formula. ☐

Definition (RIF-PRD condition language). The RIF-PRD condition language consists of the set of all well-formed formulas. ☐

2.2 Semantics of condition formulas

This section specifies the intended semantics of the condition formulas in a RIF-PRD document.

For compatibility with other RIF specifications (in particular, RIF data types and builtins [RIF-DTB] and RIF RDF and OWL compatibility [RIF-RDF+OWL]), and to make explicit the interoperability with RIF logic dialects (in particular RIF Core [RIF-Core] and RIF-BLD [RIF-BLD]), the intended semantics for RIF-PRD condition formulas is specified in terms of a model theory.

Although the form may not be the most familiar to many readers, that semantics is exactly equivalent to the operational one that is usually associated with the condition of production rules, that is:

· an atomic condition formula is true if and only if its variables are bound to individuals such that

· either the atom, with these constants substituted for the variables, matches a fact in the knowledge base;

· or the atom is an externally defined predicate, and its evaluation yelds true when these constants are substituted for the variables;

· A compound condition formula, conjunction, disjunction, negation or existential, is evaluated as expected, based on the truth value of its atomic components.

The mapping between the model-theoretic and operational semantics is explained in the section Correspondence between condition satisfaction and pattern matching.

2.2.1 Semantic structures

Definition (Semantic structure). A semantic structure, I, is a tuple of the form <TV, DTS, D, Dind, Dfunc, IC, IV, Ilist, Itail, IP, Iframe, Isub, Iisa, I=, Iexternal, Itruth>. Here D is a non-empty set of elements called the Herbrand domain of I, that is, the set of all ground terms which can be formed by using the elements of Const. Dind, Dfunc are nonempty subsets of D. Dind is used to interpret the elements of Const that are individuals and Dfunc is used to interpret the elements of Const that are function symbols. Const denotes the set of all constant symbols and Var the set of all variable symbols. TV denotes the set of truth values that the semantic structure uses and DTS is a set of identifiers for primitive datatypes (please refer to Section Datatypes of RIF data types and builtins [RIF-DTB] for the semantics of datatypes).

As far as the assignment of a standard meaning to formulas in the RIF-PRD condition language is concerned, the set TV of truth values consists of just two values, t and f.

The other components of I are total mappings defined as follows:

1. IC maps Const to D.

This mapping interprets constant symbols. In addition:

· If a constant, c ∈ Const, is an individual then it is required that IC(c) ∈ Dind.

· If c ∈ Const, is a function symbol then it is required that IC(c) ∈ Dfunc.

2. IV maps Var to Dind.

This mapping interprets variable symbols.

3. Ilist and Itail are used to interpret lists. They are mappings of the following form:

· Ilist : Dind* → Dind

· Itail : Dind+×Dind → Dind

In addition, these mappings are required to satisfy the following conditions:

· Ilist is an injective one-to-one function.

· Ilist(Dind) is disjoint from the value spaces of all data types in DTS.

· Itail(a1, ..., ak, Ilist(ak+1, ..., ak+m)) = Ilist(a1, ..., ak, ak+1, ..., ak+m).

Note that the last condition above restricts Itail only when its last argument is in Ilist(Dind), the image of Ilist. If the last argument of Itail is not in Ilist(Dind), then the list is malformed and there are no restrictions on the value of Itail except that it must be in Dind.

4. IP maps D to functions D*ind → D (here D*ind is a set of all sequences of any finite length over the domain Dind).

This mapping interprets positional terms atoms.

5. Iframe maps Dind to total functions of the form SetOfFiniteBags(Dind × Dind) → D.

This mapping interprets frame terms and gives meaning to frame functions. An argument, d ∈ Dind, to Iframe represents an object and the finite bag {<a1,v1>, ..., <ak,vk>} represents a bag of attribute-value pairs for d. Iframe is used to determine the truth valuation of frame terms.

Bags (multi-sets) are used here because the order of the attribute/value pairs in a frame is immaterial and pairs may repeat: o[a->b a->b]. Such repetitions arise naturally when variables are instantiated with constants. For instance, o[?A->?B ?C->?D] becomes o[a->b a->b] if variables ?A and ?C are instantiated with the symbol a and ?B, ?D with b.

6. Isub gives meaning to the subclass relationship. It is a mapping of the form Dind × Dind → D.

The operator ## is required to be transitive, i.e., c1 ## c2 and c2 ## c3 must imply c1 ## c3. TThis is ensured by a restriction in Section Interpretation of condition formulas;

7. Iisa gives meaning to class membership. It is a mapping of the form Dind × Dind → D.

The relationships # and ## are required to have the usual property that all members of a subclass are also members of the superclass, i.e., o # cl and cl ## scl must imply o # scl. This is ensured by a restriction in Section Interpretation of condition formulas;

8. I= is a mapping of the form Dind × Dind → D.

It gives meaning to the equality operator.

9. Itruth is a mapping of the form D → TV.

It is used to define truth valuation for formulas.

10. Iexternal is a mapping from the coherent set of schemas for externally defined functions to total functions D* → D. For each external schema σ = (?X1 ... ?Xn; τ) in the coherent set of external schemas associated with the language, Iexternal(σ) is a function of the form Dn → D.

For every external schema, σ, associated with the language, Iexternal(σ) is assumed to be specified externally in some document (hence the name external schema). In particular, if σ is a schema of a RIF built-in predicate, function or action, Iexternal(σ) is specified so that:

· If σ is a schema of a built-in function then Iexternal(σ) must be the function defined in [RIF-DTB];

· If σ is a schema of a built-in predicate then Itruth ο (Iexternal(σ)) (the composition of Itruth and Iexternal(σ), a truth-valued function) must be as specified in [RIF-DTB];

· If σ is a schema of a built-in action then Itruth ο (Iexternal(σ)) (the composition of Itruth and Iexternal(σ), a truth-valued function) must be as specified in the section Built-in actions in this document.

For convenience, we also define the following mapping I from terms to D:

· I(k) = IC(k), if k is a symbol in Const;

· I(?v) = IV(?v), if ?v is a variable in Var;

· For list terms, the mapping is defined as follows:

· I(List()) = Ilist(<>). Here <> denotes an empty list of elements of Dind. (Note that the domain of Ilist is Dind*, so Dind0 is an empty list of elements of Dind.)

· I(List(t1 ... tn)) = Ilist(I(t1), ..., I(tn)), if n>0.

· I(List(t1 ... tn | t)) = Itail(I(t1), ..., I(tn), I(t)), if n>0.

· I(p(t1 ... tn)) = IP(I(p))(I(t1),...,I(tn));

· I(o[a1->v1 ... ak->vk]) = Iframe(I(o))({<I(a1),I(v1)>, ..., <I(an),I(vn)>})
Here {...} denotes a bag of attribute/value pairs.

· I(c1##c2) = Isub(I(c1), I(c2));

· I(o#c) = Iisa(I(o), I(c));

· I(x=y) = I=(I(x), I(y));

· I(External(t)) = Iexternal(σ)(I(s1), ..., I(sn)), if t is an instance of the external schema σ = (?X1 ... ?Xn; τ) by substitution ?X1/s1 ... ?Xn/s1.
Note that, by definition, External(t) is well-formed only if t is an instance of an external schema. Furthermore, by the definition of coherent sets of external schemas, t can be an instance of at most one such schema, so I(External(t)) is well-defined
.
Since the beginning of 2.2 to here, I don’t understand the intention of all this text. There is a very big rupture.
The effect of datatypes. The set DTS must include the datatypes described in Section Primitive Datatypes of RIF data types and builtins [RIF-DTB].

The datatype identifiers in DTS impose the following restrictions. Given dt ∈ DTS, let LSdt denote the lexical space of dt, VSdt denote its value space, and Ldt: LSdt → VSdt the lexical-to-value-space mapping (for the definitions of these concepts, see Section Primitive Datatypes of RIF data types and builtins [RIF-DTB]. Then the following must hold:

· VSdt ⊆ Dind; and

· For each constant "lit"^^dt such that lit ∈ LSdt, IC("lit"^^dt) = Ldt(lit).

That is, IC must map the constants of a datatype dt in accordance with Ldt.

RIF-PRD does not impose restrictions on IC for constants in symbol spaces that are not datatypes included in DTS. ☐

2.2.2 Interpretation of condition formulas
This section defines how a semantic structure, I, determines the truth value TValI(φ) of a condition formula, φ.

We define a mapping, TValI, from the set of all condition formulas to TV. Note that the definition implies that TValI(φ) is defined only if the set DTS of the datatypes of I includes all the datatypes mentioned in φ and Iexternal is defined on all externally defined functions and predicates in φ.

Definition (Truth valuation). Truth evaluation for well-formed condition formulas in RIF-PRD is determined using the following function, denoted TValI:

· Positional atomic formulas: TValI(r(t1 ... tn)) = Itruth(I(r(t1 ... tn)));

· Equality: TValI(x = y) = Itruth(I(x = y)).
To ensure that equality has precisely the expected properties, it is required that:

· Itruth(I(x = y)) = t if I(x) = I(y) and that Itruth(I(x = y)) = f otherwise. This is tantamount to saying that TValI(x = y) = t iff I(x) = I(y);

· Subclass: TValI(sc ## cl) = Itruth(I(sc ## cl)).
To ensure that the operator ## is transitive, i.e., c1 ## c2 and c2 ## c3 imply c1 ## c3, the following is required:

· For all c1, c2, c3 ∈ D, if TValI(c1 ## c2) = TValI(c2 ## c3) = t then TValI(c1 ## c3) = t;

· Membership: TValI(o # cl) = Itruth(I(o # cl)).
To ensure that all members of a subclass are also members of the superclass, i.e., o # cl and cl ## scl implies o # scl, the following is required:

· For all o, cl, scl ∈ D, if TValI(o # cl) = TValI(cl ## scl) = t then TValI(o # scl) = t;

· Frame: TValI(o[a1->v1 ... ak->vk]) = Itruth(I(o[a1->v1 ... ak->vk])).
Since the bag of attribute/value pairs represents the conjunctions of all the pairs, the following is required, if k > 0:

· TValI(o[a1->v1 ... ak->vk]) = t if and only if TValI(o[a1->v1]) = ... = TValI(o[ak->vk]) = t;

·
Externally defined atomic formula: TValI(External(t)) = Itruth(Iexternal(σ)(I(s1), ..., I(sn))), if t is an atomic formula that is an instance of the external schema σ = (?X1 ... ?Xn; τ) by substitution ?X1/s1 ... ?Xn/s1.
Note that, by definition, External(t) is well-formed only if t is an instance of an external schema. Furthermore, by the definition of coherent sets of external schemas, t can be an instance of at most one such schema, so I(External(t)) is well-defined;

· Conjunction: TValI(And(c1 ... cn)) = t if and only if TValI(c1) = ... = TValI(cn) = t. Otherwise, TValI(And(c1 ... cn)) = f.

The empty conjunction is treated as a tautology, so TValI(And()) = t;

· Disjunction: TValI(Or(c1 ... cn)) = f if and only if TValI(c1) = ... = TValI(cn) = f. Otherwise, TValI(Or(c1 ... cn)) = t.

The empty disjunction is treated as a contradiction, so TValI(Or()) = f;

· Negation: TValI(Not(c)) = f if and only if TValI(c) = t. Otherwise, TValI(Not(c)) = t;

· Existence: TValI(Exists ?v1 ... ?vn (φ)) = t if and only if for some I*, described below, TValI*(φ) = t.
Here I* is a semantic structure of the form <TV, DTS, D, Dind, Dpred, IC, I*V, IP, Iframe, INP, Isub, Iisa, I=, Iexternal, Itruth>
, which is exactly like I, except that the mapping I*V, is used instead of IV. I*V is defined to coincide with IV on all variables except, possibly, on ?v1,...,?vn. ☐

2.2.3 Condition satisfaction
We define, now, what it means for a set of ground formulas, called a state of the fact base, to satisfy a condition formula. The satisfaction of condition formulas in a state of the fact base provides formal underpinning to the operational semantics of rule sets interchanged using RIF-PRD.

Definition (Models). A semantic structure I is a model of a condition formula, φ, written as I |= φ, iff TValI(φ) = t. ☐

Definition (Herbrand interpretation). Given a non-empty set of constants, Const, the Herbrand domain is the set of all the ground terms that can be formed using the elements of Const, and the Herbrand base is the set of all the well-formed ground atomic formulas that can be formed with the elements in the Herbrand domain.

A semantic structure, I, is a Herbrand interpretation, if the set of all the ground formulas which are true with respect to I (that is, of which I is a model), is a subset of the corresponding Herbrand base, BI. ☐

In RIF-PRD, the intended semantics of condition formulas is defined with respect to semantic structures where the domain, D is the Herbrand domain that is determined by the set of all the constants, Const; that is, with respect to Herbrand interpretations.

Definition (State of the fact base). To every Herbrand interpretation I, we associate a state of the fact base, wI, that is represented by the subset of the Herbrand base that contains all the ground atomic formulas of which I is a model; or, equivalently, by the conjunction of all these ground atomic formulas. ☐

Definition (Condition satisfaction). A RIF-PRD condition formula φ is satisfied in a state of the fact base, wI, if and only if I is a model of φ. ☐

2.2.4 Pattern matching

At the syntactic level, the interpretation of the variables by an evaluation function IV is realized by a substitution.

Let Term be the set of the terms in the RIF-PRD condition language (as defined in section Terms).

Definition (Substitution). A substitution is a finitely non-identical assignment of terms to variables; i.e., a function σ from Var to Term such that the set {x ∈ Var | x ≠ σ(x)} is finite. This set is called the domain of σ and denoted by Dom(σ). Such a substitution is also written as a set such as σ = {ti/xi}i=0..n where Dom(σ) = {xi}i=0..n and σ(xi) = ti, i = 0..,n. ☐

Definition (Ground Substitution). A ground substitution is a substitution σ that assigns only ground terms to the variables in Dom(σ): ∀ x ∈ Dom(σ), Var(σ(x)) = ∅ ☐

Notice that since RIF-PRD covers only externally defined interpreted functions, a ground substitution can always be restricted, without loss of generality, to assign only constants to the variable in its domain. In the remainder of this document, it will always be assumed that a ground substitution assigns only constants to the variables in its domain.

