
Souri Das, Ph.D.

Architect, Spatial and Graph,
Oracle America Inc.

Dec 14, 2023

RDF Extension for Knowledge Graphs

RDFn: A Backward-Compatible
RDF Extension
for Unasserted and Named Triples

Souripriya Das (Souri)
https://www.linkedin.com/in/souripriya-souri-das-ph-d-48801911/
Architect and Manager at Oracle
• Database
• RDF Knowledge Graph
• Property Graph

Education
• Ph.D., Rutgers University
• M.S., Vanderbilt University
• B.Tech., Indian Institute of Technology (IIT), Kharagpur

Standards Activity
• W3C RDB2RDF, Editor of R2RML
• W3C SPARQL 1.0 and 1.1
• W3C RDF 1.1

Publications in Database, Semantic Web, Knowledge Graphs
• ICDE, VLDB, EDBT, CIKM
• Patents in Database and Graph technologies

https://www.linkedin.com/in/souripriya-souri-das-ph-d-48801911/

RDFn (RDF with naming): Core Concepts

s op
n

RDF (default or named) graph à set of <s, p, o> tuples RDFn (def./named) graph à set of <s, p, o, n> tuples

• tName n à IRI in an exclusive namespace …/rdfn/ .
• isAsserted à true/false (an attribute of each tuple).

s à subject, p à predicate, o à object.
(Note: Every tuple is asserted)

Types of tuples in RDFn: (asserted or unasserted) RDF triples (rdft:), custom-named (custom:), auto-named (auto:)

custom-named tuple
• The tName (tuple name), n, is an IRI in an exclusive

namespace for custom names, …/rdfn/custom/
(We use custom: as the prefix in the examples here.)

• The RDF data creator provides the tName IRI.
• The same custom name may be used for multiple

tuples, thus allowing making statements about a set
of tuples possibly belonging to multiple graphs.

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

s op

RDFn: RDF (back.-compatible: asserted triple) + tName (edge-as-endpoint; custom-name for multi-edge) + unasserted

SPARQLn: SPARQL (back.-compat.) + tName IRI/var; isAsserted, isRDF/isAuto/isCustom (annotation; rdf/auto/custom? un/asserted?)

auto-named tuple
• The tName (tuple name), n, is an IRI in the exclusive

namespace for auto-gen. names, …/rdfn/auto/.
(We use auto: as the prefix in the examples here.)

• The tName for a triple in RDF (default or named)
graph g is automatically generated using s, p, o, and g.

• The generated tName is unique in the RDF dataset.
• Users may refer to tName using locally unique alias.

RDFn: Cheat Sheet for Data Loading

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

Input Triple1 Comments Effect
1-a :s :p :o . # (same as RDF)

RDF triple
asserted

The target (default or named) graph g will contain a tuple <:s, :p, :o, rdft:…>, with isAsserted = true.
The triple-name is generated using :s, :p, :o, and g and is unique in the RDF dataset.

2-a :s :p :o | rdft:… . # (same as above)
also, sets up an alias

Same as above. Additionally, the alias is bound to the generated, or (in case a matching triple was
found), the pre-existing, triple-name.

3-a :s :p :o | auto:… . # (same as above)
also, sets up an alias

The target (default or named) graph g will contain a tuple <:s, :p, :o, auto:…>, with isAsserted = true.
Additionally, the alias is bound to the generated, or (in case a matching auto-named occurrence triple
was found), the pre-existing, auto-name.

4-a :s :p :o | custom:… . # custom-named
asserted

The target graph will contain a tuple <:s, :p, :o, custom:…>, with isAsserted = true.

1-u << :s :p :o >> . # RDF triple
unasserted

The target (default or named) graph g will contain a tuple <:s, :p, :o, rdft:…>. The value of its
isAsserted attribute will be set to false, unless same tuple with isAsserted=true was already present in
the graph. The triple-name is generated using :s, :p, :o, and g and is unique in the RDF dataset.

2-u << :s :p :o >> | rdft:… . # (same as above)
also, sets up an alias

Same as above. Additionally, the alias is bound to the generated, or (in case a matching triple was
found), the pre-existing, triple-name.

