

openFinance API Framework

Implementation Guidelines
HTTP Message with Signed Body

(to be integrated into [oFA-ProtSec] after consultation)

Last update: 12.07.2023

DRAFT

Machielse, Wijnand
Draft

License Notice

This Specification has been prepared by the Participants of the openFinance Taskfoce*. This Specification is

published by the Berlin Group under the following license conditions:

• "Creative Commons Attribution-NoDerivatives 4.0 International Public License"

This means that the Specification can be copied and redistributed in any medium or format for any purpose,

even commercially, and when shared, that appropriate credit must be given, a link to the license must be

provided, and indicated if changes were made. You may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use. In addition, if you remix, transform, or build upon the

Specification, you may not distribute the modified Specification.

• Implementation of certain elements of this Specification may require licenses under third party intellectual

property rights, including without limitation, patent rights. The Berlin Group or any contributor to the

Specification is not, and shall not be held responsible in any manner for identifying or failing to identify any or

all such third party intellectual property rights.

• Any right, title and interest in and to the copyright and all related rights in topic-related Scheme Rulebooks,

belong to the respective Scheme Manager (amongst others, the European Payments Council AISBL - EPC).

• The Specification, including technical data, may be subject to export or import regulations in different countries.

Any user of the Specification agrees to comply strictly with all such regulations and acknowledges that it has

the responsibility to obtain licenses to export, re-export, or import (parts of) the Specification.

* The openFinance Taskforce brings together participants of the Berlin Group with additional European banks (ASPSPs), banking

associations, payment associations, payment schemes and interbank processors.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page i

 (ref. License Notice for full license conditions)

Contents

1 Introduction ... 1

2 Signing the body of an HTTP message ... 2

2.1 Extension to the http message ... 3

2.1.1 Path ... 3

2.1.2 Query parameters ... 3

2.1.3 Header parameters ... 3

2.1.4 Body .. 4

2.2 Signing the body using JAdES_JS ... 4

2.3 Signing the body using XAdES .. 9

2.4 Signing the body using EMV_AC ... 13

3 References ... 14

3.1 Documents of the NextGenPSD2 XS2A Framework 14

3.2 Documents of the openFinance API Framework 14

3.3 Further documents .. 14

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 1

 (ref. License Notice for full license conditions)

1 Introduction

For V2 of the openFinance API Framework HTTP (request or response) messages with

signed bodies will be introduced.

For an HTTP message with a signed body, only the content of the body shall be signed. One

or more signatures to may be applied to the content of the body may be possible.

HTTP messages with a signed body should not be confused with signed HTTP messages

(as defined by section 6 of [oFA-ProtSec]). For an HTTP request message with a signed

body a signature is generated by a PSU. In this case the signature by the PSU is considered

as a possible method of an SCA by the PSU to authorise the transaction. For signed HTTP

messages the HTTP message is signed by the TPP as a proof of origin of the message.

For messages sent by the ASPSP, a signature for the content of the body could be needed

from a contractual point of view end to end, e.g. sending signed account statements or in

future contract proposals.

This document is an excerpt from the document [oFA-ProtSec], which has already been part

of the consultation process. After consultation of the content of section 2 of this document at

hand it will be integrated into [oFA-ProtSec] as section 7.1.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 2

 (ref. License Notice for full license conditions)

2 Signing the body of an HTTP message

Remark: To be integrated into [oFA-ProtSec] as section 7.1.

The body of a request or response message may be signed by one or more responsible

entities. Who is responsible for signing the body depends on the single use case. The following

are possible examples:

• For a request message sent by an API Client to the openFinance API of an ASPSP

the body may be signed by one or more PSU.

• For a response message to a request of an API Client the body may be signed by

a responsible department or one or more responsible employees of the ASPSP.

• For a request message as part of a pushed-based service the body may be signed

by a responsible department or one or more responsible employees of the ASPSP.

If the body of a request message sent by an API Client to the openFinance API of an ASPSP

is signed by one or more PSU this will be called a signed payment request, if the request

message is part of a payment service and contains payment data. For a signed payment

request further SCA procedures of the PSU involved will not be necessary if the creation of

the corresponding signatures is compliant with the requirements of the RTS.

Remarks:

• Signing the body of a request message for a signed payment request should not

be confused with the signing of an HTTP request message. Signing the HTTP

message will authenticate the API Client sending the request message to the

openFinance API of the ASPSP. It will not authenticate the PSU and for this reason

cannot substitute an SCA of the PSU.