Definition (Matching substitution). Let ψ be a RIF-PRD condition formula; let σ be a ground substitution such that Var(ψ) ⊆ Dom(σ); and let Φ be a set of ground RIF-PRD atomic formulas. Let σ(ψ) denote the ground condition formula obtained by substituting σ(x), in ψ, for all x ∈ Var(ψ).

We say that the ground substitution σ matches ψ to Φ if and only if one of the following is true:

· ψ is an atomic formula and σ(ψ) ∈ Φ;

· ψ is Not(f), and σ does not match the condition formula f to Φ;

· ψ is And(f1 ... fn) and either n = 0; or ∀ i, 1 ≤ i ≤ n, σ matches fi to Φ;

· ψ is Or(f1 ... fn) and n > 0, and there is i, 1 ≤ i ≤ n, such that σ matches fi to Φ;

· ψ is Exists ?v1 ... ?vn (f), and there is a substitution σ' that extends σ in such a way that σ' agrees with σ where σ is defined, and Var(f) ⊆ Dom(σ'); and σ' matches f to Φ. ☐

The following theorem provides the formal link between the satisfaction of a condition formula and a matching substitution, and, further, between the model-theoretic semantics of condition formulas and the operational semantics of rule sets in RIF-PRD.

2.2.5 Correspondence between condition satisfaction and pattern matching
A ground substitution σ matches a condition formula ψ to a set of ground atomic formulas Φ if and only if Φ is a representation of a state of the fact base, w, in which ψ is satisfied.

3 Actions
This section specifies the action part of the rules that can be serialized using RIF-PRD (the conclusion of a production rule is often called the action part, or, simply, the action; the then part, with reference to the if-then form of a rule statement; or the right-hand side, or RHS. In the latter case, the condition is usually called the left-hand side of the rule, or LHS). Specifically, this section specifies:

· the abstract syntax that all production rule languages interchanging rules using RIF-PRD must have in common for expressing actions;

· and the intended semantics of the individual action formulas in a RIF-PRD document.

In production rule systems, the action part of the rules is used, in particular, to add, delete or modify facts in the data sources with respect to which the condition of rules are evaluated and the rules instantiated. As a rule interchange format, RIF-PRD does not make any assumption regarding the nature of the data sources that the producer or the consumer of a RIF-PRD document uses (e.g. a rule engine's working memory, an external data base, etc). As a consequence, the syntax of the actions that RIF-PRD supports are defined with respect to the RIF-PRD condition formulas that represent the facts that the actions are intended to affect. In the same way, the semantics of the actions is specified in terms of how the effects of their execution are intended to affect the evaluation of rule condition.

3.1 Abstract syntax
For a production rule language to be able to interchange rules using RIF-PRD, its alphabet for expressing the action part of a rule must, at the abstract syntax level, consist of syntactic constructs to denote:

· the assertion of a fact represented by a positional atom, a frame, or a membership atomic formula;

· the retraction of a fact represented by a positional atom or a frame;

· the addition of a new frame object;

· the removal of a frame object and the retraction of all the facts about it, represented by the corresponding frame and class membership atomic formulas;

· the replacement of all the values of an object's attribute by a single, new value;

· the execution of an externally defined action;

· a sequence of these actions, including the declaration of local variables and a mechanism to bind a local variable to a frame slot value or a new frame object.

3.1.1 Atomic actions
Atomic action constructs take constructs from the RIF-PRD condition language as their arguments.

Definition (Atomic action). An atomic action can have several different forms and is defined as follows:

1. Assert: If φ is a positional atom, a frame or a membership atomic formula in the RIF-PRD condition language, then Assert(φ) is an atomic action. φ is called the target of the action.

2. Retract: If φ is a positional atom or a frame in the RIF-PRD condition language, then Retract(φ) is an atomic action. φ is called the target of the action.

3. Retract object: If t is a term
in the RIF-PRD condition language, then Retract(t) is an atomic action. t is called the target of the action. ☐

4. Modify: if φ is a frame in the RIF-PRD condition language, then Modify(φ) is an atomic action. φ is called the target of the action;

5. Execute: if φ is a positional atom in the RIF-PRD condition language, then Execute(φ) is an atomic action. φ is called the target of the action. ☐

Definition (Ground atomic action). An atomic action with target t is a ground atomic action if and only if Var(t) = ∅. ☐

Examples 3.1.
· Assert(?customer[ex1:voucher->?voucher]), Retract(?customer[ex1:voucher->?voucher]) and Modify(?customer[ex1:voucher->?voucher]) denote, each, an atomic action with the frame ?customer[ex1:voucher->?voucher] as its target;
· Retract(?voucher) denotes an atomic action whose target is the individual bound to the variable ?voucher;
· Execute(act:print("Hello, world!")) is an atomic action whose target is the externally defined action act:print. ☐

3.1.2 Action blocks
The action block is the top level construct to represent the conclusions of the production rules that can be serialized using RIF-PRD. An action block contains a non-empty sequence of atomic actions. It may also include action variable declarations.

The action variable declaration construct is used to declare variables that are local to the action block, called action variables, and to assign them a value within the action block.

Definition (Action variable declaration). An action variable declaration is a pair, (v p) made of an action variable, v, and an action variable binding (or, simply, binding), p, where p has one of two forms:

1. frame object declaration: if the action variable, v, is to be assigned the identifier of a new frame, then the action variable binding is a frame object declaration: New. In that case, the notation for the action variable declaration is: (?o New);

2. frame slot value: if the action variable, v, is to be assigned the value of a slot of a ground frame, then the action variable binding is a frame: p = o[s->v], where o is a term that represents the identifier of the ground frame and s is a term that represents the name of the slot. The associated notation is: (?value o[s->?value]). ☐

Definition (Action block). If (v1 p1), ..., (vn pn), n ≥ 0, are action variable declarations, and if a1, ..., am, m ≥ 1, are atomic actions, then Do((v1 p1) ... (vn pn) a1 ... am) denotes an action block. ☐

Example 3.2. In the following action block, a local variable ?oldValue is bound to a value of the attribute value of the object bound to the variable ?shoppingCart, and it is, then, used to compute a new attribute value, in the target of a Modify action:
Do((?oldValue ?shoppingCart[ex1:value->?oldValue])

 Modify(?shoppingCart[ex1:value->func:numeric-multiply(?oldValue 0.90)]))

☐

3.1.3 Well-formed action blocks
The specification of RIF-PRD does not assign a standard meaning to all the action blocks that can be standardized using its concrete XML syntax. Action blocks that can be meaningfully serialized are called well-formed. The notion of well-formedness, already defined for condition formulas, is extended to atomic actions, action variable declarations and action blocks.

The main restrictions are that one and only one action variable bindings can assign a value to each action variable binding, and that the assertion of a membership atomic formula is meaningful only if for a new frame object
.

Definition (Well-formed atomic action). An atomic action is well-formed if and only if one of the following is true:

· it is an Assert and its target is a well-formed atom, a well-formed frame or a well-formed membership atomic formula;

· it is a Retract and its target is a well-formed term or a well-formed atom or a well-formed frame atomic formula;

· it is a Modify and its target is a well-formed frame;

· it is an Execute and its content is an instance of the coherent set of external schemas (Section Schemas for Externally Defined Terms of RIF data types and builtins [RIF-DTB]) associated with the RIF-PRD language (section Built-in functions, predicates and actions).
Definition (Well-formed action variable declaration). An action variable declaration (?v p) is well-formed if and only if one of the following is true:

· the action variable binding, p, is the declaration of a new frame object: p = New;

· the action variable binding, p, is a well formed frame atomic formula, p = o[a1->t1...an->tn], n ≥ 1, and the action variable, v occurs in the position of a slot value, and nowhere else, that is: v ∈ {t1 ... tn} and ∀ ti, either v = ti or v ∉ Var(ti) and v ∉ Var(o) ∪ Var(a1) ∪ ... ∪ Var(an). ☐

For the definition of a well-formed action block, the function Var(f), that has been defined for condition formulas, is extended to atomic actions and frame object declarations as follows:

· if f is an atomic action with target t, then Var(f) = Var(t);

· if f is a frame object declaration, New, then Var(f) = ∅.

Definition (Well-formed action block). An action block is well-formed if and only if all of the following is true:

· all the action variable declarations, if any, are well-formed;

· each action variable, if any, is assigned a value by one and only one action binding, that is: if b1 = (v1 p1) and b2 = (v2 p2) are two action variable declarations in the action block with different bindings: p1 ≠ p2, then v1 ≠ v2;

· in addition, the action variable declarations, if any, are partially ordered by the ordering defined as follows: if b1 = (v1 p1) and b2 = (v2 p2) are two action variable declarations in the action block, then b1 ≤ b2 if and only if v1 ∈ Var(p2);

· all the actions in the action block are well-formed atomic actions;

·
if an atomic action in the action block, a, asserts a membership atomic formula, a = Assert(t1 # t2),
then the object term in the membership atomic formula, t1, is an action variable that is declared in the action block and the action variable binding is a frame object declaration. ☐

Definition (RIF-PRD action language). The RIF-PRD action language consists of the set of all the well-formed action blocks. ☐

3.2 Operational semantics of atomic actions
This section specifies the intended semantics of the atomic actions in a RIF-PRD document.

The effect intended of the ground atomic actions in the RIF-PRD action language is to modify the state of the fact base, in such a way that it changes the set of conditions that are satisfied before and after each atomic action is performed.

As a consequence, the intended semantics of the ground atomic actions in the RIF-PRD action language determines a relation, called the RIF-PRD transition relation: →RIF-PRD ⊆ W × L × W, where W denotes the set of all the states of the fact base, and where L denotes the set of all the ground atomic actions in the RIF-PRD action language.

Individual states of the fact base are represented by sets of ground atomic formulas (Section Satisfaction of a condition). In the following, the intended operational semantics of atomic actions, or rules and of rule sets serialized using RIF-PRD will be specified by describing the changes they induce in the representation of the states of the fact base (thus, effectively confusing a state of the fact base and its representation).

Definition (RIF-PRD transition relation). The intended semantics of RIF-PRD atomic actions is completely specified by the transition relation →RIF-PRD ⊆ W × L × W. (w, α, w') ∈ →RIF-PRD if and only if w ∈ W, w' ∈ W, α is a ground atomic action, and one of the following is true:

1. α is Assert(φ), where φ is a ground atomic formula, and w' = w ∪ {φ};

2. α is Retract(φ), where φ is a ground atomic formula, and w' = w \ {φ};

3. α is Retract(o), where o is a constant, and w' = w \ {o[s->v] | for all the values of terms s and v} - {o#c | for all the values of term c};

4. α is Modify(φ), where φ is a ground atomic frame with object o and slot name s, and w' = (w \ {o[s->v] | for all the values of term v}) ∪ {φ};

5. α is Execute(φ), where φ is a ground atomic builtin action, and w' = w. ☐

Rule 1 says that all the condition formulas that were satisfied before an assertion will be satisfied after, and that, in addition, the condition formulas that are satisfied by the asserted ground formula will be satisfied after the assertion. No other condition formula will be satisfied after the execution of the action.

Rule 2 says that all the condition formulas that were satisfied before a retraction will be satisfied after, except if they are satisfied only by the retracted fact. No other condition formula will be satisfied after the execution of the action.

Rule 3 says that all the condition formulas that were satisfied before the removal of a frame object will be satisfied after, except if they are satisfied only by one of the frame or membership formulas about the removed object or a conjunction of such formulas. No other condition formula will be satisfied after the execution of the action.

Rule 4 says that all the condition formulas that were satisfied before the modification of a frame object will be satisfied after, except if they are satisfied only by one of the frame formulas about the modified slot of the modified object, with the exception of the frame that is asserted as the target of the action, or a conjunction of such formulas. No other condition formula will be satisfied after the execution of the action.

Rule 5 says that all the condition formulas that were satisfied before the execution of an action builtin will be satisfied after. No other condition formula will be satisfied after the execution of the action.

Example 3.3. Assume an initial state of the fact base that is represented by the following set, w0, of ground atomic formulas, where _c1, _v1 and _s1 denote individuals and where ex1:Customer, ex1:Voucher and ex1:ShoppingCart represent classes:
· w0 = {_c1#ex1:Customer _v1#ex1:Voucher _s1#ex1:ShoppingCart _c1[ex1:voucher->_v1] _c1[ex1:shoppingCart->_s1] _v1[ex1:value->5] _s1[ex1:value->500]}
· Assert(_c1[ex1:status->"New"]) denotes an atomic action that adds to the fact base, a fact that is represented by the ground atomic formula: _c1[ex1:status->"New"]. After the action is executed, the new state of the fact base is represented by
· w1 = {_c1#ex1:Customer _v1#ex1:Voucher _s1#ex1:ShoppingCart _c1[ex1:voucher->_v1] _c1[ex1:shoppingCart->_s1] _v1[ex1:value->5] _s1[ex1:value->500] _c1[ex1:status->"New"]}
· Retract(_c1[ex1:voucher->_v1]) denotes an atomic action that removes from the fact base, the fact that is represented by the ground atomic formula _c1[ex1:voucher->_v1]. After the action, the new state of the fact base is represenetd by:
· w2 = {_c1#ex1:Customer _v1#ex1:Voucher _s1#ex1:ShoppingCart _c1[ex1:shoppingCart->_s1] _v1[ex1:value->5] _s1[ex1:value->500] _c1[ex1:status->"New"]}
· Retract(_v1) denotes an atomic action that removes the individual denoted by the constant _v1 from the fact base. All the class membership and the object-attribute-value facts where _v1 is the object are removed. After the action, the new state of the fact base is represenetd by:
· w3 = {_c1#ex1:Customer _s1#ex1:ShoppingCart _c1[ex1:shoppingCart->_s1] _s1[ex1:value->500] _c1[ex1:status->"New"]}
· Modify(_s1[ex1:value->450]) denotes an atomic action that replace all the object-attribute-value facts that assign a ex1:value to the ex1:ShoppingCart _s1 by the single fact that is represented by the ground frame: _s1[ex1:value->450]. After the action, the new state of the fact base is represented by:
· w4 = {_c1#ex1:Customer _s1#ex1:ShoppingCart _c1[ex1:shoppingCart->_s1] _s1[ex1:value->450] _c1[ex1:status->"New"]}
· Execute(act:print(func:concat("New customer: " _c1))) denotes an action that does not impact the state of the fact base, but that prints a string to an output stream. After the action, the new state of the fact base is represented by:
· w5 = w4 = {_c1#ex1:Customer _s1#ex1:ShoppingCart _c1[ex1:shoppingCart->_s1] _s1[ex1:value->450] _c1[ex1:status->"New"]} ☐

4 Production rules and rule sets
This section specifies the rules and rule sets that can be serialized using RIF-PRD, by specifying:

· the abstract syntax that all production rule languages interchanging rules using RIF-PRD must have in common for rules and rule sets;

· and the intended semantics of the rules and rule set in a RIF-PRD document.