3-u << :s :p :o >> | auto:… . # (same as above)
also, defines alias

The target (default or named) graph g will contain a tuple <:s, :p, :o, auto:…>. The value of its
isAsserted attribute will be set to false, unless same tuple with isAsserted=true was already present in
the graph. The auto-name is generated using :s, :p, :o, and g and is unique in the RDF dataset.

4-u << :s :p :o >> | custom:… . # custom-named
unasserted

The target graph will contain a tuple <:s, :p, :o, custom:…>. The value of its isAsserted attribute will be
set to false, unless same tuple with isAsserted=true was already present in the graph.

1 Note: For RDF triples and auto-named triples, user’s input only specifies
the aliases (as placeholders: rdft:…, auto:…), not the actual names.

RDFn: Cheat Sheet for Query

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

Triple-pattern Comments FILTER Effect
?s ?p ?o . # (same as SPARQL)

RDF triple
asserted

Looks at all asserted RDF triples in the target graph for a match.

?s ?p ?o | ?n . # asserted
also, binds ?n to actual tName

isRDF(?n)
isAuto(?n)
isCustom(?n)

Looks at all asserted triples in the target graph for a match.

Use of the isRDF/isAuto/isCustom functions in the FILTER limits the target
to RDF triples, auto-named triples, or custom-named triples, respectively.

<< ?s ?p ?o >> . # RDF triple
asserted or unasserted

Looks at all RDF triples – asserted or unasserted – in the target graph for a
match.

<< ?s ?p ?o >> | ?n . # (same as above)
also, binds ?n to actual tName

!isAsserted(?n)

isRDF(?n)
isAuto(?n)
isCustom(?n)

Looks at all asserted or unasserted triples in the target graph for a match.

Use of the !isAsserted() function in the FILTER limits the target to unasserted
triples only.

Use of the isRDF/isAuto/isCustom functions in the FILTER limits the target
to RDF triples, auto-named triples, or custom-named triples, respectively.

RDFn Data Loading: in Batches, over Time
Brazil won soccer world cup twice. France won
once. Brazil’s 2nd win was in year 2002.
:Brazil :won :SWC | auto:Bwin .
:Brazil :won :SWC | custom:Bwin2 .
:France :won :SWC | auto:Fwin .
custom:Bwin2 :year 2002 .

:Brazil :won :SWC | auto:Bw1 .
auto:Bw1 :preceded custom:Bwin2 .
:France :won :SWC | custom:Fwin2 .
custom:Fwin2 :year 2018 .Lo

ad
 B

at
ch

 #
1

Lo
ad

 B
at

ch
 #

2

Four edges: A2 named manually; rest auto-named.

Brazil’s 1st win preceded their 2nd win. France won
again and that win came in year 2018.

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

Note: The following first-time changes in #2 were accommodated just by adding new edges. No deletions.
1. A1 is used as an endpoint – as subject in A5. Its auto-gen. tName (created during #1) is ref’ed via alias.
2. A3 became part of a multi-edge, { A3, A6 }. User supplied an IRI as unique tName for new triple A6.

A1, auto-named
A2, custom-named
A3, auto-named
A4, RDF triple

sets up alias to A1
A5, auto-named

A6, custom-named
A7, RDF triple

Three more: A6 named
manually; rest auto-named.
A1’s auto name is ref’ed via alias.

:Brazil :SWC:won
:won

c:Bwin2
2002

:year

:France :SWC
:won auto name

auto name :Brazil :SWC:won
:won

c:Bwin2
2002

:year

:France :SWC
:won

c:Fwin2
:won

2018

:preceded

:year

auto name

auto name

RESULT: [?c= :Brazil, ?cnt=2, ?last=2002], [?c= :France, ?cnt=2, ?last=2018]

Query: For each world cup winner, find win count and last (known) year of winning.

SPARQLn Queries Remain Valid Throughout
Brazil won soccer world cup twice. France won
once. Brazil’s 2nd win was in year 2002.

