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Abstract. The purpose of this document is to provide a formal defini-
tion of the version of the GRAPH operator that we talked about during
our meeting, and to also highlight some potential issues with this opera-
tor. In this document, I call the operator GRAPH∗ in order to distinguish
it from the standard GRAPH operator as defined for SPARQL at the
moment.

1 Preliminaries

For every RDF dataset D = {Gdflt, (n1, G1), . . . , (nm, Gm)} we write graphs(D)
to denote the set of graphs in D. Hence, graphs(D) = {Gdflt, G1, . . . , Gm}.

Additionally, we write gnames(D) to denote the set of names of the named
graphs in D. Hence, gnames(D) = {n1, . . . , nm}. Note that, for any dataset D′

that does not contain any named graphs, we have that gnames(D′) = ∅.
Finally, for every RDF dataset D and every RDF term n that is an IRI or

a blank node, we write graph(n,D) to denote the graph with the name n in
D (or the empty graph if D does not contain such a named graph). Formally,
graph(n,D) is defined as follow.

graph(n,D) =

{
G if there is a named graph (n,G) in D,

∅ else.

2 Auxiliary Functions

This section introduces some auxiliary functions that we will use to define the
semantics of the new GRAPH∗ operator.

As you mentioned during our discussion, you are assuming that an RDF
dataset may contain statements about the containment of graphs within other
graphs. While the details of these statements need to be specified, for the follow-
ing formalization we abstract from these details by assuming a function called
contains. This function is defined for pairs of the form (D,n) where D is an
RDF dataset and n is an IRI or a blank node. The function maps every such
pair to a set of IRIs and blank nodes. Hence, for every dataset D and every IRI
or blank node n, the function captures the intention that, within a dataset D,
the named graph with the name n contains every named graph with a name
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n′ ∈ contains(D,n). Note that contains(D,n) may be the empty set for some
pairs (D,n).

We introduce contains∗ as the transitive closure of contains. That is, for ev-
ery pair (D,n) with D being an RDF dataset and n an IRI or a blank node,
contains∗(D,n) is a set of IRIs and blank nodes that is defined recursively as
follows.

1. contains(D,n) ⊆ contains∗(D,n).
2. For every n′ ∈ contains∗(D,n), it holds that every contains(D,n′) ⊆ contains∗(D,n).

We introduce a function called flatten that, for every pair (D,n) with D being
an RDF dataset and n an IRI or a blank node, returns the version of the of the
named graph with name n in D into which the triples of the contained graphs
have been added. Formally, flatten(D,n) is defined as follows:

flatten(D,n) = graph(n,D) ∪

 ⋃
n′∈contains∗(D,n)

graph(n′, D)

 .

3 GRAPH∗

Now we are ready to define the new operator. We begin with the syntax.

Definition 1. Let P be a graph pattern [1], u be an IRI, and ?x be a variable.
Then, (u GRAPH∗P ) and (?xGRAPH∗P ) are graph patterns.

The semantics of patterns that use the new GRAPH∗ operator is defined
using the following evaluation function.

Definition 2. Let D be an RDF dataset, G be an RDF graph in D (i.e.,
G ∈ graphs(D)), and P be a graph pattern. The evaluation of P over G in
the dataset D, denoted by [[P ]]DG , is a set of solution mappings that is defined
recursively as follows.

– If P is of the form (uGRAPH∗P ′) where u is an IRI, then

[[P ]]DG = [[P ′]]DG′

where G′ = flatten(D,u).

– If P is of the form (?xGRAPH∗P ′) where ?x is a variable, then

[[P ]]DG =
⋃

n∈gnames(D)

(
[[P ′]]Dflatten(D,n) ▷◁ {µ?x→n}

)
where µ?x→n is the solution mapping that maps ?x to n and is defined only
for ?x (i.e., formally, dom(µ?x→n) = {?x} and µ?x→n(?x) = n).

– If P is of any other form, then [[P ]]DG is as defined by Arenas et al. [1].
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4 Examples

Example 1. Consider a dataset Dex1 = {Gdflt, (n1, G1), (n2, G2), (n3, G3)} with

G1 = {(s, p1, o1)},
G2 = {(s, p2, o2)}, and

G3 = ∅.

While the exact content of Gdflt does not matter for the example, assume the
dataset contains statements such that

contains(Dex1, n1) = ∅,
contains(Dex1, n2) = ∅, and

contains(Dex1, n3) = {n1, n2}.

Moreover, let Pex1 be the graph pattern (n3 GRAPH∗B) where B = {tp1, tp2} is
a basic graph pattern (BGP) with the following two triple patterns:

tp1 = (?x, p1, ?y) and

tp2 = (?x, p2, ?z).

Then, we have that [[Pex1]]
Dex1

Gdflt
= {µ} such that µ = {?x → s, ?y → o1, ?z → o2}.

Example 2. Consider the same dataset as in the previous example, but now we
change the IRI in the graph pattern to a variable. Hence, we consider the graph
pattern Pex2 of the form (?gGRAPH∗B) where B is the same BGP before. Now
we have that [[Pex2]]

Dex1

Gdflt
= {µ′} with

µ′ = {?x → s, ?y → o1, ?z → o2, ?g → n3}.

Example 3. Now consider a dataset Dex2 = {Gdflt, (n1, G1), (n2, G2), (n3, G3)}
with G1, G2, and G3 as before, but

contains(Dex2, n1) = {n2},
contains(Dex2, n2) = ∅, and

contains(Dex2, n3) = {n1}.

Using the same graph pattern Pex2 of the previous example, we now obtain the
following result: [[Pex2]]

Dex2

Gdflt
= {µ1, µ2} where

µ1 = {?x → s, ?y → o1, ?z → o2, ?g → n1} and

µ2 = {?x → s, ?y → o1, ?z → o2, ?g → n3}.

Note 1. I find it a bit odd to obtain the two solution mappings in the last
example, but that is what is supposed to happen according to Definition 2.
If that is not the behavior you want, you need to figure out how to change
Definition 2 such that it captures your desired behavior.
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