• To distinguish the case of a request message with a signed body (indicating the

consent of the PSU) from signed HTTP messages (indicating the proof of origin by

the TPP) these request messages with signed bodies will be called in general

signed transaction requests.

It is up to the ASPSP to decide if it supports signed bodies for messages. For some use cases

an ASPSP might mandate that the body of a request message sent by an API Client has to

be signed by one or more PSUs.

This specification does not define any requirements about the quality of the process to

generate the signature over the body of the http message. It is possible that the ASPSP will

define further requirements for this as for example

• special algorithms to be used,

• key length to be used,

• quality of certificates to be used.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 3

 (ref. License Notice for full license conditions)

Different signature procedures and profiles based on asymmetric and symmetric cryptography

will be supported in future by this specification. The phrase "signing a body" will be used

regardless if the body will be secured by an electronic signature or an electronic seal based

on asymmetric cryptography or by some kind of cryptogram based on symmetric cryptography,

as for example an EMV cryptogram generated by a payment card.

2.1 Extension to the http message

Remark: To be integrated into [oFA-ProtSec] as section 7.1.1

Remark: The definitions of this section 2.1 hold regardless which signature profile is used to

sign the body according to section 2.2 (JAdES_JS), 2.3 (XAdES) or 2.4 (EMV_AC).

2.1.1 Path

For sending request messages with a signed body dedicated endpoints will be used.

Example: For a signed payment request the endpoint

POST …/v2/signed-payments/{payment-product}

has to be used instead of

POST …/v2/payments/{payment-product}

For other (extended) payment services or other services the endpoints have to be adapted

accordingly with an "signed-" prefix if the request is sent with a signed body.

These dedicated endpoints for request messages with signed bodies shall not be used for

request message if the body is not signed, since the schemas for the definition of the (data

structures of the) bodies and also the following steps for the authorisation will be different.

2.1.2 Query parameters

None.

2.1.3 Header parameters

If the body is signed the following header parameters shall be added to the header of the

HTTP request or response message:

Attribute Type Condition Description

Body-Sig-

Profile

String Conditional Indicates the signature profile used for signing

(parts of) the body. Shall be used if the body is

signed.

Table 1: Header parameters to indicate that the body has been signed.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 4

 (ref. License Notice for full license conditions)

Body-Sig-Profile

This parameter indicates the profile used for signing the message body.

This header parameter is mandatory if the body of the message is signed. It shall not

be used if the body of the message is not signed.

Currently the following values are supported by this specification:

JAdES_JS The body is signed based on [RFC7515] using JWS JSON Serialization

taking the requirements of [ETSI TS 119 182-1] for JAdES into account.

XAdES The body is signed based on [W3C XMLSig] taking the requirements of

[ETSI EN 319 132-1] for XAdES into account.

EMV_AC FOR FUTURE USE ONLY (The body is signed using an EMV AC

cryptogram).

Table 2: Supported signature profiles.

Future versions of the specification may support further values for the signature profile.

Remark:

For signed transaction requests not all header parameters as defined by section 3.4 of

[oFA-ProtSec] may be applicable.

2.1.4 Body

For an unsigned JSON coded body, the content of the unsigned body has to be replaced by

a signed data structure as described in section 2.2.

For an unsigned XML coded body, the content of the unsigned body has to be replaced by a

signed data structure as described in section 2.3.

Other cases are RFU.

2.2 Signing the body using JAdES_JS

Remark: To be integrated into [oFA-ProtSec] as section 7.1.2

The profile JAdES_JS can only be used to sign the body of a message if the content of the

body is JSON encoded.

Only general JWS JSON Serialisation according to section 7.2.1 of [RFC7515] is supported.

By this the body of the message may be protected by one or more electronic signatures (which

would not be available for compact serialisation).

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 5

 (ref. License Notice for full license conditions)

For each signature to protect the content of the body a JWS has to be generated using the

key and the certificate of the responsible PSU.

Unsigned body:

{ JSON encoded unsigned body data }

Remark: The body may contain more than one JSON coded elements on the first level.

Signed body:

A new data element to "envelop" the unsigned body is introduced. This element is called

payload. This new element will be a sibling element to the signatures in the signed body.

{

 "payload": { JSON encoded unsigned body data },

 "signatures": [array of JWS]

}

Table 3: Elements of a signed JSON message body for alternative B.

Remarks:

• If the message is sent to an endpoint dedicated for signed request messages the

elements payload and signatures are mandatory elements and are the only

JSON coded elements on the first level.

