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Background: Edges as Vertices, Multigraph, Multi-Edge (or Parallel Edges)

• A Line Graph (LG) converts edges to vertices and then eliminates the original vertices and …

Copyright © 2023 Oracle and/or its affiliates.2

What if G is a 
multigraph?

Two parallel edges 
between vertices 1 and 4.

Both edges cannot be named (1, 4). A 
custom name, e. g., (1, 4)2, may be used. 

• RDF-star, keeps, and allows unrestricted use of, both edge-vertices and the original vertices, as vertices.
• Property Graph (PG) supports it too, but limits edge-vertices to only connect to scalar values.

(1,
 4

) 2

https://en.wikipedia.org/wiki/Line_graph
https://en.wikipedia.org/wiki/Multigraph
https://en.wikipedia.org/wiki/Multiple_edges


Labeled Multidigraphs are Not Uncommon in Practice

Examples:
• :servedAs :POTUS” (Cleveland Grover did two non-consecutive terms)
• :deposit :myBankAccount (multiple transactions by same person to same account)
• :called :mySister (call data records: multiple calls by same person to his/her sister)
• :hasManager :myManager (multiple stints)
• :won :Wimbledon (same person wins multiple times)
• :won :SoccerWorldCup (same country wins multiple times)
• etc.
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https://en.wikipedia.org/wiki/Multigraph


Modeling Multi-Edge and Handling Transition of a Property to Multi-Edge
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RDF-star Property Tables: :occurrenceOf ALWAYSRDFn Property Tables: no :occurrenceOf
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RDF-star Property Tables: :occurrenceOf as needed 
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Column NamesData



RDFn Named Triples:
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?
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x y color type
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1. # of core triples: 4 + 1 = 5
2. # of custom IRIs: 1
3. Qry Complexity: Simple.
4. # of triple-patterns: 1
5. Is future-proof? YES

Key Measures :A :knows :B .
:B :knows :C .
:B :knows :D .
:C :knows :D .
:C :knows :D | :cd2 .

Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y

} 

Data: Core triples only

… same as BEFORE …

BEFORE multi-edge

AFTER multi-edge
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RDFn Property Tables: no :occurrenceOf

Data



Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y

} 

RDF-star with :occurrenceOf for extra edges in multi-edges:
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?
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1. # of core triples: 4 + 1 = 5
2. # of custom IRIs: 1
3. Qry Complexity: UNION.
4. # of triple-patterns: 2.
5. Is future-proof? NO

Key Measures

:A :knows :B .
:B :knows :C .
:B :knows :D .
:C :knows :D .

:cd2 :occurrenceOf << :C :knows :D >> .

Data: Core triples only

SELECT (count(*) as ?cnt) {
{ ?x :knows :?y }
UNION { ?occ :occurrenceOf << ?x :knows ?y >>}

} 
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AFTER multi-edge  
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RDF-star Property Tables: :occurrenceOf as needed 
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Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y

} 

RDF-star with :occurrenceOf for all edges in multi-edges:
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?
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x y color type

A B red --

B C blue __

B D blue __

C D green __

C  D blue --

1. # of core triples: 4 + 2*1 = 6
2. # of custom IRIs: 2*1 = 2
3. Qry Complexity: OPTIONAL.
4. # of triple-patterns: 2.
5. Is future-proof? NO

Key Measures

:A :knows :B .
:B :knows :C .
:B :knows :D .
:C :knows :D .

:cd1 :occurrenceOf << :C :knows :D >> .
:cd2 :occurrenceOf << :C :knows :D >> .

Data: Core triples only

SELECT (count(*) as ?cnt) {
?x :knows :?y
OPTIONAL { ?occ :occurrenceOf << ?x :knows ?y >>}

} 

BEFORE multi-edge

AFTER multi-edge  
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RDF-star Property Tables: :occurrenceOf as needed 
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RDF-star with :occurrenceOf ALWAYS (for all edges):
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?
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x y color type

A B red --

B C blue __

B D blue __

C D green __
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Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y . ?occ :occurrenceOf << ?x :knows ?y >> 

} 

… same as BEFORE …

BEFORE multi-edge

AFTER multi-edge

:A :knows :B . :ab1 :occurrenceOf << :A :knows :B >> .
:B :knows :C . :bc1 :occurrenceOf << :B :knows :C >> .
:B :knows :D . :bd1 :occurrenceOf << :B :knows :D >> .
:C :knows :D . :cd1 :occurrenceOf << :C :knows :D >> .

:cd2 :occurrenceOf << :C :knows :D >> .

Data: Core triples only

1. # of core triples: 4*2 + 1 = 9
2. # of custom IRIs: 4 + 1 = 5
3. Qry Complexity: Simple.
4. # of triple-patterns: 2.
5. Is future-proof? YES

Key Measures
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RDF-star Property Tables: :occurrenceOf ALWAYS
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Comparison of Key Measures: RDFn Named Triples vs. RDF-star Alternatives
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?
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1. # of core triples
2. # of custom IRIs
3. Query Complexity
4. # of triple-patterns
5. Is future-proof?
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RDF-star Property Tables: :occurrenceOf ALWAYS
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RDF-star Property Tables: :occurrenceOf as needed 
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RDFn Property Tables: no :occurrenceOf



Multi-Edge Handling Costs: RDFn Named Triples vs. RDF-star Alternatives
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?

N ß #distinct triples using given property
m ß #extra triples for the multi-edge(s)
• N can be high, m usually small

RDFn
Named 
Triples

:occurrenceOf,
for extra edges 
in multi-edges

:occurrenceOf,
for all edges
in multi-edges

:occurrenceOf,
for all edges

Data Size: # core triples (not counting 
“statement about statement” triples)

N + m N + m (N + m + 1) to 
(N + 2*m)

2*N + m

Burden (on data creator): # custom IRIs 
that the data creator has to provide)

(Data Size – N)

COUNT Query Complexity/Efficiency: 
#patterns / Simple, UNION, OPTIONAL?

1/Simple 2/UNION 2/OPTIONAL 2/Simple

Future-Proof?: 
Pre-transition COUNT query still works?

YES NO NO YES

When a single property occurring in N triples transitions to multi-edge(s) adding m extra triples … 

… and the overhead increases (additively) when multiple properties transition to multi-edges! 

Copyright © 2023 Oracle and/or its affiliates.10