4.1 Abstract syntax
For a production rule language to be able to interchange rules using RIF-PRD, in addition to the RIF-PRD condition and action languages, its alphabet must, at the abstract syntax level, contain the following syntactic constructs:

· to associate a condition and an action block in a rule;

· to declare the variables that are free in a rule, to specify their bindings, and to associate them with that rule into a rule with less free variables;

· to group rules and to associate specific operational semantics to groups of rules.

4.1.1 Rules
Definition (Rule). A rule can be either:

· an unconditional action block;

· a conditional action block: if condition is a formula in the RIF-PRD condition language, and if action is a well-formed action block, then If condition, Then action is a conditional action;

· a rule with bound variables: if ?v1 ... ?vn, n > 0, are variables; p1 ... pm, m ≥ 0, are condition formulas (called binding patterns), and rule is a rule, then Forall ?v1...?vn such that (p1...pm) (rule) is a rule. ☐

Example 4.1. The Gold rule, from the running example: «a "Silver" customer with a shopping cart worth at least $2,000 is granted the "Gold" status», can be represented using the following rule with bound variables:
Forall ?customer such that And(?customer # ex1:Customer

 ?customer[ex1:status->"Silver"])

 (Forall ?shoppingCart such that And(?shoppingCart # ex1:ShoppingCart

 ?customer[ex1:shoppingCart->?shoppingCart])

 (If Exists ?value (And(?shoppingCart[ex1:value->?value]

 pred:numeric-greater-than-or-equal(?value 2000))

 Then Do(Modify(?customer[ex1:status->"Gold"])))

☐

4.1.2 Groups
As was already mentioned in Section Overview, production rules have an operational semantics that can be described in terms of matching rules against states of the fact base, selecting rule instances to be executed, and executing rule instances' actions to transition to new states of the fact base.

When production rules are interchanged, the intended rule instance selection strategy, often called the conflict resolution strategy, need be interchanged along with the rules : in RIF-PRD, the group is the construct that is used to group sets of rules and to associate them with a conflict resolution strategy. Many production rule systems use priorities associated with rules as part of their conflict resolution strategy: in RIF-PRD, the group is also used to carry the priority information that may be associated to the interchanged rules.

Definition (Group). If strategy is an IRI that identifies a conflict resolution strategy, if priority is an integer, and if each rgj, 0 ≤ j ≤ n, is either a rule or a group, then any of the following is a group:

· Group rg0 ... rgn, n ≥ 0;

· Group strategy rg0 ... rgn, n ≥ 0;

· Group priority rg0 ... rgn, n ≥ 0;

· Group strategy priority rg0 ... rgn, n ≥ 0. ☐

4.1.3 Well-formed rules and groups
The function Var(f), that has been defined for condition formulas and extended to actions, is further extended to rules, as follows:

· if f is an action block that declares action variables ?v1 ... ?vn, n ≥ 0, and that contains actions a1 ... am, m ≥ 1, then Var(f) = ∪1 ≤ i ≤ m Var(ai) \ {?v1 ... ?vn};

· if f is a conditional action block where c is the condition formula and a is the action block, then Var(f) = Var(c) ∪ Var(a);

· if f is a quantified rule where ?v1 ... ?vn, n > 0, are the declared variables; p1 ... pm, m ≥ 0, are the binding patterns, and r is the rule, then Var(f) = (Var(r) ∪ Var(p1) ∪ ... ∪ Var(pm)) \ {?v1 ... ?vn}.

Definition (Well-formed rule). A rule, r, is a well-formed rule if and only if it contains no free variable, that is, Var(r) = ∅,
and either:

· it is an unconditional well-formed action block, a;

· or it is a conditional action block where the condition formula, c, is a well-formed condition formula, and the action block, a, is a well-formed action block;

· or it is a quantified rule, Forall V (P) (r), and the quantified rule, r is a well-formed rule, and each of the declared variables in V = {?vi}0 ≤ i ≤ n is free in some of the binding patterns in P = {pj}0 ≤ j ≤ m or in the quantified rule, r; that is, V ⊆ Var(r) ∪ Var(p1) ∪ ... ∪ Var(pm), m ≥ 0. ☐

Definition (Well-formed group). A well-formed group is either a group that contains only well-formed rules and well-formed groups, or a group that contains no rule or group (an empty group). ☐

The set of the well-formed groups contains all the production rule sets that can be meaningfully interchanged using RIF-PRD.

4.2 Operational semantics of rules and rule sets
4.2.1 Motivation and example
As already mentioned in Section Overview, the description of a production rule system as a transition system can be used to specify the intended semantics that is associated with production rules and rule sets interchanged using RIF-PRD.

The intuition of describing a production rule system as a transition system is that, given a set of production rules RS and a fact base w0, the rules in RS that are satisfied, in some sense, in w0 determine an action a1, whose execution results in a new fact base w1; the rules in RS that are satisfied in w1 determine an action a2 to execute in w1, and so on, until the system reaches a final state and stops. The result is the fact base wn when the system stops.

Example 4.2. The Rif Shop, Inc. is a rif-raf retail chain, with brick and mortar shops all over the world, and licences in many on-line shops. The Rif Shop, Inc. maintains its customer fidelity management policies in the form of production rule sets. The customer management departement uses RIF-PRD to send the updated rule sets, after each update, to all the shops and licencees. That way, it makes sure that they, all, use always the latest version of the rules, without having to care about the exact technology they use to apply them (some of the smallest shops actually run the rules by hand).
Here is a small rule set that handles discounts and customer status updates at checkout time (to keep the example short, this is a subset of the rules described in the section Running example):
Group rif:forwardChaining

(* ex1:CheckoutRuleset *)

 Group 10

 (* ex1:GoldRule *)

 Forall ?customer such that (And(?customer # ex1:Customer

 ?customer[ex1:status->"Silver"]))

 (Forall ?shoppingCart such that (?customer[ex1:shoppingCart->?shoppingCart])

 (If Exists ?value (And(?shoppingCart[ex1:value->?value]

 pred:numeric-greater-than-or-equal(?value 2000))

 Then Do(Modify(?customer[ex1:status->"Gold"])))

 Group

 (* ex1:DiscountRule *)

 Forall ?customer such that (And(?customer # ex1:Customer))

 (If Or(?customer[ex1:status->"Silver"]

 ?customer[ex1:status->"Gold"]

 Then Do((?s ?customer[ex1:shoppingCart->?s])

 (?v ?s[ex1:value->?v])

 Modify(?s[ex1:value->func:numeric-multiply(?v 0.95)]))

To verify if the ruleset works, consider for instance, the case of a shop where the one customer if John, and his check-out processing is about to start; the initial state of the fact base can be represented as follows:
w0 = {_john#ex1:Customer _john[ex1:status->"Silver"] _s1#ex1:ShoppingCart _john[ex1:shoppingCart->_s1] _s1[ex1:value->2000]}
When instantiated against w0, the first pattern in the "Gold rule":
And(?customer#ex1:Customer ?customer[ex1:status->"Silver"])
yelds the single matching substitution: {(_john/?customer)}. The second pattern in the same rule yelds, again, a single matching substitution: {(_john/?customer)(_s1/?shoppingCart)}, for which the existential condition is satisfied.
Likewise, the instantiation of the "Discount rule" yelds a single matching substitution that satisfies the condition: {(_john/?customer)}. The conflict set can be represented as:
{ex1:GoldRule/{(_john/?customer)(_s1/?shoppingCart)}, ex1:DiscountRule/{(_john/?customer)}}
The instance ex1:GoldRule/{(_john/?customer)(_s1/?shoppingCart)} is selected, due to its higher priority, and the ground atomic action: Modify(_john[ex1:status->"Gold"]), is executed, resulting in a new state of the fact base, represented as follows:
w1 = {_john#ex1:Customer _john[ex1:status->"Gold"] _s1#ex1:ShoppingCart _john[ex1:shoppingCart->_s1] _s1[ex1:value->2000]}
In the next cycle, there is no substitution for the rule variable ?customer that matches the pattern to the state of the fact base, and the only matching rule instance is: ex1:DiscountRule/{(_john/?customer)}, which is, therefore, selected for execution. The action variables, ?s and ?v are bound, based on the state of the fact base, to _s1 and 200, respectively, and the ground atomic action: Modify(_s1[ex1:value->1900]) is executed, resulting in a new state of the fact base:
w2 = {_john#ex1:Customer _john[ex1:status->"Gold"] _s1#ex1:ShoppingCart _john[ex1:shoppingCart->_s1] _s1[ex1:value->1900]}
In w2, the only matching rule instance is, again: ex1:DiscountRule/{(_john/?customer)}. However, that same instance has already been selected, the corresponding action executed, and nothing changed in the state of the fact base, since then, that would justify that the rule instance be selected, and the action executed, again. The principle of refraction applies, and the rule instance is removed from consideration.
This leaves the conflict set empty, and the system, having detected a final state, stops.
The result of the execution of the system is w2. ☐

4.2.2 Definitions and notational conventions
Formally, a production rule system is defined as a labeled terminal transition system (e.g. PLO04), for the purpose of specifying the intended semantics of a RIF-PRD rule or group of rules.

Definition (labeled terminal transition system): A labeled terminal transition system is a structure {C, L, →, T}, where

· C is a set of elements, c, called configurations, or states;

· L is a set of elements, a, called labels, or actions;

· → ⊆ C × L × C is the transition relation, that is: (c, a, c') ∈ → iff there is a transition labeled a from the state c to the state c' . In the case of a production rule system: in the state c of the fact base, the execution of action a causes a transition to state the c' of the fact base;

· T ⊆ C is the set of final states, that is, the set of all the states c from which there are no transitions: T = {c ∈ C | ∀ a ∈ L, ∀ c' ∈ C, (c, a, c') ∉ →}. ☐

For many purposes, a representation of the states of the fact base is an appropriate representation of the states of a production rule system seen as a transition system. However, the most widely used conflict resolution strategies require information about the history of the system, in particular with respect to the rule instances that have been selected for execution in previous states. Therefore, each state of the transition system used to represent a production rule system must keep a memory of the previous states and the rule instances that where selected and triggered the transition in those states.

To avoid confusion between the states of the fact base and the states of the transition system, the latter will be called production rule system states.

Definition (Production rule system state). A production rule system state (or, simply, a system state), s, is characterized by

· a state of the fact base, facts(s);

· if s is not the initial state: a previous system state, previous(s), such that, given two system states s1 and s2, s1 = previous(s2) if and only if the sequential execution of the action parts of the rule instances in picked(s1) transitioned the system from system state s1 to system state s2;

· if s is not the current state: the ordered set of rule instances, picked(s), that the conflict resolution strategy picked, among the set of all the rule instances that matched facts(s). ☐

Here, a rule instance is defined as the result of the substitution of constants for all the rule variables in a rule.

In the following, we will write previous(s) = NIL to denote that a system state s is the initial state.

Let R denote the set of all the rules in the rule language under consideration.

Definition (Rule instance). Given a rule, r ∈ R, and a ground substitution, σ, such that Var(r) ⊆ Dom(σ), where Var(r) denotes the set of the rule variables in r, the result, ri = σ(r), of the substitution of the constant σ(?x) for each variable ?x ∈ Var(r) is a rule instance (or, simply, an instance) of r. ☐

Given a rule instance ri, let rule(ri) identify the rule from which ri is derived by substitution of constants for the rule variables, and let substitution(ri) denote the substitution by which ri is derived from rule(ri).

In the following, two rule instances ri1 and ri2 of a same rule r will be considered different if and only if substitution(ri1) and substitution(ri2) substitute a different constant for at least one of the rule variables in Var(r).

In the definition of a production rule system state, a rule instance, ri, is said to match a state of a fact base, w, if its defining substitution, substitution(ri), matches the RIF-PRD condition formula that represents the condition of the instantiated rule, rule(ri), to the set of ground atomic formulas that represents the state of facts w.

Let W denote the set of all the possible states of a fact base.

Definition (Matching rule instance). Given a rule instance, ri, and a state of the fact base, w ∈ W, ri is said to match w if and only if one of the following is true:

· rule(ri) is an unconditional action block;

· rule(ri) is a conditional action block: If condition, Then action, and substitution(ri) matches the condition formula condition to the set of ground atomic condition formulas that represents w;

· rule(ri) is a rule with bound variables: Forall ?v1...?vn (p1...pn) (r'), n ≥ 0, m ≥ 0, and substitution(ri) matches each of the condition formulas pi, 0 ≤ i ≤ m, to the set of ground atomic condition formulas that represents w, and the rule instance ri' matches w, where rule(ri') = r' and substitution(ri') = substitution(ri). ☐

Definition (Conflict set). Given a rule set, RS ⊆ R, and a system state, s, the conflict set determined by RS in s is the set, conflictSet(RS, s) of all the different instances of the rules in RS that match the state of the fact base, facts(s) ∈ W. ☐

The rule instances that are in the conflict set are, sometimes, said to be fireable.