Lo
ad

 B
at

ch
 #

1

Lo
ad

 B
at

ch
 #

2 Brazil’s 1st win preceded their 2nd win. France won again
and that win came in year 2018.

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

RESULT: [?c= :Brazil, ?cnt=2, ?last=2002], [?c= :France, ?cnt=1]

SELECT ?c (COUNT(*) as ?cnt) (MAX(?yr) as ?last)
WHERE { ?c :won :SWC | ?win . OPTIONAL { ?win :year ?yr } } GROUP BY ?c

SP
A

R
Q

Ln

Why pre-existing queries remain valid in spite of changes like new edge-as-endpoint, new multi-edge?
• Loading of batch #2 in this example was accommodated just by adding new triples. No deletions or replacements were needed.
• The addition did not affect the structuring of the data and no special properties were introduced.
• Adding a new edge parallel to an existing edge simply involved adding a triple with the same s-p-o, but a (new) custom-name.
• Adding a new edge-as-endpoint simply involved using the name of the triple as the subject (source) of the new triple (edge).

Three edges added. No deletions.
No special properties like :hasOcc.
No change in basic structuring of data.

:Brazil :SWC:won
:won

c:Bwin2
2002:year

:France :SWC
:won auto name

auto name
:Brazil :SWC:won

:won

c:Bwin2
2002:year

:France :SWC
:won

c:Fwin2
:won

2018

:preceded

:year

auto name

auto name

RDFn vs. RDF-star (1): Multi-Edge Handling

:Cleveland

:POTUS
:servedAs

:servedAs

:term2

1893

1897:to

1885

1889
:fro

m

:to

:fro
m

:Cleveland :servedAs :POTUS | (auto:term1, custom:term2) .
auto:term1 :from 1885 ; :to 1889 .
custom:term2 :from 1893 ; :to 1897 .

:Cleveland :servedAs :POTUS {| :hasOccurrence :term1, :term2 |} .
:term1 :from 1885 ; :to 1889 .
:term2 :from 1893 ; :to 1897 .R

D
Fn

R
D

F-
st

ar

auto name

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

:Cleveland

:POTUS
:servedAs

:term2

1893

1897:to

1885

1889

:from

:to

:fro
m

:term1

:hasOcc

6 triples 7 triples

Data: Cleveland served as the President for two (non-consecutive) terms: 1885-1889 and 1893-1897.

:hasOcc

• When new data comes in about Cleveland’s second term,
a new custom-named :servedAs triple is created, and the
custom-name is used as the subject for adding info about
the from/to year for that term.

• Both minimizes triple count and maintains uniformity of
representation.

• Even info about Cleveland first term is modeled using the
:hasOccurrence property. Thus, when new data comes in
about Cleveland’s second term, a new :hasOccurrence triple
is created to represent this info and so on.

• Provides uniformity of representation but increases number
of triples.

Scheme 1: Always Use :hasOccurrence

RDFn vs. RDF-star (2): Multi-Edge Handling

:Cleveland

:POTUS
:servedAs

:hasOcc

:term2

1893

1897:to

1885

1889
:fro

m

:to

:fro
m

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

:Cleveland :servedAs :POTUS | (auto:term1, custom:term2) .
auto:term1 :from 1885 ; :to 1889 .
custom:term2 :from 1893 ; :to 1897 .

:Cleveland :servedAs :POTUS {| :from 1885 ; :to 1889 ;
 :hasOccurrence :term2 |} .
:term2 :from 1893 ; :to 1897 .R

D
Fn

R
D

F-
st

ar

6 triples 6 triples

Data: Cleveland served as the President for two (non-consecutive) terms: 1885-1889 and 1893-1897.

• When new data comes in about Cleveland’s second term,
a new custom-named :servedAs triple is created, and the
custom-name is used as the subject for adding info about
the from/to year for that term.

• Both minimizes triple count and maintains uniformity of
representation.

• When new data comes in about Cleveland’s second term, a
:hasOccurrence triple is created to represent this info and the
occurrence IRI is used as the subject for adding info about
the from/to year for that term.

• Minimizes triple count but loses uniformity of representation.

