
Souripriya Das, Ph.D.

Architect, Spatial and Graph,
Oracle America Inc.

January 19, 2023

Multi-Edge support and Future-Proofing

Background: Edges as Vertices, Multigraph, Multi-Edge (or Parallel Edges)

• A Line Graph (LG) converts edges to vertices and then eliminates the original vertices and …

Copyright © 2023 Oracle and/or its affiliates.2

What if G is a
multigraph?

Two parallel edges
between vertices 1 and 4.

Both edges cannot be named (1, 4). A
custom name, e. g., (1, 4)2, may be used.

• RDF-star, keeps, and allows unrestricted use of, both edge-vertices and the original vertices, as vertices.
• Property Graph (PG) supports it too, but limits edge-vertices to only connect to scalar values.

(1,
 4

) 2

https://en.wikipedia.org/wiki/Line_graph
https://en.wikipedia.org/wiki/Multigraph
https://en.wikipedia.org/wiki/Multiple_edges

Labeled Multidigraphs are Not Uncommon in Practice

Examples:
• :servedAs :POTUS” (Cleveland Grover did two non-consecutive terms)
• :deposit :myBankAccount (multiple transactions by same person to same account)
• :called :mySister (call data records: multiple calls by same person to his/her sister)
• :hasManager :myManager (multiple stints)
• :won :Wimbledon (same person wins multiple times)
• :won :SoccerWorldCup (same country wins multiple times)
• etc.

Copyright © 2023 Oracle and/or its affiliates.3

https://en.wikipedia.org/wiki/Multigraph

Modeling Multi-Edge and Handling Transition of a Property to Multi-Edge

Copyright © 2023 Oracle and/or its affiliates.4

x y color type

A B red --

B C blue __

B D blue __

C D green __

C D blue --

iid x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
sname x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s oid iid

ab1 akb

bc1 bkc

bd1 bkd

cd1 ckd:o
cc

ur
re

nc
eO

f oid color

ab1 red

bc1 blue

bd1 blue

cd1 green

:c
ol

or oid dtype

ab1 --

bc1 __

bd1 __

cd1 __

cd2 ckd cd2 blue cd2 --

name color

akb red

bkc blue

bkd blue

ckd green

:c
ol

or name dtype

akb --

bkc __

bkd __

ckd __

:d
ty

pe

cd2 C D cd2 blue cd2 --

RDF-star Property Tables: :occurrenceOf ALWAYSRDFn Property Tables: no :occurrenceOf

iid x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s oid iid

:o
cc

ur
re

nc
eO

f oid color

akb red

bkc blue

bkd blue

ckd green

:c
ol

or oid dtype

akb --

bkc __

bkd __

ckd __

cd2 ckd cd2 blue cd2 --

RDF-star Property Tables: :occurrenceOf as needed

cd1 cd1cd1 ckd

:d
ty

pe
:d

ty
pe1. name à implicit or explicit

2. iid à implicit id
3. oid à occurrence id
4. x à subject of triple
5. y à object of triple

Column NamesData

RDFn Named Triples:
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?

Copyright © 2023 Oracle and/or its affiliates.5

x y color type

A B red --

B C blue __

B D blue __

C D green __

C D blue --

1. # of core triples: 4 + 1 = 5
2. # of custom IRIs: 1
3. Qry Complexity: Simple.
4. # of triple-patterns: 1
5. Is future-proof? YES

Key Measures :A :knows :B .
:B :knows :C .
:B :knows :D .
:C :knows :D .
:C :knows :D | :cd2 .

Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y

}

Data: Core triples only

… same as BEFORE …

BEFORE multi-edge

AFTER multi-edge

name x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s name color

akb red

bkc blue

bkd blue

ckd green

:c
ol

or name dtype

akb --

bkc __

bkd __

ckd __

:d
ty

pe

cd2 C D cd2 blue cd2 --

RDFn Property Tables: no :occurrenceOf

Data

Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y

}

RDF-star with :occurrenceOf for extra edges in multi-edges:
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?

Copyright © 2023 Oracle and/or its affiliates.6

x y color type

A B red --

B C blue __

B D blue __

C D green __

C D blue --

1. # of core triples: 4 + 1 = 5
2. # of custom IRIs: 1
3. Qry Complexity: UNION.
4. # of triple-patterns: 2.
5. Is future-proof? NO

Key Measures

:A :knows :B .
:B :knows :C .
:B :knows :D .
:C :knows :D .

:cd2 :occurrenceOf << :C :knows :D >> .

Data: Core triples only

SELECT (count(*) as ?cnt) {
{ ?x :knows :?y }
UNION { ?occ :occurrenceOf << ?x :knows ?y >>}

}

BEFORE multi-edge

AFTER multi-edge

iid x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s oid iid

:o
cc

ur
re

nc
eO

f oid color

akb red

bkc blue

bkd blue

ckd green

:c
ol

or oid dtype

akb --

bkc __

bkd __

ckd __

cd2 ckd cd2 blue cd2 --

RDF-star Property Tables: :occurrenceOf as needed

:d
ty

pe

Data

Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y

}

RDF-star with :occurrenceOf for all edges in multi-edges:
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?

Copyright © 2023 Oracle and/or its affiliates.7

x y color type

A B red --

B C blue __

B D blue __

C D green __

C D blue --

1. # of core triples: 4 + 2*1 = 6
2. # of custom IRIs: 2*1 = 2
3. Qry Complexity: OPTIONAL.
4. # of triple-patterns: 2.
5. Is future-proof? NO

Key Measures

:A :knows :B .
:B :knows :C .
:B :knows :D .
:C :knows :D .

