
Souripriya Das, Ph.D.

Architect, Spatial and Graph,
Oracle America Inc.

December 02, 2022

Multi-Edge support in RDFn

Souripriya Das (Souri)
https://www.linkedin.com/in/souripriya-souri-das-ph-d-48801911/
Architect at Oracle
• Database
• RDF Knowledge Graph
• Property Graph

Education
• Ph.D., Rutgers University
• M.S., Vanderbilt University
• B.Tech., Indian Institute of Technology (IIT), Kharagpur

Standards Activity
• W3C RDB2RDF, Editor of R2RML
• W3C SPARQL 1.0 and 1.1
• W3C RDF 1.1

Publications in Database, Semantic Web, Knowledge Graphs
• ICDE, VLDB, EDBT, CIKM, KGC
• Patents in Database and Graph technologies

https://www.linkedin.com/in/souripriya-souri-das-ph-d-48801911/

Background: Edges as Vertices, Multigraph, Multi-Edge (or Parallel Edges)

• A Line Graph (LG) converts edges to vertices and then eliminates the original vertices and …

Copyright © 2022 Oracle and/or its affiliates.3

What if G is a
multigraph?

Two parallel edges
between vertices 1 and 4.

Both edges cannot be named (1, 4). A
custom name, e. g., (1, 4)2, may be used.

• RDF-star, keeps, and allows unrestricted use of, both edge-vertices and the original vertices, as vertices.
• Property Graph (PG) supports it too, but limits edge-vertices to only connect to scalar values.

(1,
 4

) 2

https://en.wikipedia.org/wiki/Line_graph
https://en.wikipedia.org/wiki/Multigraph
https://en.wikipedia.org/wiki/Multiple_edges

Edge-as-Vertex: Rel./SQL vs. Turtle-star/SPARQL-star vs. Turtlen/SPARQLn

Copyright © 2022 Oracle and/or its affiliates.4

x y color type

A B red --

B C blue __

B D blue __

C D green __

knows
B

C
knows

A

D
knows

knows

:A :knows :B {|
:color “red” ; :type “--” |} .

:B :knows :C {|
:color “blue” ; :type “__” |} .

:B :knows :D {|
:color “blue” ; :type “__” |} .

:C :knows :D {|
:color “green” ; :type “__” |} .

:A :knows :B {|
:color “red” ; :type “--” |} .

:B :knows :C {|
:color “blue” ; :type “__” |} .

:B :knows :D {|
:color “blue” ; :type “__” |} .

:C :knows :D {|
:color “green” ; :type “__” |} .

Find who knows whom and
in what color and dash type.

SELECT x, y,
color, type

FROM knows;

select ?x ?y ?color ?type {
?x :knows ?y {|

:color ?color ; :type ?type |}
}

select ?x ?y ?color ?type {
?x :knows ?y {|

:color ?color ; :type ?type |}
}

Relational Turtle-star Turtlen

SQL SPARQL-star SPARQLn

knows

Query Expecte
d Resu

lt

Adding a Parallel Edge (to create a Multi-Edge)

Copyright © 2022 Oracle and/or its affiliates.5

x y color type

A B red --

B C blue __

B D blue __

C D green __

Relational
knows

B

C
knows

A

D
knows

knows

:A :knows :B {|
:color “red” ; :type “--” |} .

:B :knows :C {|
:color “blue” ; :type “__” |} .

:B :knows :D {|
:color “blue” ; :type “__” |} .

:C :knows :D {|
:color “green” ; :type “__” |} .

:A :knows :B {|
:color “red” ; :type “--” |} .

:B :knows :C {|
:color “blue” ; :type “__” |} .

:B :knows :D {|
:color “blue” ; :type “__” |} .

:C :knows :D {|
:color “green” ; :type “__” |} .

Find who knows whom and
in what color and dash type.

SELECT x, y,
color, type

FROM knows;

select ?x ?y ?color ?type {
?x :knows ?y {|

:color ?color ; :type ?type |}
}

SQL SPARQL-star SPARQLn

kn
ows

knows

Query

:C :knows :D {| :occursAs :cd2 |}
:cd2 :color “blue” ; :type “--” .

Expecte
d Resu

lt

no changes
no changes

Add a parallel edge

C D blue --

select ?x ?y ?color ?type {
?x :knows ?y {|

:color ?color ; :type ?type |}
}

select ?x ?y ?color ?type {
{ ?x :knows ?y {|

:color ?color ; :type ?type |} }
UNION
{ ?x :knows ?y {| :occursAs ?occ2 |}

?occ2 :color ?color ; :type ?type } }

:C :knows :D | :cd2 {|
:color “blue” ; :type “--” |} .

Turtle-star Turtlen

Multi-Edge handling using Explicit Names or Occurrences only

Copyright © 2022 Oracle and/or its affiliates.6

x y color type

A B red --

B C blue __

B D blue __

C D green __

Relational
knows

B

C
knows

A

D
knows

knows

:A :knows :B {|
:color “red” ; :type “--” |} .