• If the message is sent to another endpoint the elements payload and

signatures shall not be used.

• The array element signatures shall contain one JWS for each signature generated

to protect the body.

Only detached signatures signing local data are used. The data to be signed can be protected

by n signatures (with n >= 1). Note that these are independent signatures and not counter

signatures. If one signature has to be protected by another signatures, counter signatures as

described in section 5.3.2 of [ETSI TS 119 182-1] shall be used.

If the body is protected only by a single signature, the flattened syntax according to section

7.2.2 of [RFC7515] may be used.

Question for the consultation process: Should the flattened syntax be supported, eg. for

the access via wallets? If yes this has to be considered by the definition of the yaml-files.

Detached signatures are built according to appendix F of [RFC7515], i.e. the JWS does not

contain the payload element. Instead, the signature protects the content of the element

payload being the only sibling element of the element signatures within the signed body

of the HTTP message.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 6

 (ref. License Notice for full license conditions)

For the creation and verification of a signature the following element has to be considered (as

virtual element of the JWS but not added to the JWS):

"payload":"BASE64URL(JWS Payload)"

with JWS Payload defined by JSON encoded content of the sibling element payload of

signatures within the body of the HTTP message.

Each JWS is the following JSON structure:

Element Type Condition Description

protected String Mandatory Base64URL encoded JWS Protected Header.

BASE64URL(JWS Protected Header)

header String Optional Content of the JWS Unprotected Header.

signature String Mandatory Base64URL encoded JWS Signature.

BASE64URL(JWS Signature)

Table 4: JSON structure of a JWS

JWS Protected Header

The JWS Protected Header is mandatory, i.e. the element protected shall be part of the JWS.

It shall contain at least the following sub elements:

Element Type Condition Description

alg String Mandatory Identifier of the algorithm used for the creation of

the signature according to [RFC7518].

Examples: RS256, PS256

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 7

 (ref. License Notice for full license conditions)

Element Type Condition Description

x5c String {Or The "x5c" (X.509 certificate chain) Header

Parameter contains the X.509 public key certificate

or certificate chain corresponding to the key used to

generate the signature. The certificate or certificate

chain is represented as a JSON array of certificate

value strings. Each string in the array is a base64-

encoded (not base64url-encoded) DER PKIX

certificate value. The certificate containing the

public key corresponding to the key used to

generate the signature MUST be the first certificate.

This MAY be followed by additional certificates, with

each subsequent certificate being the one used to

certify the previous one. The recipient MUST

validate the certificate chain according to RFC 5280

and consider the certificate or certificate chain to be

invalid if any validation failure occurs.

x5u String Or} The "x5u" (X.509 URL) Header Parameter is a URI

that refers to a resource for the X.509 public key

certificate or certificate chain corresponding to the

key used to generate the signature. The identified

resource MUST provide a representation of the

certificate or certificate chain that conforms to RFC

5280 in PEM-encoded form, with each certificate

delimited as specified in Section 6.1 of RFC 4945.

The certificate containing the public key used to

generate the signature MUST be the first certificate.

This MAY be followed by additional certificates, with

each subsequent certificate being the one used to

certify the previous one. The protocol used to

acquire the resource MUST provide integrity

protection; an HTTP GET request to retrieve the

certificate MUST use TLS; and the identity of the

server MUST be validated, as per Section 6 of RFC

6125.

Table 5: JSON structure of a JWS Protected Header

Remarks:

• The ASPSP can mandate algorithms to be supported for the creation of a

signature.

• One of the elements x5u or x5c shall be contained in the JWS Protected Header.

• The ASPSP may define further restriction for the content of the elements x5u and

x5c. For example, the ASPSP may require that the element x5c is contained and

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 8

 (ref. License Notice for full license conditions)

that this element contains only the certificate itself but not the complete certificate

chain.

• Further elements defined in section 5.1 and 5.2 of [ETSI TS 119 182-1] may be

included. The ASPSP may define additional requirement on these elements, i.e.

that an element shall be included or that an element shall not be included.

• All additional requirements defined by the ASPSP have to be described by the

ASPSP specific documentation.

JWS Unprotected Header

The JWS Unprotected Header is optional, i.e. the element header may be missing. If the

element header exists in the JWS, it shall contain only one sub element etsiU according to

section 5.3.1 of [ETSI TS 119 182-1].

