
Talking About Occurrences
Building on Reification and Named Graphs –

Tokens of Triples and Sets Thereof

Description Resource
Description Description

Framework

the ability to concisely represent and query statements about statements

Extend RDF with the ability to
concisely represent and query
statements about statements.

RDF-star WG Charter

Old-school Reification

@rdf:ID on Arcs Is Heavily Used in UniProt

RDF 1.1 Concepts
On Reification

The subject of a reification is intended to
refer to a concrete realization of an RDF
triple, such as a document in a surface
syntax, rather than a triple considered as
an abstract object.

This supports use cases where properties
such as dates of composition or
provenance information are applied to
the reified triple, which are meaningful
only when thought of as referring to a
particular instance or token of a triple.

Named Graphs
Are Tokens Too

Pat Hayes, 2011:

It is quite sensible to have two RDF graphs (tokens)
with different names which are the same RDF
(abstract) graph.

That is, two graph tokens which look like (i.e., when
poked emit representations of) the same RDF abstract
graph. This has always been an issue for the idea of
'named graphs': how can a name be attached to a
particular RDF abstract graph (as opposed to some
document or representation of that abstract graph)?

And OK, the answer is: it can't, and this does not
matter, because all we are ever needing to identify are
graph tokens, not abstract graphs. You name a graph
by identifying a token of it. But that only gives you
power over the token, not over the abstraction itself.

https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk (slide 20)

https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk

Named Graphs Are Useful For Provenance

In The Wild
Verifiable Credentials already uses “blank graphs”
for digital signatures.

RDF-star CG Report

Proposes: Quoted Triples as Terms, The Abstract Triples Themselves

About… What?
“However much this dragon tries to be spatial, he remains completely
flat. Two incisions are made in the paper on which he is printed.

Then it is folded in such a way as to leave two square openings.

But this dragon is an obstinate beast, and in spite of his two dimensions
he persists in assuming that he has three; so he sticks his head through
one of the holes and his tail through the other.”

– M. C. Escher explains his painting Dragon (1952)

Dragon (1952) (https://en.wikipedia.org/wiki/Dragon_(M._C._Escher))

Problems Appear When You Talk About the Triples Themselves

The Triple Denotes Itself

Like Literals as Subjects
– How many parts in a triple?

– Three!

– What does that mean?

Old-school Reification Handles This By Design

As Do Named Graphs: and more, they provide Isolation of Worlds

We don’t appear to need a new term to solve the
collected use cases:

● LPGs: tokens (“multisets”)
● Wikidata: reification-like tokens
● UniProt attribution: reification = tokens
● CIDOC-CRM facts qualified as events

(including interrelated statements) = tokens
● Detailed provenance and miscellaneous

marginalia in libraries = tokens

It is possible to add it and explicitly indirect from it
for most cases. But as shown time and again, it is
easy to trip up on this.

Adding a Separate Term is Not Necessary for The Use Cases
Named Graphs may provide what “triple opacity”
(or partial versions thereof) attempts to solve:

● Isolation of beliefs

You can talk about a graph token without believing
in it. Graphs must be accepted for their constituent
triples to be used as assertions.

Ergonomic Shorthands are Asked For

Unfolding To Either The Old…

… Or The New Worlds

Are They Equal?

A triple is identified with the
singleton set containing it.

RDF 1.1 Semantics

Named Graphs, 2005

Why Keep Alignment With rdf:Statement?
It allows for informal, messy, qualification.

A detailed token of extra information.
In the marginalia.

The simple triple is still the simple truth.

<x> :creator <book> {|
 :subject [:comment
 “May have been his wife.”@en];
 :predicate :author, :illustrator;
 :object [:comment
 “First, unedited draft.”@en]
 |} .

Talking About Occurrences
Talking about occurrences of triples and graphs
(making statements about statements) requires
reifying them (conceptually).

We use them all the time, that's just RDF.

And reifying graphs is what named graphs have
been doing in practice all along.

The <name, graph> pair is a token of its
mathematical graph.

This token, which is denoted by this name, can be
many kinds of resources:

● Just a statement…
● An observed phenomenon.
● The beliefs of Lois Lane.
● Words in a book.
● A chunk of claims gleaned from a web page.

Those are indirect tokens of the graph, paired with
the graph to make descriptions about it, and query
for it.

Even Lists Can Be Contentious…

<report> bibo:authorList
 (<a> <c>) {|
 dc:source <a> ;
 ex:disputedBy <c>
 |} ,
 -- (<c> <a>) {| dc:source <c> |} .

Back To Work
We could add just syntax for Reification first.

No << … >> terms, only annotations {| … |}.

Allowed to be repeated for the same triple (for
talking about multiple occurrences thereof).

(Also supporting IRI fragment identifiers to be 1:1
with @rdf:ID on arcs in RDF/XML? That’d make
UniProt work as is, but I’m not sure it’s required.)

Then define the connection between that and
named graphs. The token nature of named graphs
provide for a natural equivalence (see Named
Graphs, 2005, previous slides).

Or continue with named graphs (tokens) directly. This
can allow statements to be entailed as the names of
singleton sets, to be backwards-compatible with
reification.

We need a way to say that a named graph (occurrence)
is from or of a graph occurrence (or the default graph
occurrence). An appendix of the graph. That’s the
missing piece.

That may require a new term. Or “protected,
graph-local” blank nodes (or even IRIs). Or just an
important (system) relation.

At least we need rules for Graph Store
implementations. These “appendix” graphs must not be
asserted. They are neutral.

Possible Approach for RDF 1.1 Systems
GRAPH <g1> {
 <x> :creator <o> {|:date "2023"|}.
}

As N-Quads (RDF 1.1)

In the Union Default Graph
<x> :creator <o> <g1> .
_:q1 :date "2023" <g1> .

Queryable only using GRAPH ?g {…}
<x> :creator <o> _:q1 .

Under the hood (not queryable)
_:q1 SYS:quoteFrom <g1> SYS:cfg .

Determine entailment from type?
_:q1 SYS:entailment ent:D SYS:cfg .

Why Not…
… nested graphs? Appears closely related; but for
assertion only. “Fragments” the graph when
querying within it? Requires “graph literals” instead
of conditional acceptance.

It is simple to have flat quads, asserted in asserted
graphs, plus unasserted in “appendices”, whom we
talk about. We can keep the relation to “appendix
graphs” in the “margins” of a system (with a
“protected” name or an explicit relation).

With graph “appendices” we allow for annotations
to be excluded. (“Give me just simple asserted
Turtle, please; no marginalia.” [This was an
originally submitted use case,])

… graph terms? Same problem as for triple terms -
these are abstract mathematical objects denoting
themselves. This is not the realm RDF is talking
about , it is the logic substrate itself.

Also, graphs are sets, so,

Within the framework of Zermelo–Fraenkel
set theory, the axiom of regularity guarantees
that no set is an element of itself. This
implies that a singleton is necessarily distinct
from the element it contains, thus 1 and {1}
are not the same thing.

a singleton set is not the triple it contains.

{∅}

prefix : <https://schema.org/>
base <https://docs.google.com/presentation/d/e/>

<2PACX-1vT6luSkUUGrOgpl8vn_MZesCcE5c6TY2bNbLRGk_upB-yzTmM8BrnbYl8BMvqO2Qm2ZBNFcjwB9yuDZ/pub>
 a :PresentationDigitalDocument ;
 :creator <https://neverspace.net/id#self> {|
 :subject [:name "Niklas Lindström"; :worksFor <https://www.kb.se>]
 |} ;
 :dateCreated "2023-10-25"^^xsd:date .