:B :knows :C {|
:color “blue” ; :type “__” |} .

:B :knows :D {|
:color “blue” ; :type “__” |} .

:C :knows :D {|
:occursAs :cd1, :cd2 |} .

:A :knows :B {|
:color “red” ; :type “--” |} .

:B :knows :C {|
:color “blue” ; :type “__” |} .

:B :knows :D {|
:color “blue” ; :type “__” |} .

:C :knows :D | (:cd1, :cd2) .

SELECT rowid,x, y,
color, type

FROM knows;

select ?n ?x ?y ?color ?type {
?x :knows ?y | ?n {|

:color ?color ; :type ?type |}
}

SQL SPARQL-star SPARQLn

kn
ows

knows

Query

:cd1 :color “green” ; :type “__” .
:cd2 :color “blue” ; :type “--” .

Expecte
d Resu

lt

Add a parallel edge

C D blue --

select ?occ ?x ?y ?color ?type {
?x :knows ?y {| :occursAs ?occ |}
?occ :color ?color ; :type ?type }

:cd1 :color “green” ; :type “__” .
:cd2 :color “blue” ; :type “--” .

Find who knows whom and
in what color and dash type.
Also, return the name or occ. id.

Turtle-star Turtlen

Labeled Multidigraphs are Not Uncommon in Practice

Examples:
• :servedAs :POTUS” (Cleveland Grover did two non-consecutive terms)
• :deposit :myBankAccount (multiple transactions by same person to same account)
• :called :mySister (call data records: multiple calls by same person to his/her sister)
• :hasManager :myManager (multiple stints)
• :won :Wimbledon (same person wins multiple times)
• :won :SoccerWorldCup (same country wins multiple times)
• etc.

Copyright © 2022 Oracle and/or its affiliates.7

It will be great to incorporate
seamless support for this in the
RDF-star Recommendation.

https://en.wikipedia.org/wiki/Multigraph

RDFn Semantics: Essentials, in a few words

• Every RDFn statement
• has a unique name
• the name can be an implicit (auto-generated) name or an explicit name
• is represented by the tuple <s, p, o, n>

• An RDFn dataset is a set of <s, p, o, n> tuples where each distinct s-p-o triple …
• must be associated with at least one name
• at most one of its names can be an implicit name
• it may be associated with 0 or more explicit names

Copyright © 2022 Oracle and/or its affiliates.8

RDFn Semantics: Essentials Beyond RDF

An RDFn statement is a tuple of the form: <s, p, o, n> where n is:
• either an implicit (auto-generated) name, ni, that is an IRI in an exclusive namespace (e.g., rdfn: ..)
• or an explicit (assigned) name, ne, that is an IRI, not in the above namespace, or is a blank node
• n may be used as subject or object of other triples (provided its use causes no name defn. cycle)

Suppose, for a given RDF dataset
• N is the set of names and T is the set of triples, and
• NI and NE are the sets of implicit and explicit names, resp., and
• TI and TE are the sets of implicitly and explicitly named triples, resp.

Then, the following must hold:
• N = NI ⋃ NE and T = TI ⋃ TE

• NI ⋂ NE = Φ (Note: TI ⋂ TE need not be empty. See diagram à.)
• NI and TI are related by one-to-one correspondence
• NE to TE mapping is injective.
• è N to T is injective è Every statement, <s, p, o, n>, has a unique (explicit or implicit) name.

Copyright © 2022 Oracle and/or its affiliates.9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

NI

NE

TI

TE

N
T

S
t
a
t
e
m
e
n
t
s

Statements: Names èTriples

Merging of Datasets: Validating the Name Uniqueness Constraint

• Merging of RDFn datasets must prevent potential violation of the name uniqueness constraint
• if violated, the same explicit name may get associated with multiple distinct s-p-o triples
• in that case, edge-properties of multiple statements may get combined.

Example:
• dataset 1 => :John :depositedTo :Acct1 | :n {| :amount 100 |}
• dataset 2 => :Mary :depositedTo :Acct2 | :n {| :amount 200 |}
• merging these two datasets without checking the constraint causes the same name :n

• to get associated with two distinct triples and
• to have two edge-properties that lose their associations with the individual statements

• Note: This uniqueness constraint applies to implicit names as well. In that case, however, it is
equivalent to the original s-p-o uniqueness constraint in RDF. This is guaranteed by ensuring
that the implicit names generated for distinct s-p-o triples are always different.

Copyright © 2022 Oracle and/or its affiliates.10

Federated Query: Returning Implicit Names

• A triplestore has local autonomy regarding how it creates implicit names. (It is assumed,
however, that implicit names can be distinguished from explicit names.)