:cd1 :occurrenceOf << :C :knows :D >> .
:cd2 :occurrenceOf << :C :knows :D >> .

Data: Core triples only

SELECT (count(*) as ?cnt) {
?x :knows :?y
OPTIONAL { ?occ :occurrenceOf << ?x :knows ?y >>}

}

BEFORE multi-edge

AFTER multi-edge

iid x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s oid iid

:o
cc

ur
re

nc
eO

f oid color

akb red

bkc blue

bkd blue

ckd green

:c
ol

or oid dtype

akb --

bkc __

bkd __

ckd __

cd2 ckd cd2 blue cd2 --

RDF-star Property Tables: :occurrenceOf as needed

cd1 cd1cd1 ckd

:d
ty

pe

Data

RDF-star with :occurrenceOf ALWAYS (for all edges):
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?

Copyright © 2023 Oracle and/or its affiliates.8

x y color type

A B red --

B C blue __

B D blue __

C D green __

C D blue --

Query: Count occurrences of (asserted) :knows edges.

SELECT (count(*) as ?cnt) {
?x :knows :?y . ?occ :occurrenceOf << ?x :knows ?y >>

}

… same as BEFORE …

BEFORE multi-edge

AFTER multi-edge

:A :knows :B . :ab1 :occurrenceOf << :A :knows :B >> .
:B :knows :C . :bc1 :occurrenceOf << :B :knows :C >> .
:B :knows :D . :bd1 :occurrenceOf << :B :knows :D >> .
:C :knows :D . :cd1 :occurrenceOf << :C :knows :D >> .

:cd2 :occurrenceOf << :C :knows :D >> .

Data: Core triples only

1. # of core triples: 4*2 + 1 = 9
2. # of custom IRIs: 4 + 1 = 5
3. Qry Complexity: Simple.
4. # of triple-patterns: 2.
5. Is future-proof? YES

Key Measures

iid x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s oid iid

ab1 akb

bc1 bkc

bd1 bkd

cd1 ckd:o
cc

ur
re

nc
eO

f oid color

ab1 red

bc1 blue

bd1 blue

cd1 green

:c
ol

or oid dtype

ab1 --

bc1 __

bd1 __

cd1 __

cd2 ckd cd2 blue cd2 --

RDF-star Property Tables: :occurrenceOf ALWAYS

:d
ty

pe

Data

Comparison of Key Measures: RDFn Named Triples vs. RDF-star Alternatives
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?

Copyright © 2023 Oracle and/or its affiliates.9

1. # of core triples
2. # of custom IRIs
3. Query Complexity
4. # of triple-patterns
5. Is future-proof?

Key Measures
5 = 4+1
1
Simple
1
YES

5 = 4+1
1
UNION
2
NO

6 = 4 + 2*1
2
OPTIONAL
2
NO

9 = 2*4 + 1
5
Simple
2
YES

R
D

Fn
N

am
ed

 T
ri

pl
es

:o
cc

ur
re

nc
eO

f,
fo

r e
xt

ra
 e

dg
es

in

 m
ul

ti-
ed

ge
s

:o
cc

ur
re

nc
eO

f,
fo

r a
ll

ed
ge

s
in

m

ul
ti-

ed
ge

s

:o
cc

ur
re

nc
eO

f,
fo

r a
ll

ed
ge

s

iid x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s oid iid

ab1 akb

bc1 bkc

bd1 bkd

cd1 ckd:o
cc

ur
re

nc
eO

f oid color

ab1 red

bc1 blue

bd1 blue

cd1 green

:c
ol

or oid dtype

ab1 --

bc1 __

bd1 __

cd1 __

cd2 ckd cd2 blue cd2 --

RDF-star Property Tables: :occurrenceOf ALWAYS

iid x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s oid iid

:o
cc

ur
re

nc
eO

f oid color

akb red

bkc blue

bkd blue

ckd green

:c
ol

or oid dtype

akb --

bkc __

bkd __

ckd __

cd2 ckd cd2 blue cd2 --

RDF-star Property Tables: :occurrenceOf as needed

cd1 cd1cd1 ckd

:d
ty

pe
:d

ty
pe

name x y

akb A B

bkc B C

bkd B D

ckd C D

:k
no

w
s name color

akb red

bkc blue

bkd blue

ckd green

:c
ol

or name dtype

akb --

bkc __

bkd __

ckd __

:d
ty

pe

cd2 C D cd2 blue cd2 --

RDFn Property Tables: no :occurrenceOf

Multi-Edge Handling Costs: RDFn Named Triples vs. RDF-star Alternatives
Data Size, Burden on Creator, Query Complexity/Efficiency, Future-Proof?

N ß #distinct triples using given property
m ß #extra triples for the multi-edge(s)
• N can be high, m usually small

RDFn
Named
Triples

:occurrenceOf,
for extra edges
in multi-edges

:occurrenceOf,
for all edges
in multi-edges

:occurrenceOf,
for all edges

Data Size: # core triples (not counting
“statement about statement” triples)

N + m N + m (N + m + 1) to
(N + 2*m)

2*N + m

Burden (on data creator): # custom IRIs
that the data creator has to provide)

(Data Size – N)

COUNT Query Complexity/Efficiency:
#patterns / Simple, UNION, OPTIONAL?

1/Simple 2/UNION 2/OPTIONAL 2/Simple

Future-Proof?:
Pre-transition COUNT query still works?

YES NO NO YES

When a single property occurring in N triples transitions to multi-edge(s) adding m extra triples …

… and the overhead increases (additively) when multiple properties transition to multi-edges!

Copyright © 2023 Oracle and/or its affiliates.10