Scheme 2: Multi-Edge-only Use of :hasOccurrence

:Cleveland

:POTUS
:servedAs

:servedAs

:term2

1893

1897:to

1885

1889
:fro

m

:to

:fro
m

auto name

RDFn vs. always-using :hasOcc in RDF-star
:Washington :servedAs :POTUS | auto:pres1 .
auto:pres1 :from 1789 ; :to 1797 .
…
:Cleveland :servedAs :POTUS | (auto:pres22, custom:pres24) .
auto:pres22 :from 1885 ; :to 1889 .
custom:pres24 :from 1893 ; :to 1897.
…
:Trump :servedAs :POTUS | auto:pres45 .
auto:pres45 :from 2017 ; :to 2021 .

:Washington :servedAs :POTUS {| :hasOccurrence :pres1 |} .
:pres1 :from 1789 ; :to 1797 .
…
:Cleveland :servedAs :POTUS {| :hasOccurrence :pres22, :pres24 |} .
:pres22 :from 1885 ; :to 1889 .
:pres24 :from 1893 ; :to 1897 .
…
:Trump :servedAs :POTUS {| :hasOccurrence :pres45 |} .
:pres45 :from 2017; :to 2021 .

Select ?who ?start ?end
{ ?who :servedAs :POTUS | ?term .
 ?term :from ?start ; :to ?end }

Select ?who ?start ?end
{ ?who :servedAs :POTUS {| :hasOccurrence ?term |}
 ?term :from ?start ; :to ?end }

R
D

Fn
SP

A
R

Q
Ln

R
D

F-
st

ar
3 triple-patterns

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

4 triple-patterns

Data: Consecutive term info for 44 US Presidents. (Total terms = 45: Cleveland had two non-consecutive terms.)

Data RDFn RDF-star Remarks

Triple Count (45*1+1) + (45+1)*2 = 138 (45*2 + 1) + (45+1)*2 = 183 • In RDF-star, an occurrence triple, and hence
an IRI (or blank node), is created for each
presidential term.

• In RDFn, an IRI is created only for the 2nd

term of Cleveland. No special occ. triples.

IRIs (or blank nodes)
for president terms

1 (rest are locally unique aliases for
the auto-generated tNames)

45

Query: For each US President, find the start and end year of the term(s) he served as president.

SP
A

R
Q

L-
st

ar

RDFn vs. multi-edge-only :hasOcc in RDF-star
:Washington :servedAs :POTUS | auto:pres1 .
auto:pres1 :from 1789 ; :to 1797 .
…
:Cleveland :servedAs :POTUS | (auto:pres22, custom:pres24) .
auto:pres22 :from 1885 ; :to 1889 .
custom:pres24 :from 1893 ; :to 1897.
…
:Trump :servedAs :POTUS | auto:pres45 .
auto:pres45 :from 2017 ; :to 2021 .

:Washington :servedAs :POTUS {| :from 1789 ; :to 1797 |} .
…
:Cleveland :servedAs :POTUS {| :from 1885 ; :to 1889;
 :hasOccurrence :pres24 |} .
:pres24 :from 1893 ; :to 1897 .
…
:Trump :servedAs :POTUS {| :from 2017; :to 2021 |} .

Select ?who ?start ?end
{ ?who :servedAs :POTUS | ?term .
 ?term :from ?start ; :to ?end }

Select ?who ?start ?end
{ ?who :servedAs :POTUS {| :from ?start ; :to ?end |} }
UNION
{ ?who :servedAs :POTUS {| :hasOccurrence ?term |}
 ?term :from ?start ; :to ?end }}

Query: For each US President, find the start and end year of the term(s) he served as president.

R
D

Fn
SP

A
R

Q
Ln

SP
A

R
Q

L-
st

ar

R
D

F-
st

ar
3 triple-patterns

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.
7 triple-patterns

Data: Consecutive term info for 44 US Presidents. (Total terms = 45: Cleveland had two non-consecutive terms.)

Data RDFn RDF-star Remarks

Triple Count (45*1+1) + (45+1)*2 = 138 (45*1 + 1) + (45+1)*2 = 138 • In RDF-star, an occurrence triple, and hence
an IRI, is created only for Cleveland 2nd term.

• In RDFn, an IRI is created only for the 2nd

term of Cleveland. No special occ. triples.
IRIs (or blank nodes)
for president terms

1 (rest are locally unique aliases for
the auto-generated tNames)

1

Simple Complex