In each non-final state, s, of a production rule system, a subset, picked(s), of the rule instances in the conflict set is selected and ordered; their action parts are instantiated, and the resulting sequence of ground atomic actions is executed. This is sometimes called: firing the selected instances.

Definition (Action instance). Given a system state, s, given a rule instance, ri, of a rule in a rule set, RS, and given the action block in the action part of the rule rule(ri): Do((v1 p1)...(vn pn) a1...am), n ≥ 0, m ≥ 1, where the (v1 p1), 0 ≤ i ≤ n, represent the action variable declarations and the aj, 1 ≤ j ≤ m, represent the sequence of atomic actions in the action block; if ri is a matching instance in the conflict set determined by RS in system state s: ri ∈ conflictSet(RS, s), the substitution σ = substitution(ri) is extended to the action variables v1...vn, n ≥ 0, in the following way:

· if the binding, pi, associated to vi, in the action variable declaration, is the declaration of a new frame object: (vi New(), then σ(vi) = cnew, where cnew is a constant of type rif:IRI that does not occur in any of the ground atomic formulas in the set that represents facts(s), the state of the fact base that is associated to s;

· if vi is assigned the value of a frame's slot by the action variable declaration: (vi o[s->vi]), then σ(vi) is a constant such that the subtitution σ matches the frame formula o[s->vi] to the state of the fact base facts(s).

The sequence of ground atomic actions that is the result of substituting a constant for each variable in the atomic actions of the action block of the rule instance, ri, according to the extended substitution, is the action instance associated to ri. ☐

Let actions(ri) denote the action instance that is associated to a rule instance ri. By extension, given an ordered set of rule instances, ori, actions(ori) denotes the sequence of ground atomic actions that is the concatenation, preserving the order in ori, of the action instances associated to the rule instances in ori.

4.2.3 Operational semantics of a production rule system
All the elements that are required to define a production rule system as a labeled terminal transition system have now been defined.

Definition (RIF-PRD Production Rule System). A RIF-PRD production rule system is defined as a labeled terminal transition system PRS = {S, A, →PRS, T}, where :

· S is a set of system states;

· A is a set of transition labels, where each transition label is a sequence of ground RIF-PRD atomic actions;

· The transition relation →PRS ⊆ S × A × S, is defined as follows:
∀ (s, a, s') ∈ S × A × S, (s, a, s') ∈ →PRS if and only if all of the following hold:

1. (facts(s), a, facts(s')) ∈ →*RIF-PRD, where →*RIF-PRD denotes the transitive closure of the transition relation →RIF-PRD that is determined by the specification of the semantics of the atomic actions supported by RIF-PRD;

2. a = actions(picked(s));

· T ⊆ S, a set of final system states. ☐

Intuitively, the first condition in the definition of the transition relation →PRS states that a production rule system can transition from one system state to another only if the state of facts in the latter system state can be reached from the state of facts in the former by performing a sequence of ground atomic actions supported by RIF-PRD, according to the semantics of the atomic actions.

The second condition states that the allowed paths out of any given system state are determined only by how rule instances are picked for execution, from the conflict set, by the conflict resolution strategy.

Given a rule set RS ⊆ R, the associated conflict resolution strategy, LS, and halting test, H, and an initial state of the fact base, w ∈ W, the input function to a RIF-PRD production rule system is defined as:

Eval(RS, LS, H, w) →PRS s ∈ S, such that facts(s) = w and previous(s) = NIL,

and, using →*PRS to denote the transitive closure of the transition relation →PRS, there are zero, one or more final states of the system, s' ∈ T, such that:

Eval(RS, LS, H, w) →*PRS s'.
Followingly, the execution of a rule set, RS, in a state, w, of a fact base, may result in zero, one or more final state of the fact base, w' = facts(s'), depending on the conflict resolution strategy and the set of final system states.

In other words, the exact behavior that is intended of a RIF-PRD production rule system depends on:

1. the conflict resolution strategy, that is, how rule instances are precisely selected for execution from the rule instances that match a given state of the fact base;

2. and how the set T of final system states is precisely defined.

4.2.4 Conflict resolution
The process of selecting one or more rule instances from the conflict set for firing is often called: conflict resolution.

In RIF-PRD the conflict resolution algorithm (or conflict resolution strategy) that is intended for a set of rules is denoted by a keyword or a set of keywords that is attached to the rule set. In this version of the RIF-PRD specification, a single conflict resolution strategy is specified normatively: it is denoted by the keyword rif:forwardChaining (a constant of type rif:IRI), for it accounts for a common conflict resolution strategy used in most forward-chaining production rule systems.

Future versions of the RIF-PRD specification may specify normatively the intended conflict resolution strategies to be attached to additional keywords. In addition, RIF-PRD documents may include non-standard keywords: it is the responsability of the producers and consumers of such document to agree on the intended conflict resolution strategies that are denoted by such non-standard keywords.

Conflict resolution strategy: rif:forwardChaining

Most existing production rule systems implement conflict resolution algorithms that are a combination of the following elements (under these or other, idiosyncratic names; and possibly combined with additional, idiosyncratic rules):

· Refraction. The essential idea of refraction is that a given instance of a rule must not be fired more than once as long as the reasons that made it eligible for firing hold. In other terms, if an instance has been fired in a given state of the system, it is no longer eligible for firing as long as it satisfies the states of facts associated to all the subsequent system states;

· Priority. The rule instances are ordered by priority of the instantiated rules, and only the rule instances
with the highest priority are eligible for firing;

· Recency. the rule instances are ordered by the number of consecutive system states, or the number of consecutive cycles, in which they have been in the conflict set, and only the most recently fireable ones are eligible for firing. Note that the recency rule, used alone, results in depth-first processing.

Many existing production rule systems implement also some kind of fire the most specific rule first strategy, in combination with the above. However, whereas they agree on the definition of refraction and the priority or recency ordering, existing production rule systems vary widely on the precise definition of the specificity ordering. As a consequence, rule instance specificity was not included in the basic conflict resolution strategy that RIF-PRD specifies normatively.

The RIF-PRD keyword rif:forwardChaining denotes the common conflict resolution strategy that can be summarized as follows: given a conflict set

1. Refraction is applied to the conflict set, that is, all the refracted rule instances are removed from further consideration; (Note: refraction is stateless, it does not remember the rule instance which has fired previsouly. Thus a rule can be fired previously can be firable again, if its condition part is modified)
2. The remaining rule instances are ordered by decreasing priority, and only the rule instances with the highest priority are kept for further consideration;

3. The remaining rule instances are ordered by decreasing recency, and only the most recent rule instances are kept for further consideration;

4. Any remaining tie is broken is some way, and a single rule instance is kept for firing.

As specified earlier, picked(s) denotes the ordered list of the rule instances that were picked in a system state, s. Under the conflict resolution strategy denoted by rif:forwardChaining, for any given system state, s, the list denoted by picked(s) contains a single rule instance.

Given a system state, s, a rule set, RS, and a rule instance, ri ∈ conflictSet(RS, s), let recency(ri, s) denote the number of system states before s, in which ri has been continuously a matching instance:
if s is the current system state, recency(ri, s) provides a measure of the recency of the rule instance ri. recency(ri, s) is specified recursively as follows:

· if previous(s) = NIL, then recency(ri, s) = 1;

· else if ri ∈ conflictSet(RS, previous(s)), then recency(ri, s) = 1 + recency(ri, previous(s));

· else, recency(ri, s) = 1.

In the same way, given a rule instance, ri, and a system state, s, let lastPicked(ri, s) denote the number of system states before s, since ri has been last fired. lastPicked(ri, s) is specified recursively as follows:

· if previous(s) = NIL, then lastPicked(ri, s) = 1;

· else if ri ∈ picked(previous(s)), then lastPicked(ri, s) = 1;

· else, lastPicked(ri, s) = 1 + lastPicked(ri, previous(s)).

Given a rule instance, ri, let priority(ri) denote the priority that is associated to rule(ri), or zero, if no priority is associated to rule(ri). If rule(ri) is inside nested Groups, priority(ri) denotes the priority that is associated with the innermost Group to which a priority is explicitely associated, or zero.

Example 4.3. Consider the following RIF-PRD document:
Document

 Prefix(ex2 http://example.com/2009/prd3#)

 Group (* ex2:ExampleRuleSet *)

 Forall ...

 Group 10 (* ex2:HighPriorityRules *)

 Group (* ex2:Rule_1 *) Forall ...

 Group 9 (* ex2:Rule_2 *) Forall ...

 Group (* ex2:NoPriorityRules *)

 Group (* ex2:Rule_3 *) Forall ...

 Group (* ex2:Rule_4 *° Forall ...

No conflict resolution strategy is identified explicitely: the intended conflict resolution strategy is therefore equivalent to rif:forwardChaining.
Since the ex2:ExampleRuleSet group does not specify a priority, its intended priority is 0, The very first rule, not being in any other group, inherits its intended priority, 0, from the top-level group.
The single-rule group identified as ex2:Rule_1 specifies no priority, so it inherits its intended priority, 10, from the enclosing group, identified as ex2:HighPriorityRules. However, the single-rule group identified as ex2:Rule_2 specifies its own, lower, priority: 9.
Since neither ex2:Rule_3 nor ex2:Rule_4 specify a priority, they inherit their priority from the enclosing group ex2:NoPriorityRules, which does not specify one either, and, thus, inherits it from the top-level group, ex2:ExampleRuleSet. The priority associated to the groups ex2:Rule_3 and ex2:Rule_4, and the single rule they each contain, is, therefore, 0. ☐

Given a set of rule instances, cs, the conflict resolution strategy rif:forwardChaining can now be described with the help of four rules, where ri and ri' are rule instances:

1. Refraction rule: if ri ∈ cs and lastPicked(ri, s) < recency(ri, s), then cs = cs - ri;

2. Priority rule: if ri ∈ cs and ri' ∈ cs and priority(ri) < priority(ri'), then cs = cs - ri;

3. Recency rule: if ri ∈ cs and ri' ∈ cs and recency(ri, s) > recency(ri', s), then cs = cs - ri;

4. Tie-break rule: if ri ∈ cs, then cs = {ri}. RIF-PRD does not specify the tie-break rule more precisely: how a single instance is selected from the remaining set is implementation specific.

The refraction rule removes the instances that have been in the conflict set in all the system states at least since they were last fired; the priority rule removes the instances such that there is at least one instance with a higher priority; the recency rule removes the instances such that there is at least one instance that is more recent; and the tie-break rule keeps one rule from the set.

To select the singleton rule instance, picked(s), to be fired in a system state, s, given a rule set, RS, the conflict resolution strategy denoted by the keyword rif:forwardChaining consists of the following sequence of steps:

1. initialize picked(s) with the conflict set, that a rule set RS determines in a system state s: picked(s) = conflictSet(RS, s);

2. apply the refraction rule to all the rule instances in picked(s);

3. then apply the priority rule to all the remaining instances in picked(s);

4. then apply the recency rule to all the remaining instances in picked(s);

5. then apply the tie-break rule to the remaing instance in picked(s);

6. return picked(s).

Example 4.4. Consider, from example 4.2, the conflict set that the rule set ex1:CheckoutRuleset determines in the system state, s2, that corresponds to the state w2 = facts(s2) of the fact base, and use it to initialize the set of rule instance considered for firing, picked(s2):
conflictSet(ex1:CheckoutRuleset, s2) = { ex1:DiscountRule/{(_john/?customer)} } = picked(s2)
The single rule instance in the conflict set, ri = ex1:DiscountRule/{(_john/?customer)}, did already belong to the conflict sets in the two previous states, conflictSet(ex1:CheckoutRuleset, s1) and conflictSet(ex1:CheckoutRuleset, s0); so that its recency in s2 is: recency(ri, s2) = 3.
On the other hand, that rule instance was fired in system state s1: picked(s1) = (ex1:DiscountRule/{(_john/?customer)}); so that, in s2, it has been last fired one cycle before: lastPicked(ri, s2) = 1.
Therefore, lastPicked(ri, s2) ≤ recency(ri, s2), and ri is removed from picked(s2) by refraction, leaving picked(s2) empty. ☐

4.2.5 Halting test
By default, a system state is final, given a rule set, RS, and a conflict resolution strategy, LS, if there is no rule instance available for firing, that is the set of eligible rules is empty.

For the conflict resolution strategy identified by the RIF-PRD keyword rif:forwardChaining, a system state, s, is final given a rule set, RS if and only if the remaining conflict set is empty after application of the refraction rule to all the rule instances in conflictSet(RS, s). In particular, all the system states, s, such that conflictSet(RS, s) = ∅ are final.

5 Built-in functions, predicates and actions
In addition to externally specified functions and predicates, and in particular, in addition to the functions and predicates built-ins defined in [RIF-DTB], RIF-PRD supports externally specified actions, and defines action built-ins.

The syntax and semantics of action built-ins are specified like for the other buit-ins, as described in the section Syntax and Semantics of Built-ins in [RIF-DTB]. However, their formal semantics is trivial: action built-ins behave like predicates that are always true, since action built-ins, in RIF-PRD, MUST NOT affect the semantics of the rules.

Although they must not affect the semantics of the rules, action built-ins may have other side effects.

RIF action built-ins are defined in the namespace: http://www.w3.org/2007/rif-builtin-action#. In this document, we will use the prefix: act: to denote the RIF action built-ins namespace.

5.1 Built-in actions
5.1.1 act:print
· Schema:

(?arg; act:print(?arg))

· Domains:

The value space of the single argument is xs:string.

· Mapping:

When s belongs to its domain, Itruth ο IExternal(?arg; act:print(?arg))(s) = t.