• When a SERVICE query must return a binding that happens to be an implicit name, it needs to
instead return the triple associated with the implicit name.

Copyright © 2022 Oracle and/or its affiliates.11

knows
B

C
knows

A

D
knows

knows

kn
ows

:A :knows :B {| :type “--” |} .
:B :knows :C {| :type “__” |} .
:B :knows :D {| :type “__” |} .
:C :knows :D | (:cd1, :cd2) .

:cd1 :type “__” .
:cd2 :type “--” .

select ?n ?x ?y ?color {
?x :knows ?y {| :color ?color |} .
SERVICE :TripleStore2
{ ?x :knows ?y | ?n {| :type “__" |} } }

Federated Query issued at TripleStore1

:A :knows :B {| :color “red” |} .
:B :knows :C {| :color “blue” |} .
:B :knows :D {| :color “blue” |} .
:C :knows :D | (:cd1, :cd2) .

:cd1 :color “green” .
:cd2 :color “blue” .

[?n = (:B :knows :C), ?x = :B, ?y = :C]
[?n = (:B :knows :D), ?x = :B, ?y = :D]
[?n = (:C :knows :D), ?x = :C, ?y = :D]

[?n = rdfn:_1, ?x = :B, ?y = :C, ?color = “blue”]
[?n = rdfn:_2, ?x = :B, ?y = :D, ?color = “blue”]
[?n = rdfn:_3, ?x = :C, ?y = :D, ?color = “green”]

Results received from TripleStore2
find color of
solid edges

Query returns following after “localization”

Tr
ip

le
St

or
e

1 TripleStore
2

Federated Query: Returning Explicit Names

• It is possible that the same explicit name may be associated with different s-p-o triples in
different triplestores.

• When a SERVICE query must return a binding that happens to be an explicit name, it needs to
return the corresponding triple as well. This helps in recognizing a name uniqueness violation.

Copyright © 2022 Oracle and/or its affiliates.12

knows
B

C
knows

A

D
knows

knows

kn
ows

:A :knows :B {| :type “--” |} .
:B :knows :C {| :type “__” |} .
:B :knows :D {| :type “__” |} .
:C :knows :D | (:cd1, :cd2) .

:cd1 :type “__” .
:cd2 :type “--” .

select ?n ?x ?y ?color {
?x :knows ?y {| :color ?color |} .
SERVICE :TripleStore2
{ ?x :knows ?y | ?n {| :type “--" |} } }

Federated Query issued at TripleStore1

:A :knows :B {| :color “red” |} .
:B :knows :C {| :color “blue” |} .
:B :knows :D {| :color “blue” |} .
:C :knows :D | (:cd1, :cd2) .

:cd1 :color “green” .
:cd2 :color “blue” .

[?n = (:A :knows :B), ?x = :A, ?y = :B]
[?n = (:C :knows :D | :cd2)

, ?x = :C, ?y = :D]

[?n = rdfn:_1, ?x = :A, ?y = :B, ?color = “red”]
[?n = :cd2, ?x = :C, ?y = :D, ?color = “blue”]

Results received from TripleStore2
find color of
dotted edges

Query returns following after “localization”

Tr
ip

le
St

or
e

1 TripleStore
2

if conflict: ?n = :TripleStore2#name=:cd2, …]

Connecting or Isolating Resources (or Names) in Different TripleStores

RDF:
• Use of IRIs for Resources

• Benefit: Allows sharing of resources across multiple triplestores.
• Drawback: Accidental sharing is a risk. (e.g., :JohnSmith in two triplestores).

• Use of blank nodes for Resources
• Benefit: Allows isolating resources to a local triplestore.
• Drawback: Prevents any form of sharing.

RDFn
• Use of IRIs for Explicit Names

• Same benefits and drawbacks as in RDF case.
• Use of blank nodes for Explicit Names

• Same benefits and drawbacks as in RDF case.

Copyright © 2022 Oracle and/or its affiliates.13

Enabling Explicit Naming in RDF-star, Serializations, and SPARQL-star

• RDF-star
• Allow inclusion of explicit name in the def. of a statement: <s, p, o> à <s, p, o, n>
• Add the name uniqueness constraint

• Serialization Formats: N-Triple/N-Quad, Turtle/TriG, RDF/XML, JSON-LD
• Extend syntax to allow explicit name specification.
• Ex (N-Triple): :John :spouseOf :Mary | :JsM .

• SPARQL-star Query and Federated (SERVICE) Query
• extend syntax to include name or name variable, and
• add new functions: isName(<var>), isImplicitName(<var>), isExplicitName(<var>)
• Extend remote query response to include the triple when returning name as value

Ex: [?n = (:John :spouseOf :Mary | :JsM), …] (instead of just [?n = :JsM, …])
• SPARQL-star Update

• INSERT à name uniqueness constraint violation?. DELETE à CASCADE?
Copyright © 2022 Oracle and/or its affiliates.14