If a signature A has to be secured by another signature B, i.e. a counter signature according

to [ETSI TS 119 182-1], the JWS representing the counter signature B shall be enclosed in

the unprotected header of the JWS representing the signature A. In this case the sub element

etsiU of the element header (containing the JWS unprotected header) shall contain the

element sigC containing the JWS representing the counter signature.

JWS Signature

The signature is calculated over the string

ASCII(BASE64URL(UTF8(JWS Protected Header)) || ’.’ || BASE64URL(JWS Payload))

using the private key corresponding to the certificate contained in the element x5c or

referenced by the URI contained in x5u using the algorithm identified by the element alg.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 9

 (ref. License Notice for full license conditions)

2.3 Signing the body using XAdES

Remark: This section is already contained in [oFA-ProtSec] as section 7.1.3 without any

changes.

The profile XAdES can be used to sign the body of a message regardless of the coding of the

content. Nevertheless, in the following only the case of an XML coded body is considered.

ETSI European Norm [ETSI EN 319 132-1] and [W3C XMLSig] will be used for the XAdES

profile. Note that for the XML Signature Syntax and Processing also a newer version exists

[W3C XMLSig V2], but for compliance reasons with the European Norm version 1.1 as defined

by [W3C XMLSig] is used.

The body of the message will be replaced by an XML document representing the signed body

as follows:

Unsigned body:

<any_tag> body data to be signed </any_tag>

Signed body:

<SignedBody>

 <Object Id="ID_bodyToBeSigned">

 <any_tag> body data to be signed </any_tag>

 </Object>

 <Object>

 <Manifest Id="ID_manifest"> … </Manifest>

 </Object>

 </Signature Id="ID_signature_1"> … </Signature>

 …

 </Signature Id="ID_signature_n"> … </Signature>

</SignedBody>

Table 6: Elements of a signed XML message body.

Namespaces have to be included as described by [ETSI EN 319 132-1] and [W3C XMLSig].

Only detached signatures signing local data are used, i.e. the data to be signed is contained

in a sibling element. The data to be signed can be protected by n signatures (with n >= 1).

Note that these are independent signatures and not counter signatures. If one signature has

to be protected by another signatures, counter signatures as described in section 5.2.7 of

[ETSI EN 319 132-1] shall be used.

The manifest is introduced to increase efficiency for the generation and verification of the

signatures. The hash value over the body data to be signed has to be calculated only once

and not separately for each signature.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 10

 (ref. License Notice for full license conditions)

The IDs shown above are only place holders. During creation of the XML document it has to

be taken care that the concrete values used for these IDs do not produce any collisions that

violate the ID uniqueness.

Algorithms

For transformation, canonicalization, hash value calculation and signature creation the

algorithms have to be supported as defined by [ETSI EN 319 132-1]. Out of this set of

algorithms the ASPSP can mandate algorithm to be used.

Element Manifest

The element Manifest has got the following content:

<Manifest Id="ID_manifest>

 <Reference URI="#ID_bodyToBeSigned">

 <Transforms>

 <Transform Algorithm="URI_TransformAlgorithm"/>

 </Transforms>

 <DigestMethod Algorithm="URI_HashAlgorithm"/>

 <DigestValue> base64 coded hash value </DigestValue>

 </Reference

</Manifest>

Table 7: Content of the element Manifest.

This manifest contains only the digest value for the body to be signed. It will be referenced in

each element containing a signature. This manifest is only created once regardless how many

signatures will be generated to protect the body. Also, during verification of the signatures, the

content of this manifest is only created once.

Element Signature

An element Signature containing a single signature protecting the body has got the following

content:

<Signature Id="ID_signature_k">

 <SignedInfo> … </SignedInfo>

 <SignatureValue>

 base64 coded signature value

 </SignatureValue>

 <KeyInfo> … </KeyInfo>

 <Object>

 <QualifyingProperties>

 <SignedProperties Id="ID_signedProp_k"> …

 </SignedProperties>

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 11

 (ref. License Notice for full license conditions)

 <UnsignedProperties> … </UnsignedProperties>

 </QualifiedProperties>

 </Object>

</Signature>

Table 8: Content of a single signature element

Element QualifyingProperties

The Element QualifyingProperties contains the signed and not signed properties of the data

to be signed and of the signature according to [ETSI EN 319 132-1]. The element

SignedProperties will be referenced in the element SignedInfo and by this protected by the

signature contained in the element SignatureValue.