If an argument value is outside of its domain, the truth value of the function is left unspecified.

· Side effects:

The value of the argument MUST be printed to an output stream, to be determined by the user implementation.

6 Conformance and interoperability
6.1 Semantics-preserving transformations
RIF-PRD conformance is described partially in terms of semantics-preserving transformations.

The intuitive idea is that, for any initial state of facts, the conformant consumer of a conformant RIF-PRD document must reach at least one of the final state of facts intended by the conformant producer of the document, and that it must never reach any final state of facts that was not intended by the producer. That is:

· a conformant RIF-PRD producer, P, must translate any rule set from its own rule language, LP, into RIF-PRD, in such a way that, for any possible initial state of the fact base, the RIF-PRD translation of the rule set must never produce, according to the semantics specified in this document, a final state of the fact base that would not be a possible result of the execution of the rule set according to the semantics of LP (where the state of the facts base are meant to be represented in LP or in RIF-PRD as appropriate);

· and a conformant RIF-PRD consumer, C, must translate any rule set from a RIF-PRD document into a rule set in its own language, LC, in such a way that, for any possible initial state of the fact base, the translation in LC of the rule set, must never produce, according to the semantics of LC, a final state of the fact base that would not be a possible result of the execution of the rule set according to the semantics specified in this document (where the state of the facts base are meant to be represented in LC or in RIF-PRD as appropriate).

Let Τ be a set of datatypes and symbol spaces that includes the datatypes specified in [RIF-DTB] and the symbol spaces rif:iri and rif:local. Suppose also that Ε is a set of external predicates and functions that includes the built-ins listed in [RIF-DTB] and in the section Built-in actions. We say that a rule r is a RIF-PRDΤ,Ε rule if and only if

· r is a well-formed RIF-PRD rule,

· all the datatypes and symbol spaces used in r are in Τ, and

· all the externally defined functions and predicates used in r are in Ε.

Suppose, further, that C is a set of conflict resolution strategies that includes the one specified in section Conflict resolution, and that H is a set of halting tests that includes the one specified in section Halting test: we say that a rule set , R, is a RIF-PRDΤ,Ε,C,H rule set if and only if

· R contains only RIF-PRDΤ,Ε rules; and

· the conflict resolution strategy that is associated to R is in C; and

· the halting test that is associated to R is in H.

Given a RIF-PRDΤ,Ε,C,H rule set, R, an initial state of the fact base, w, a conflict resolution strategy c ∈ C and a halting test h ∈ H, let FR,w,c,h denote the set of all the sets, f, of RIF-PRD ground atomic formulas that represent final states of the fact base, w' , according to the operational semantics of a RIF-PRD production rule system, that is: f ∈ FR,w,c,h if and only if there is a state, s' , of the system, such that Eval(R, c, h, w) →*PRS s' and w' = facts(s') and f is a representation of w' .

In addition, given a rule language, L, a rule set expressed in L, RL, a conflict resolution strategy, c, a halting test, h, and an initial state of the fact base, w, let FL,RL, c, h, w denote the set of all the formulas in L that represent a final state of the fact base that an L processor can possibly reach.

Definition (Semantics preserving mapping).

· A mapping from a RIF-PRDΤ,Ε,C,H, R, to a rule set, RL, expressed in a language L, is semantics-preserving if and only if, for any initial state of the fact base, w, conflict resolution stratey, c, and halting test, h, it also maps each L formula in FL,RL, c, h, w onto a set of RIF-PRD ground formulas in FR,w,c,h;

· A mapping from a rule set, RL, expressed in a language L, to a RIF-PRDΤ,Ε,C,H, R, is semantics-preserving if an only if, for any initial state of the fact base, w, conflict resolution stratey, c, and halting test, h, if also maps each set of ground RIF-PRD atomic formulas in FR,w,c,h onto an L formula in FL,RL, c, h, w. ☐

6.2 Conformance Clauses
Definition (RIF-PRD conformance).

· A RIF processor is a conformant RIF-PRDΤ,Ε,C,H consumer iff it implements a semantics-preserving mapping from the set of all safe RIF-PRDΤ,Ε,C,H rule sets to the language L of the processor;

· A RIF processor is a conformant RIF-PRDΤ,Ε,C,H producer iff it implements a semantics-preserving mapping from a subset of the language L of the processor to a set of safe RIF-PRDΤ,Ε,C,H rule sets;

· A conformant document is an XML document that conforms to all the syntactic constraints of RIF-PRD, including ones that cannot be checked by an XML Schema validator;

· A conformant RIF-PRD consumer is a conformant RIF-PRDΤ,Ε,C,H consumer in which Τ consists only of the symbol spaces and datatypes, Ε consists only of the externally defined functions and predicates, C consists only of the conflict resolution strategies, and H consists only of halting tests that are required by RIF-PRD. The required symbol spaces are rif:iri and rif:local, and the datatypes and externally defined terms (built-ins) are the ones specified in [RIF-DTB] and in the section Built-in actions. The required conflict resolution strategy is the one that is identified as rif:forwardChaining, as specified in section Conflict resolution; and the required halting test is the one specified in section Halting test. A conformant RIF-PRD consumer must reject all inputs that do not match the syntax of RIF-PRD. If it implements extensions, it may do so under user control -- having a "strict RIF-PRD" mode and a "run-with-extensions" mode;

· A conformant RIF-PRD producer is a conformant RIF-PRDΤ,Ε,C,H producer which produces documents that include only the symbol spaces, datatypes, externals, conflict resolution strategies and halting tests that are required by RIF-PRD. ☐

In addition, conformant RIF-PRD producers and consumers SHOULD preserve annotations.

Feature At Risk #1: Strictness Requirement
Note: This feature is "at risk" and may be removed from this specification based on feedback. Please send feedback to public-rif-comments@w3.org.

The two preceding clauses are features AT RISK. In particular, the "strictness" requirement is under discussion.

6.3 Interoperability
[RIF-Core] is specified as a specialisation of RIF-PRD: all valid [RIF-Core] documents are valid RIF-PRD document, that must be accepted by any conformant RIF-PRD consumer.

In the same way, it would be desirable that any valid RIF-PRD documents that uses only abstract syntax that is defined in [RIF-Core] be a valid [RIF-Core] document as well. However, for some abstract constructs that are defined in RIF-Core, or for which RIF-Core defines an equivalent construct, RIF-PRD defines alternative XML syntax that is not valid RIF-Core XML syntax. For instance, an action block that contains no action variable declaration and only assert atomic actions can be equivalently represented, in RIF-PRD, using the XML elements Do or And; but only the latter option is valid RIF-Core XML syntax.

To maximize interoperability with RIF-Core and its non RIF-PRD extensions, a conformant RIF-PRD consumer SHOULD produce only valid [RIF-Core] documents, whenever possible. Specifically, a conformant RIF-PRD producer SHOULD use only valid [RIF-Core] XML syntax to serialize a rule set that satisfy all of the following:

· the intended conflict resolution strategy is effectively equivalent to the stratagy that RIF-PRD identifies by the IRI rif:forwardChaining;

· no condition formula contains a negation, in any rule in the rule set;

· no rule in the rule set has anaction block that contains a action variable declaration;

· in all the rules in the rule set, the action block contains only assert atomic actions.

When processing a rule set that satisfies all the above condition, a RIF-PRD producer is guaranteed to produce a valid [RIF-Core] XML document by applying the following rules recursively:

1. Remove redundant information. The behavior role element and all its sub-elements should be omitted in the RIF-PRD XML document;

2. Remove nested rule variable declarations. If the rule inside a rule with bound variables, r1, is also a rule with bound variables, r2, all the rule variable delarations and all the binding patterns that occur in r1 (and not in r2) should be added to the rule variable declarations and the binding patterns that occur in r2, and, after the transform, r1 should be replaced by r2, in the rule set;

3. Remove binding patterns. If a binding pattern occurs in a rule with bound variables, r1:

· if the rule inside r1 is a unconditional action block, r2, r2 should be transformed into a conditional action block, where the condition is the binding pattern, and the binding pattern should be removed from r1;

· if the rule inside r1 is a conditional action block, r2, the formula that represents the condition in r2 should be replaced by the conjunction of that formula and the formula that represents the binding pattern, and the binding pattern should be removed from r1;

4. Convert action blocks. The action block, in each rule, should be replaced by a conjunction, and, inside the conjunction, each assert action should be replaced by its target atomic formula.

Example 6.1. Consider the following rule, R, derived from the Gold rule, in the running example, to have only assertions in the action part:
R: Forall ?customer such that (And(?customer # ex1:Customer

 ?customer[status->"Silver"]))

 (Forall ?shoppingCart such that (?customer[shoppingCart->?shoppingCart])

 (If Exists ?value (And(?shoppingCart[value->?value]

 pred:numeric-greater-than-or-equal(?value 2000))

 Then Do(Assert(ex1:Foo(?customer))

 Assert(ex1:Bar(?shoppingCart)))))

The serialization of R in the following RIF-Core conformant XML form does not impacts its semantics (see example 7.12 for another valid RIF-PRD XML serialization, that is not RIF-Core conformant):
<Forall>

 <declare><Var>?customer</Var></declare>

 <declare><Var>?shoppingCart</Var></declare>

 <formula>

 <Implies>

 <if>

 <And>

 <formula> <!-- first pattern -->

 <And>

 <formula><Member> ... </Member></formula>

 <formula><Frame> ... </Frame></formula>

 </And>

 </formula>

 <formula> <!-- second pattern -->

 <Member> ... </Member>

 </formula>

 <formula> <!-- original existential condition -->

 ...

 </formula>

 </And>

 </if>

 <then>

 <And>

 <formula> <!-- serialization of ex1:Foo(?customer) -->

 ...

 </formula>

 <formula> <!-- serialization of ex1:Bar(?shoppingCart) -->

 ...

 </formula>

 </then>

 </Implies>

 </formula>

</Forall>

7 XML Syntax
This section specifies the concrete XML syntax to serialize any production rule set written in a language that shares the abstract syntax specified in section 4.1, provided that its intended semantics agrees with the semantics that is described in section 4.2.

In the following, after the notational conventions are introduced, we specify the RIF-PRD XML constructs that carry a normative semantics with respect to the intended interpretation of the interchanged rules. They are specified with respect to the abstract syntax, and their specification is structured according to the specification of the abstract syntax in sections 2.1, 3.1 and 4.1.

The root element of any RIF XML document, Document and other XML constructs that do not carry a normative semantics with respect to the intended interpretation of the interchanged rules are specified in the last sub-section.

7.1 Notational conventions
7.1.1 Namespaces
Throughout this document, the xsd: prefix stands for the XML Schema namespace URI http://www.w3.org/2001/XMLSchema#, the rdf: prefix stands for http://www.w3.org/1999/02/22-rdf-syntax-ns#, and rif: stands for the URI of the RIF namespace, http://www.w3.org/2007/rif#.

Syntax such as xsd:string should be understood as a compact URI (CURIE) -- a macro that expands to a concatenation of the character sequence denoted by the prefix xsd and the string string. The compact URI notation is used for brevity only, and xsd:string should be understood, in this document, as an abbreviation for http://www.w3.org/2001/XMLSchema#string.

7.1.2 BNF pseudo-schemas
The XML syntax of RIF-PRD is specified for each component as a pseudo-schema, as part of the description of the component. The pseudo-schemas use BNF-style conventions for attributes and elements: "?" denotes optionality (i.e. zero or one occurrences), "*" denotes zero or more occurrences, "+" one or more occurrences, "[" and "]" are used to form groups, and "|" represents choice. Attributes are conventionally assigned a value which corresponds to their type, as defined in the normative schema. Elements are conventionally assigned a value which is the name of the syntactic class of their content, as defined in the normative schema.

<!-- sample pseudo-schema -->

 <defined_element
 required_attribute_of_type_string="xs:string"

 optional_attribute_of_type_int="xs:int"? >

 <required_element />

 <optional_element />?

 <one_or_more_of_these_elements />+

 [<choice_1 /> | <choice_2 />]*

 </defined_element>

7.1.3 Syntactic components
Three kinds of syntactic components are used to specify RIF-PRD:

· Abstract classes are defined only by their subclasses: they are not visible in the XML markup and can be thought of as extension points. In this document, abstract constructs will be denoted with all-uppercase names;

· Concrete classes have a concrete definition, and they are associated with specific XML markup. In this document, concrete constructs will be denoted with CamelCase names with leading capital letter;

· Properties, or roles, define how two classes relate to each other. They have concrete definitions and are associated with specific XML markup. In this document, properties will be denoted with camelCase names with leading smallcase letter.

7.2 Conditions
This section specifies the XML constructs that are used in RIF-PRD to serialize condition formulas.

7.2.1 TERM
The TERM class of constructs is used to serialize terms, be they simple terms, that is, constants and variables; lists; or positional terms, the latter being, per the definition of a well-formed formula, representations of externally defined functions.

As an abstract class, TERM is not associated with specific XML markup in RIF-PRD instance documents.

 [Const | Var | List | External]

7.2.1.1 Const
In RIF, the Const element is used to serialize a constant.

The Const element has a required type attribute and an optional xml:lang attribute:

· The value of the type attribute is the identifier of the Const symbol space. It must be a rif:iri;

· The xml:lang attribute, as defined by 2.12 Language Identification of XML 1.0 or its successor specifications in the W3C recommendation track, is optionally used to identify the language for the presentation of the Const to the user. It is allowed only in association with constants of the type rif:text. A compliant implementation MUST ignore the xml:lang attribute if the type of the Const is not rif:text.

The content of the Const element is the constant's literal, which can be any Unicode character string.

 <Const type=rif:iri [xml:lang=xsd:language]? >

 Any Unicode string
 </Const>

Example 7.1.
a. A constant with built-in type xsd:integer and value 2,000:
<Const type="xsd:integer">2000</Const>

b. The Customer class, in the running example, is identified by a constant of type rif:iri, in the namespace http://example.com/2009/prd2#:
<Const type="rif:iri">

 http://example.com/2009/prd2#Customer
</Const>

c. A constant with non built-in type xsd:int and value 123:
<Const type="xsd:int">123</Const>

7.2.1.2 Var
In RIF, the Var element is used to serialize a variable.

The content of the Var element is the variable's name, serialized as an Unicode character string.

 <Var> any Unicode string </Var>

7.2.1.3 List
In RIF, the List element is used to serialize a list.

The List element contains either zero or more TERMs that serialise the elements of the list. The order of the sub-elements is significant and MUST be preserved.

 <List>

 TERM*

 </List>

Example 7.2.
<List>

 <Const type="xsd:string> New </Const>

 <Const type="xsd:string> Bronze </Const>

 <Const type="xsd:string> Silver </Const>

 <Const type="xsd:string> Gold </Const>

</List>

7.2.1.4 External
As a TERM, the External element is used to serialize a positional term. In RIF-PRD, a positional term represents always a call to an externally defined function, e.g. a built-in, a user-defined function, a query to an external data source, etc.

The External element contains one content element, which in turn contains one Expr element that contains one op element, followed zero or one args element:

· The External and the content elements ensure compatibility with the RIF Basic Logic Dialect [RIF-BLD] that allows non-evaluated (that is, logic) functions to be serialized using an Expr element alone;

· The content of the op element must be a Const. When the External is a TERM, the content of the op element serializes a constant symbol of type rif:iri that must uniquely identify the externallu defined function to be applied to the args TERMs;

· The optional args element contains zero or more constructs from the TERM abstract class. The args element is used to serialize the arguments of a positional term. The order of the args sub-elements is, therefore, significant and MUST be preserved. This is emphasized by the required value "yes" of the attribute rif:ordered.

 <External>

 <content>

 <Expr>

 <op> Const </op>

 <args rif:ordered="yes"> TERM* </args>?

 </Expr>

 </content>

 </External>

Example 7.3. The example shows one way to serialize, in RIF-PRD, the product of a variable named ?value and the xsd:decimal value 0.9, where the operation conforms to the specification of the built-in func:numeric-multiply, as specified in [RIF-DTB].
RIF built-in functions are associated with the namespace http://www.w3.org/2007/rif-builtin-function#.
<External>

 <content>

 <Expr>

 <op> <Const type="rif:iri"> http://www.w3.org/2007/rif-builtin-function#numeric-amultiply </Const> </op>

 <args rif:ordered="yes">

 <Var> ?value </Var>

 <Const type="xsd:decimal"> 0.9 </Const>

 </args>

 </Expr>

 </content>

</External>

7.2.2 ATOMIC
The ATOMIC class is used to serialize atomic formulas: positional atoms, equality, membership and subclass atomic formulas, frame atomic formulas and externally defined atomic formulas.

As an abstract class, ATOMIC is not associated with specific XML markup in RIF-PRD instance documents.

 [Atom | Equal | Member | Subclass | Frame | External]

7.2.2.1 Atom
In RIF, the Atom element is used to serialize a positional atomic formula.

The Atom element contains one op element, followed by zero or one args element:

· The content of the op element must be a Const. It serializes the predicate symbol (the name of a relation);

· The optional args element contains zero or more constructs from the TERM abstract class. The args element is used to serialize the arguments of a positional atomic formula. The order of the arg's sub-elements is, therefore, significant and MUST be preserved. This is emphasized by the required value "yes" of the attribute ordered.

 <Atom>

 <op> Const </op>

 <args ordered="yes"> TERM* </args>?

 </Atom>

Example 7.4. The example shows the RIF XML serialization of the positional atom ex1:gold(?customer), where the predicate symbol gold is defined in the example namespace http://example.com/2009/prd2#.
<Atom>

 <op>

 <Const type="rif:iri">

 http://example.com/2009/prd2#gold
 </Const>

 </op>

 <args ordered="yes">

 <Var> ?customer </Var>

 </args>

</Atom>

7.2.2.2 Equal
In RIF, the Equal element is used to serialize equality atomic formulas.

The Equal element must contain one left sub-element and one right sub-element. The content of the left and right elements must be a construct from the TERM abstract class, that serialize the terms of the equality. The order of the sub-elements is not significant.

 <Equal>

 <left> TERM </left>

 <right> TERM </right>

 </Equal>

7.2.2.3 Member
In RIF, the Member element is used to serialize membership atomic formulas.

The Member element contains two required sub-elements:

· the instance elements must be a construct from the TERM abstract class that serializes the reference to the object;

· the class element must be a construct from the TERM abstract class that serializes the reference to the class.

 <Member>

 <instance> TERM </instance>

 <class> TERM </class>

 </Member>

Example 7.5. The example shows the RIF XML serialization of class membership atom that tests whether a variable named ?customer belongs to a class identified by the name Customer in the namespace http://example.com/2009/prd2#
<Member>

 <instance> <Var> ?customer </Var> </instance>

 <class>

 <Const type="rif:iri">

 http://example.com/2009/prd2#Customer
 </Const>

 </class>

</Member>

7.2.2.4 Subclass
In RIF, the Subclass element is used to serialize subclass atomic formulas.

The Subclass element contains two required sub-elements:

· the sub element must be a construct from the TERM abstract class that serializes the reference to the sub-class;

· the super elements must be a construct from the TERM abstract class that serializes the reference to the super-class.

 <Subclass>

 _{TERM}

 <super> TERM </super>

 </Subclass>

7.2.2.5 Frame
In RIF, the Frame element is used to serialize frame atomic formulas.

Accordingly, a Frame element must contain:

· an object element, that contains an element of the TERM abstract class that serializes the reference to the frame's object;

· zero to many slot elements, serializing an attribute-value pair as a pair of elements of the TERM abstract class, the first one that serializes the name of the attribute (or property); the second that serializes the attribute's value. The order of the slot's sub-elements is significant and MUST be preserved. This is emphasized by the required value "yes" of the required attribute rif:ordered.

 <Frame>

 <object> TERM </object>

 <slot rif:ordered="yes"> TERM TERM </slot>*

 </Frame>

Example 7.6. The example shows the RIF XML serialization of an expression that states that the object denoted by the variable ?customer has the value denoted by the string "Gold" for the property identified by the symbol status that is defined in the example namespace http://example.com/2009/prd2#
<Frame>

 <object> <Var> ?customer </Var> </object>

 <slot rif:ordered="yes">

 <Const type="rif:iri">

 http://example.com/2009/prd2#status
 </Const>

 <Const type="xsd:string> Gold </Const>

 </slot>

</Frame>

7.2.2.6 External
In RIF-PRD, the External element is also used to serialize an externally defined atomic formula, in addition to serializing externally defined functions.

When it is an ATOMIC (as opposed to a TERM; that is, in particular, when it appears in a place where an ATOMIC is expected, and not a TERM), the External element contains one content element that contains one Atom element. The Atom element serializes the externally defined atom properly said:

The op Const in the Atom element must be a symbol of type rif:iri that must uniquely identify the externally defined predicate to be applied to the args TERMs.

 <External>

 <content>

 Atom
 </content>

 </External>

Example 7.7. The example below shows the RIF XML serialization of an externally defined atomic formula that tests whether the value denoted by the variable named ?value is greater than or equal to the integer value 2000, where the test is intended to behave like the built-in predicate pred:numeric-greater-than-or-equal as specified in [RIF-DTB]:
RIF built-in predicates are associated with the namespace http://www.w3.org/2007/rif-builtin-predicate#.
<External>

 <content>

 <Atom>

 <op> <Const type="rif:iri"> http://www.w3.org/2007/rif-builtin-predicate#numeric-greater-than-or-equal </Const> </op>

 <args rif:ordered="yes">

 <Var> ?value </Var>

 <Const type="xsd:integer"> 2000 </Const>

 </args>

 </Atom>

 </content>

</External>

7.2.3 FORMULA
The FORMULA class is used to serialize condition formulas, that is, atomic formulas, conjunctions, disjunctions, negations and existentials.

As an abstract class, FORMULA is not associated with specific XML markup in RIF-PRD instance documents.

 [ATOMIC | And | Or | INeg | Exists]

7.2.3.1 ATOMIC
An atomic formula is serialized using a single ATOMIC statement. See specification of ATOMIC, above.

7.2.3.2 And
A conjunction is serialized using the And element.

The And element contains zero or more formula sub-elements, each containing an element of the FORMULA group, that serializes one of the conjuncts.

 <And>

 <formula> FORMULA </formula>*

 </And>

7.2.3.3 Or
A disjunction is serialized using the Or element.

The Or element contains zero or more formula sub-elements, each containing an element of the FORMULA group, that serializes one of the disjuncts.

 <Or>

 <formula> FORMULA </formula>*

 </Or>

7.2.3.4 INeg
The kind of negation that is used in RIF-PRD is serialized using the INeg element.

The Negate element contains exactly one formula sub-element. The formula element contains an element of the FORMULA group, that serializes the negated statement.

 <INeg>

 <formula> FORMULA </formula>

 </INeg>

7.2.3.5 Exists
An existentially quantified formula is serialized using the Exists element.

The Exists element contains:

· one or more declare sub-elements, each containing one Var element that serializes one of the existentially quantified variables;

· exactly one required formula sub-element that contains an element from the FORMULA abstract class, that serializes the formula in the scope of the quantifier.

 <Exists>

 <declare> Var </declare>+

 <formula> FORMULA </formula>

 </Exists>

Example 7.8. The example shows the RIF XML serialization of a condition on the existence of a value greater than or equal to 2.000, in the Gold rule of the {{#sec-running-example|running example]], as represented in example 4.2.
<Exists>

 <declare> <Var> ?value </Var> </declare>

 <formula>

 <And>

 <Frame>

 <object> <Var> ?shoppingCart </Var> </object>

 <slot rif:ordered="yes">

 <Const type="rif:iri">

 http://example.com/2009/prd2#value
 </Const>

 <Var> ?value </Var>

 </slot>

 </Frame>

 <External>

 <content>

 <Atom>

 <op> <Const type="rif:iri"> http://www.w3.org/2007/rif-builtin-predicate#numeric-greater-than-or-equal </Const> </op>

 <args rif:ordered="yes">

 <Var> ?value </Var>

 <Const type="xsd:integer"> 2000 </Const>

 </args>

 </Atom>

 </content>

 </External>

 </And>

 </formula>

</Exists>

7.3 Actions
This section specifies the XML syntax that is used to serialize the action part of a rule supported by RIF-PRD.

7.3.1 ATOMIC_ACTION
The ATOMIC_ACTION class of elements is used to serialize the atomic actions: assert, retract, modify and execute.

As an abstract class, ATOMIC_ACTION is not associated with specific XML markup in RIF-PRD instance documents.

 [Assert | Retract | Modify | Execute]

7.3.1.1 Assert
An atomic assertion action is serialized using the Assert element.

The Assert element has one target sub-element that contains an Atom, a Frame or a Member element that represents the target of the action.

 <Assert>

 <target> [Atom | Frame | Member] </target>

 </Assert>

7.3.1.2 Retract
The Retract construct is used to serialize retract atomic actions.

The Retract element has one target sub-element that contains an Atom, a Frame, or a TERM construct that represents the target of the action.

 <Retract>

 <target> [Atom | Frame | TERM] </target>

 </Retract>

7.3.1.3 Modify
An atomic modification is serialized using the Modify element.

The Modify element has one target sub-element that contains one Frame that represents the target of the action.

 <Modify>

 <target> Frame </target>

 </Modify>

Example 7.9. The example shows the RIF XML representation of the action that updates the status of a customer, in the Gold rule, in the running example, as represented in example 4.2.
Modify(?customer[status->"Gold"])
<Modify>

 <target>

 <Frame>

 <object>

 <Var> ?customer </Var>

 </object>

 <slot rif:ordered="yes">

 <Const type="rif:iri"> http://example.com/2009/prd2#status </Const>

 <Const type="xsd:string"> Gold </Const>

 </slot>

 </Frame>

 </target>

</Modify>

7.3.1.4 Execute
The execution of an externally defined action is serialized using the Execute element.

The Execute element has one target sub-element that contains an Atom, that represents the externally defined action to be executed.

The op Const in the Atom element must be a symbol of type rif:iri that must uniquely identify the externally defined action to be applied to the args TERMs.

 <Execute>

 <target> Atom </target>

 </Execute>

Example 7.10. The example shows the RIF XML serialization of the message printing action, in the </t>Unknonw status rule<i>, in the running example, using the act:print action built-in.
The namespace for RIF-PRD action built-ins is http://www.w3.org/2007/rif-builtin-action#.
<Execute>

 <target>

 <Atom>

 <op>

 <Constant type="rif:iri"> http://www.w3.org/2007/rif-builtin-action#print </Const>

 </op>

 <args rif:ordered="yes">

 <External>

 <content>

 <Expr>

 <op>

 <Constant type="rif:iri"> http://www.w3.org/2007/rif-builtin-function#concat </Const>

 </op>

 <args rif:ordered="yes">

 <Const type="xsd:string> New customer: </Const>

 ?customer
 </args>

 </Expr>

 </content>

 </External>

 </args>

 </Atom>

 </target>

</Execute>

7.3.2 ACTION_BLOCK
The ACTION_BLOCK class of constructs is used to represent the conclusion, or action part, of a production rule serialized using RIF-PRD.

If action variables are declared in the action part of a rule, or if some atomic actions are not assertions, the conclusion must be serialized as a full action block, using the Do element. However, simple action blocks that contain only one or more assert actions SHOULD be serialized like the conclusions of logic rules using RIF-Core or RIF-BLD, that is, as a single asserted Atom or Frame, or as a conjunction of the asserted facts, using the And element.

In the latter case, to conform with the definition of an action block well-formedness, the formulas that serialize the individual conjuncts MUST be atomic Atoms and/or Frames.

As an abstract class, ACTION_BLOCK is not associated with specific XML markup in RIF-PRD instance documents.

 [Do | And | Atom | Frame]

7.3.2.1 New
The New element is used to serialize the construct used to create a new frame identifer, in an action variable declaration.

The New element is always empty.

 <New />

7.3.2.2 Do
An action block is serialized using the Do element.

A Do element contains:

· zero or more actionVar sub-elements, each of them used to serialize one action variable declaration. Accordingly, an actionVar element must contain a Var sub-element, that serializes the declared variable; followed by the serialization of an action variable binding, that assigns an initial value to the declared variable, that is: either a frame or the empty element New;

· one actions sub-element that serializes the sequence of atomic actions in the action block, and that contains, accordingly, a sequence of one or more sub-elements of the ATOMIC_ACTION class. The order of the atomic actions is significant, and the order MUST be preserved, as emphasized by the required rif:ordered="yes" attribute.

 <Do>

 <actionVar rif:ordered="yes">

 Var
 [New | Frame]

 </actionVar>*

 <actions rif:ordered="yes">

 ATOMIC_ACTION+

 </actions>

 </Do>

Example 7.11. The example shows the RIF XML serialization of an action block that asserts that a customer gets a new $5 voucher.
<Do>

 <actionVar rif:ordered="yes">

 <Var>?voucher</Var>

 <New />

 </actionVar>

 <actions rif:ordered="yes">

 <Assert>

 <target>

 <Member>

 <instance><Var>?voucher</Var></instance>

 <class>

 <Const type="rif:iri">http://example.com/2009/prd2#Voucher</Const>

 </class>

 </Member>

 </target>

 </Assert>

 <Assert>

 <target>

 <Frame>

 <object><Var>?voucher</Var></object>

 <slot rif:ordered="yes">

 <Const type="rif:iri">http://example.com/2009/prd2#value</Const>

 <Const type="xsd:integer">5</Const>

 </slot>

 </Frame>

 </target>

 </Assert>

 <Assert>

 <target>

 <Frame>

 <object><Var>?customer</Var></object>

 <slot rif:ordered="yes">

 <Const type="rif:iri">http://example.com/2009/prd2#voucher</Const>

 <Var>?voucher</Var>

 </slot>

 </Frame>

 </target>

 </Assert>

 </actions>

</Do>

7.4 Rules and Groups
This section specifies the XML constructs that are used, in RIR-PRD, to serialize rules and groups.

7.4.1 RULE
In RIF-PRD, the RULE class of constructs is used to serialize rules, that is, unconditional as well as conditional actions, or rules with bound variables.

As an abstract class, RULE is not associated with specific XML markup in RIF-PRD instance documents.

 [Implies | Forall | ACTION_BLOCK]

7.4.1.1 ACTION_BLOCK
An unconditional action block is serialized, in RIF-PRD XML, using the ACTION_BLOCK class of construct.

7.4.1.2 Implies
Conditional actions are serialized, in RIF-PRD, using the XML element Implies.

The Implies element contains an optional if sub-element and a then sub-element:

· the optional if element contains an element from the FORMULA class of constructs, that serializes the condition of the rule;

· the required then element contains one element from the ACTION_BLOCK class of constructs, that serializes its conlusion.

 <Implies>

 <if> FORMULA </if>?

 <then> ACTION_BLOCK </then>

 </Implies>

7.4.1.3 Forall
The Forall construct is used, in RIF-PRD, to represent rules with bound variables.

The Forall element contains:

· one or more declare sub-elements, each containing one Var element that represents one of the declared rule variables;

· zero or more pattern sub-elements, each containing one element from the FORMULA group of constructs, that serializes one binding pattern;

· exactly one formula sub-element that serializes the formula in the scope of the variables binding, and that contains an element of the RULE group.

 <Forall>

 <declare> Var </declare>+

 <pattern> FORMULA </pattern>*

 <formula> RULE </formula>

 </Forall>

Example 7.12. The example shows the rule variables declaration part of the Gold rule, from the running example, as represented in example 4.2.
<Forall>

 <declare><Var>?customer</Var></declare>

 <pattern>

 <And>

 <formula><Member> ... </Member></formula>

 <formula><Frame> ... </Frame></formula>

 </And>

 </pattern>

 <formula>

 <Forall>

 <declare><Var>?shoppingCart</Var></declare>

 <pattern><Member> ... </Member></pattern>

 <formula>

 <Implies> ... </Implies>

 </formula>

 </Forall>

 </formula>

</Forall>

7.4.2 Group
The Group construct is used to serialize a group.

The Group element has zero or one behavior sub-element and zero or more sentence sub-elements:

· the behavior element contains

· zero or one ConflictResolution sub-element that contains exactly one IRI. The IRI identifies the conflict resolution strategy that is associated with the Group;

· zero or one Priority sub-element that contains exactly one signed integer between -10,000 and 10,000. The integer associates a priority with the Group's sentences;

· a sentence element contains either a Group element or an element of the RULE abstract class of constructs.

 <Group>

 <behavior>

 <ConflictResolution> xsd:anyURI </ConflictResolution>?

 <Priority> -10,000 ≤ xsd:int ≤ 10,000 </Priority>?

 </behavior>?

 <sentence> [RULE | Group] </sentence>*

 </Group>

7.5 Document and directives
7.5.1 Import
The Import directive is used to serialize the reference to an RDF graph or an OWL ontology to be combined with a RIF document. The Import directive is inherited from [RIF-Core]. Its abstract syntax and its semantics are specified in [RIF-RDF+OWL].

The Import directive contains:

· exactly one location sub-element, that contains an IRI, that serializes the location of the RDF or OWL document to be combined with the RIF document;

· zero or one profile sub-element, that contains an IRI. The admitted values for that constant and their semantics are listed in the section Profiles of Imports, in [RIF-RDF+OWL].

 <Import>

 <location> xsd:anyURI </location>

 <profile> xsd:anyURI </profile>?

 </Import>

7.5.2 Document
The Document is the root element of any RIF-PRD instance document.

The Document contains zero or more directive sub-elements, each containing an Import directive, and zero or one payload sub-element, that must contain a Group element.

 <Document>

 <directive> Import </Import>*

 <payload> Group </payload>?

 </Document>

The semantics of a document that imports RDF and/or OWL documents is specified in [RIF-RDF+OWL] and [RIF-BLD]. The semantics of a document that does not import other documents is the semantics of the rule set that is serialised by the Group in the document's payload sub-element, if any.

An example of a complete RIF-PRD XML instance document representing the running example rule set is presented in Appendix: Complete RIF-PRD XML example.

7.6 Constructs carrying no semantics
7.6.1 Annotation
Annotations can be associated with any concrete class element in RIF-PRD: those are the elements with a CamelCase tagname starting with an upper-case character:

 CLASSELT = [TERM | ATOMIC | FORMULA | ATOMIC_ACTION | ACTION_BLOCK | New | RULE | Group | Document | Import]

An identifier can be associated to any instance element of the abstract CLASSELT class of constructs, as an optional id sub-element that MUST contain a Const of type rif:local or rif:iri.

Annotations can be included in any instance of a concrete class element using the meta sub-element.

The Frame construct is used to serialize annotations: the content of the Frame's object sub-element identifies the object to which the annotation is associated:, and the Frame's slots represent the annotation properly said as property-value pairs.

If all the annotations are related to the same object, the meta element can contain a single Frame sub-element. If annotations related to several different objects need be serialized, the meta role element can contain an And element with zero or more formula sub-elements, each containing one Frame element, that serializes the annotations relative to one identified object.

 <any concrete element in CLASSELT>

 <id> Const </id>?

 <meta>

 [Frame

 |

 <And>

 <formula> Frame </formula>*

 </And>

]

 </meta>?

 other CLASSELT content
 </any concrete element in CLASSELT>

Notice that the content of the meta sub-element of an instance of a RIF-PRD class element is not necessarily associated to that same instance element: only the content of the object sub-element of the Frame that represents the annotations specifies what the annotations are about, not where it is included in the instance RIF document.

It is suggested to use Dublin Core, RDFS, and OWL properties for annotations, along the lines of http://www.w3.org/TR/owl-ref/#Annotations -- specifically owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy, dc:creator, dc:description, dc:date, and foaf:maker.

Example 7.13. The example shows the structure of the document that contains the runnig example rule set, as represented in example 4.2, including annotations such as rule set and rule names.
<Document>

 <payload>

 <Group>

 <id><Const type="rif:iri">http://example.com/2009/prd2#CheckoutRuleSet</Const></id>

 <meta>

 <Frame>

 <object><Const type="rif:iri">http://example.com/2009/prd2#CheckoutRuleSet</Const></object>

 <slot rif:ordered="yes">

 <Const type="rif:iri">http://dublincore.org/documents/dcmi-namespace/creator</Const>

 <Const type="xsd:string>W3C RIF WG</Const>

 </slot>

 <slot>

 <Const type="rif:iri">http://dublincore.org/documents/dcmi-namespace/description</Const>

 <Const type="xsd:string">Running example rule set from the RIF-PRD specification</Const>

 </slot>

 </Frame>

 </meta>

 <behavior> ... </behavior>

 <sentence>

 <Group>

 <id><Const type="rif:iri">http://example.com/2009/prd2#GoldRule</Const></id>

 <behavior> ... </behavior>

 <sentence><Forall> ... </Forall></sentence>

 </Group>

 </sentence>

 <sentence>

 <Group>

 <id><Const type="rif:iri">http://example.com/2009/prd2#DiscountRule</Const></id>

 <sentence><Forall> ... </Forall></sentence>

 </Group>

 </sentence>

 </Group>

 </payload>

</Document>

8 Presentation syntax
To make it easier to read, a non-normative, lightweight notation was introduced to complement the mathematical english specification of the abstract syntax and the semantics of RIF-PRD. This section specifies a presentation syntax for RIF-PRD, that extends that notation. The presentation syntax is not normative. However, it may help implementers by providing a more succinct overview of RIF-PRD syntax.

The EBNF for the RIF-PRD presentation syntax is given as follows. For convenience of reading we show the entire EBNF in its four parts (rules, conditions, actions, and annotations).

Rule Language:

 Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'

 Base ::= 'Base' '(' ANGLEBRACKIRI ')'

 Prefix ::= 'Prefix' '(' Name ANGLEBRACKIRI ')'

 Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'

 Group ::= IRIMETA? 'Group' Name? '(' (RULE | Group)* ')'

 RULE ::= (IRIMETA? 'Forall' Var+ ' such that ' FORMULA* '(' RULE ')') | CLAUSE

 CLAUSE ::= Implies | ACTION_BLOCK

 Implies ::= IRIMETA? 'If' FORMULA 'Then' ACTION_BLOCK

 LOCATOR ::= ANGLEBRACKIRI

 PROFILE ::= ANGLEBRACKIRI

Action Language:

 ATOMIC_ACTION ::= IRIMETA? (Assert | Retract | Modify | Execute)

 Assert ::= 'Assert' '(' Atom | Frame | Member ')'

 Retract ::= 'Retract' '(' (Atom | Frame | Var | Const) ')'

 Modify ::= 'Modify' '(' Frame ')'

 Execute ::= 'Execute' '(' Atom ')'

 ACTION_BLOCK ::= IRIMETA? ('Do (' (IRIMETA? Var (Frame | 'New'))* ATOMIC_ACTION+ ')' |

 'And (' (Atom | Frame)* ')' | Atom | Frame)

Condition Language:

 FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |

 IRIMETA? 'Or' '(' FORMULA* ')' |

 IRIMETA? 'Exists' Var+ '(' FORMULA ')' |

 ATOMIC |

 IRIMETA? NEGATEDFORMULA |

 IRIMETA? Equal |

 IRIMETA? Member |

 IRIMETA? Subclass |

 IRIMETA? 'External' '(' Atom ')'

 ATOMIC ::= IRIMETA? (Atom | Frame)

 Atom ::= UNITERM

 UNITERM ::= Const '(' (TERM* ')'

 GROUNDUNITERM ::= Const '(' (GROUNDTERM* ')'

 NEGATEDFORMULA ::= 'Not' '(' FORMULA ')' | 'INeg' '(' FORMULA ')' ('INeg' should always be preferred to 'Not' is there is the

 risk of an ambiguity with regards to the semantics of the negation)

 Equal ::= TERM '=' TERM

 Member ::= TERM '#' TERM

 Subclass ::= TERM '##' TERM

 Frame ::= TERM '[' (TERM '->' TERM)* ']'

 TERM ::= IRIMETA? (Const | Var | List | 'External' '(' Expr ')')

 GROUNDTERM ::= IRIMETA? (Const | List | 'External' '(' 'Expr' '(' GROUNDUNITERM ')' ')')

 Expr ::= UNITERM

 List ::= 'List' '(' GROUNDTERM* ')'

 Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT

 Name ::= UNICODESTRING

 Var ::= '?' UNICODESTRING

 SYMSPACE ::= ANGLEBRACKIRI | CURIE

Annotations:

 IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'

Example 7.1. Here is the transcription, in the RIF-PRD presentation syntax, of the complete RIF-PRD document corresponding to the running example:
Document(

 Prefix(ex1 http://example.com/2009/prd2)

 Group rif:forwardChaining

 (* ex1:CheckoutRuleset *)

 Group 10

 (* ex1:GoldRule *)

 Forall ?customer such that (And(?customer # ex1:Customer

 ?customer[status->"Silver"]))

 (Forall ?shoppingCart such that (?customer[shoppingCart->?shoppingCart])

 (If Exists ?value (And(?shoppingCart[value->?value]

 pred:numeric-greater-than-or-equal(?value 2000))

 Then Do(Modify(?customer[status->"Gold"])))

 Group

 (* ex1:DiscountRule *)

 Forall ?customer such that (And(?customer # ex1:Customer))

 (If Or(?customer[status->"Silver"]

 ?customer[status->"Gold"]

 Then Do((?s ?customer[shoppingCart->?s])

 (?v ?s[value->?v])

 Modify(?s[value->func:numeric-multiply(?v 0.95)]))

 Group

 (* ex1:NewCustomerAndWidgetRule *)

 Forall ?customer such that (And(?customer # ex1:Customer

 ?customer[status->"New"]))

 (If Exists ?shoppingCart ?item

 (And (?customer[shoppingCart->?shoppingCart]

 ?shoppingCart[containsItem->?item]

 ?item # ex1:Widget)))

 Then Do((?s ?customer[shoppingCart->?s])

 (?val ?s[value->?val])

 (?voucher ?customer[voucher->?voucher])

 Retract(?customer[voucher->?voucher])

 Retract(?voucher)

 Modify(?s[value->func:numeric-multiply(?val 0.90)]))

 Group

 (* ex1:UnknownStatusRule *)

 Forall ?customer such that (?customer # ex1:Customer)

 (If Not(Exists ?status

 (And(?customer[status->?status]

 External(pred:list-contains(List("New", "Bronze", "Silver", "Gold"), ?status)))))

 Then Do(Execute(act:print(func:concat("New customer: " ?customer)))

 Assert(?customer[status->"New"])))

) ☐
9 References
[CIR04]

Production Systems and Rete Algorithm Formalisation, Cirstea H., Kirchner C., Moossen M., Moreau P.-E. Rapport de recherche n° inria-00280938 - version 1 (2004).

[CURIE]

CURIE Syntax 1.0 - A compact syntax for expressing URIs, W3C note 27 October 2005, M. Birbeck (ed.).

[FIT02]

Fixpoint Semantics for Logic Programming: A Survey, Melvin Fitting, Theoretical Computer Science. Vol. 278, no. 1-2, pp. 25-51. 6 May 2002.

[HAK07]

Data Models as Constraint Systems: A Key to the Semantic Web, Hassan Ait-Kaci, Constraint Programming Letters, 1:33--88, 2007.

[PLO04]

A Structural Approach to Operational Semantics, Gordon D. Plotkin, Journal of Logic and Algebraic Programming, Volumes 60-61, Pages 17-139 (July - December 2004).

[PRR07]

Production Rule Representation (PRR), OMG specification, version 1.0, 2007.

[RDF-CONCEPTS]

Resource Description Framework (RDF): Concepts and Abstract Syntax, Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Latest version available at http://www.w3.org/TR/rdf-concepts/.

[RDF-SCHEMA]

RDF Vocabulary Description Language 1.0: RDF Schema, Brian McBride, Editor, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. Latest version available at http://www.w3.org/TR/rdf-schema/.

[RFC-3066]

RFC 3066 - Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001, http://www.isi.edu/in-notes/rfc3066.txt.

[RFC-3987]

RFC 3987 - Internationalized Resource Identifiers (IRIs), M. Duerst and M. Suignard, IETF, January 2005, http://www.ietf.org/rfc/rfc3987.txt.

[RIF-BLD]

RIF basic logic dialec, Boley H. and Kifer M. (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/BLD.

[RIF-Core]

RIF Core, Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres and Dave Reynolds (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/Core.

[RIF-DTB]

RIF Datatypes and Built-Ins 1.0, Polleres A., Boley H. and Kifer M. (Editors), W3C Rule Interchange Format Working Group Draft. Latest Version available at http://www.w3.org/2005/rules/wiki/DTB.

[XDM]

XQuery 1.0 and XPath 2.0 Data Model (XDM), W3C Recommendation, World Wide Web Consortium, 23 January 2007. This version is http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/. Latest version available at http://www.w3.org/TR/xpath-datamodel/.

[XML-SCHEMA2]

XML Schema Part 2: Datatypes Second Edition, W3C Recommendation, World Wide Web Consortium, 28 October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/. Latest version available at http://www.w3.org/TR/xmlschema-2/.

[XPath-Functions]

XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Recommendation, World Wide Web Consortium, 23 January 2007, http://www.w3.org/TR/2007/REC-xpath-functions-20070123/. Latest version available at http://www.w3.org/TR/xpath-functions/.

10 Appendix: XML schema
The RIF PRD XML Schema is defined as a redefinition of the RIF Core XML Schema.

XML schemas for the RIF-PRD sublanguages are defined below and are also available here with additional examples.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 targetNamespace="http://www.w3.org/2007/rif#"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.w3.org/2007/rif#"

 elementFormDefault="qualified">

<!-- == -->

<!-- RIF PRD Rule Language -->

<!-- == -->

<!-- Redefine some elements in the Core rule language -->

<xs:redefine schemaLocation="CoreRule.xsd">

 <!-- Group ::= IRIMETA? 'Group' Name? '(' (RULE | Group)* ')' -->

 <xs:group name="Group.content">

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <!-- Adds behavior to Group -->

 <xs:element ref="behavior" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="sentence" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:group>

 <!-- RULE ::= (IRIMETA? 'Forall' Var+ ' such that ' FORMULA* '(' RULE ')') | CLAUSE -->

 <xs:group name="Forall.content">

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="declare" minOccurs="1" maxOccurs="unbounded"/>

 <!-- Adds pattern to Forall -->

 <xs:element ref="pattern" minOccurs="1" maxOccurs="unbounded"/>

 <!-- different from formula in And, Or and Exists -->

 <xs:element name="formula">

 <xs:complexType>

 <xs:group ref="CLAUSE"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:group>

 <!-- Implies ::= IRIMETA? 'If' FORMULA 'Then' ACTION_BLOCK -->

 <xs:group name="then.content">

 <xs:choice>

 <xs:group ref="ACTION_BLOCK"/>

 </xs:choice>

 </xs:group>

</xs:redefine>

<!-- == -->

<!-- RIF PRD Condition Language -->

<!-- == -->

<!-- Redefine some elements in the Core Conditions -->

<xs:redefine schemaLocation="CoreCond.xsd">

 <!-- FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |

 IRIMETA? 'Or' '(' FORMULA* ')' |

 IRIMETA? 'Exists' Var+ '(' FORMULA ')' |

 ATOMIC |

 IRIMETA? NEGATEDFORMULA |

 IRIMETA? Equal |

 IRIMETA? Member |

 IRIMETA? Subclass |

 IRIMETA? 'External' '(' Atom ')' -->

 <xs:group name="FORMULA">

 <xs:choice>

 <xs:group ref="FORMULA"/>

 <xs:group ref="NEGATEDFORMULA"/>

 <xs:element ref="Subclass"/>

 </xs:choice>

 </xs:group>

</xs:redefine>

<!-- Additional elements to the Core Condition schema -->

 <!-- Subclass ::= TERM '##' TERM -->

 <xs:element name="Subclass">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="sub">

 <xs:complexType>

 <xs:group ref="TERM" minOccurs="1" maxOccurs="1"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="super">

 <xs:complexType>

 <xs:group ref="TERM" minOccurs="1" maxOccurs="1"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- NEGATEDFORMULA ::= 'Not' '(' FORMULA ')' | 'INeg' '(' FORMULA ')'

 ('INeg' should always be preferred to 'Not' is there is the risk of an ambiguity with regards to the semantics of the negation) -->

 <xs:group name="NEGATEDFORMULA">

 <!--

 NEGATEDFORMULA ::= 'INeg' '(' FORMULA ')'

 -->

 <xs:sequence>

 <xs:element ref="INeg"/>

 </xs:sequence>

 </xs:group>

 <!-- 'INeg' '(' FORMULA ')'-->

 <xs:element name="INeg">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="formula" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

<!-- Additional elements to the Core rule schema -->

 <xs:element name="behavior">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ConflictResolution" minOccurs="0" maxOccurs="1" type="xs:anyURI"/>

 <xs:element name="Priority" minOccurs="0" maxOccurs="1" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="pattern">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="FORMULA"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

<!-- == -->

<!-- RIF PRD Action Language -->

<!-- == -->

 <!-- ACTION_BLOCK ::= IRIMETA? ('Do (' (Var (Frame | 'New'))* ATOMIC_ACTION+ ')' |

 'And (' (Atom | Frame)* ')' | Atom | Frame) -->

 <xs:group name="ACTION_BLOCK">

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:choice>

 <xs:element ref="Do"/>

 <xs:element ref="And"/>

 <xs:element ref="Atom"/>

 <xs:element ref="Frame"/>

 </xs:choice>

 </xs:sequence>

 </xs:group>

 <!-- 'Do (' (IRIMETA? Var (Frame | 'New'))* ATOMIC_ACTION+ ')' -->

 <xs:element name="Do">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="actionVar" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="actions" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="actionVar">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:element name="Var" minOccurs="1" maxOccurs="1"/>

 <xs:element name="ACTIONVARIABLEDECLARATION" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="ordered" type="xs:string" fixed="yes"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="actions">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="ATOMIC_ACTION" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ordered" type="xs:string" fixed="yes"/>

 </xs:complexType>

 </xs:element>

 <!-- The New element is always empty. -->

 <xs:element name="New">

 </xs:element>

 <xs:group name="ACTIONVARIABLEDECLARATION">

 <xs:choice>

 <xs:element ref="New"/>

 <xs:element ref="Frame"/>

 </xs:choice>

 </xs:group>

 <!-- ATOMIC_ACTION ::= IRIMETA? (Assert | Retract | Modify | Execute) -->

 <xs:group name="ATOMIC_ACTION">

 <xs:sequence>

 <xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

 <xs:choice>

 <xs:element ref="Assert"/>

 <xs:element ref="Retract"/>

 <xs:element ref="Modify"/>

 <xs:element ref="Execute"/>

 </xs:choice>

 </xs:sequence>

 </xs:group>

 <!-- Assert ::= 'Assert' '(' Atom | Frame | Member ')'-->

 <xs:element name="Assert">

 <xs:complexType>

 <xs:choice>

 <xs:element name="target" minOccurs="1" maxOccurs="1">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="Atom"/>

 <xs:element ref="Frame"/>

 <xs:element ref="Member"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <!-- Retract ::= 'Retract' '(' (Atom | Frame | Var | Const) ')'-->

 <xs:element name="Retract">

 <xs:complexType>

 <xs:choice>

 <xs:element name="target" minOccurs="1" maxOccurs="1">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="Atom"/>

 <xs:element ref="Frame"/>

 <xs:group ref="TERM"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <!-- Modify ::= 'Modify' '(' Frame ')'-->

 <xs:element name="Modify">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="target" minOccurs="1" maxOccurs="1">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="Frame"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- Execute ::= 'Execute' '(' Atom ')'-->

 <xs:element name="Execute">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="target" minOccurs="1" maxOccurs="1">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="Atom"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

11 Appendix: Complete RIF-PRD XML example
TBD

<Document>

 <payload>

 <Group>

 <id><Const type="rif:iri">http://example.com/2009/prd2#CheckoutRuleSet</Const></id>

 <meta>

 <Frame>

 <object><Const type="rif:iri">http://example.com/2009/prd2#CheckoutRuleSet</Const></object>

 <slot rif:ordered="yes">

 <Const type="rif:iri">http://dublincore.org/documents/dcmi-namespace/creator</Const>

 <Const type="xsd:string>W3C RIF WG</Const>

 </slot>

 <slot>

 <Const type="rif:iri">http://dublincore.org/documents/dcmi-namespace/description</Const>

 <Const type="xsd:string">Running example rule set from the RIF-PRD specification</Const>

 </slot>

 </Frame>

 </meta>

 <behavior>

 <ConflictResolution>rif:forwardChaining</ConflictResolution>

 </behavior>

 <sentence>

 <Group>

 <id><Const type="rif:iri">http://example.com/2009/prd2#GoldRule</Const></id>

 <behavior>

 <Priority> 10 </Priority>

 </behavior>

 <sentence><Forall> ... </Forall></sentence>

 </Group>

 </sentence>

 <sentence>

 <Group>

 <id><Const type="rif:iri">http://example.com/2009/prd2#DiscountRule</Const></id>

 <sentence><Forall> ... </Forall></sentence>

 </Group>

 </sentence>

 </Group>

 </payload>

</Document>

Retrieved from "http://www.w3.org/2005/rules/wiki/PRD"

�Not well said here. Move this to the middle of the paragraph, and say that product rules rule base have rules and facts.

�what is this?

�Normally only one instance is executed at a time

�The resolution strategy always selects one single rule

�I do not understand this sentence

�is the set finite or infinite? why not just a "set of"?

�what does this mean?

�what are uninterpreted functions?

�Do you just add "External"? If yes, then say it explicitly.

�This comment is confusing!

�Take care of indexes, 0 or 1?

�not clear, can be expressed better

�This section is very difficult to understand, and is very far from the production rule basics. I needs to be expressed in simpler terms.

�quite difficult to understand

�Is there a simpler way to express this paragraph, or maybe we can explain what's the intention of this!

�

�What does all this mean? Can there be an example to illustrate the purpose?

�is this coomutative?

�Wow! I understand this section!!

�Need an example to illustrate

�When an atom is false, do you stop the evaluation?

�Same comment, if one is true, do you stop the evluation?

�This big chevron gives the headache, I acquire the automatism to skip on it.

�I don't understand what this means.

�The meaning of this paragraph can be guessed intuitively. But another way can be to say what is a fact, then a set of facts, etc. We don't have to take the explanation the other way around.

�If the previous sections explain the same things as this one, can we write this more explicitly, and also inform the readers they can skip on the the previous sections.

�If we want to precise, we need to define "representation". Otherwise, we may give an intuitive definition. Here we are between the two.

�does the term denotes an atom, a frame or something else?

�not clear

�For me, this is just to explain the syntax. There are other ways for this, for example the BNF or the XML schema.

�What does it mean to assert an # expression?

�not clear

�Explain that a group can have a strategy, a priority, etc.

�Does this expression mean no free variable or the set of variables is empty?

�one single instance, please! I don't know how to implement a system where I fire several instances at the same time.

�We could define the recency first, then we simply say that the rule instance that is the most recent has precedence.

�This definition is problematic. It does not cover the case where a slot is modified and the condition is still true. In other terms, the recency can be reset to 1.