The signature has to be compliant at least with XAdES baseline signatures of level B-B defined

in section 6 of [ETSI EN 319 132-1]. For this reason, the element SignedProperties may not

be empty (see section 6.3 of [ETSI EN 319 132-1]). It has got the following sub elements:

<SignedProperties Id="ID_signedProp_k">

 <SignedSignatureProperties> …

 </SignedSignatureProperties>

 <SignedDataObjectProperties> …

 </SignedDataObjectProperties>

</SignedProperties>

Table 9: Content of the element SignedProperties

The element SignedSignatureProperties has to contain at least the following sub elements:

• SigningTime (see section 5.2.1 of [ETSI EN 319 132-1]).

• SigningCertificateV2 (see section 5.2.2 of [ETSI EN 319 132-1]).

The element SignedDataObjectProperties hat to contain at least the following sub elements:

• DataObjectFormat (see section 5.2.4 of [ETSI EN 319 132-1]) containing at least

the MIME type indicating the format of the body data to be signed.

The element UnsignedProperties may be empty. If it is empty it is missing. Empty elements

are not allowed according to [ETSI EN 319 132-1].

An ASPSP can mandate higher levels defined by section 6 of [ETSI EN 319 132-1] depending

on the nature of the service.

Element SignedInfo

The element SignedInfo contains the information which data is signed (data of the unsigned

body and the signed properties) and how the signature has to be created. It has got the

following content:

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 12

 (ref. License Notice for full license conditions)

<SignedInfo>

 <CanonicalizationMethod Algorithm= URI_CanoniAlgorithm/>

 <SignatureMethod Algorithm="URI_SignatureAlgorithm"/>

 <Reference URI="#ID_bodyToBeSigned">

 Type="http://www.w3.org/2000/09/xmldsig#Manifest">

 <Transforms>

 <Transform Algorithm="URI_TransformAlgorithm"/>

 </Transforms>

 <DigestMethod Algorithm="URI_HashAlgorithm"/>

 <DigestValue> base64 coded hash value </DigestValue>

 </Reference>

 <Reference URI="#ID_signedProp_k"

 <Transforms>

 <Transform Algorithm="URI_TransformAlgorithm"/>

 </Transforms>

 <DigestMethod Algorithm="URI_HashAlgorithm"/>

 <DigestValue> base64 coded hash value </DigestValue>

 </Reference>

</SignedInfo>

Table 10: Content of the element SignedInfo

Element KeyInfo

The element KeyInfo contains information about the key needed for the verification of the

signature. According to section 6.3 of [ETSI EN 319 132-1]

• it shall contain at least the signing certificate, i.e. the X.509 certificate belonging to

the public key needed for the verification of the signature, and

• it should contain all certificates not already available to the relying party needed

to verify the signing certificate.

The element has got at least the following content:

<KeyInfo>

 <X509Data>

 <X509Certificate>

 base64 coded X.509 signer certificate

 </X509Certificate>

 </X509Data>

</KeyInfo>

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 13

 (ref. License Notice for full license conditions)

Table 11: Content of the element KeyInfo

The sub element X509Data may contain more than one certificate building a path from the

signer certificate to a root certificate or to a CA contained in a trusted list.

2.4 Signing the body using EMV_AC

Remark: This section is already contained in [oFA-ProtSec] as section 7.1.4 without any

changes.

Not supported for the current version of the openFinance Framework. Support will be added

as part of future versions.

DRAFT

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 14

 (ref. License Notice for full license conditions)

3 References

3.1 Documents of the NextGenPSD2 XS2A Framework

 [XS2A-SecB] NextGenPSD2 XS2A Framework, Security Bulletin, Version 1.1, 30 October

2020

3.2 Documents of the openFinance API Framework

[oFA-OR-ADM] openFinance API Framework, Operational Rules for Administrative

Service, Version 0.9, published for market consultation 26 May 2021

[oFA-PDM-V2] openFinance API Framework, Payment Data Model for Version 2.x,

version 1.0, 24 September 2021

[oFA DD] openFinance API Framework, Data Dictionary for V2.x, Draft 5 April 2023

[oFA-ProtSec] openFinance API Framework, Implementation Guidelines, Protocol Functions

and Security Measures, in preparation

3.3 Further documents

[eIDAS] Regulation (EU) No 910/2014 of the European Parliament and of the Council

on Electronic Identification and Trust Services for Electronic Transactions in the

Internal Market, 23 July 2014, published 28 August 2014

[ETSI EN 319 132-1] ETSI European Standard, Electronic Signatures and Infrastructures

(ESI); XAdES digital signatures; Part 1: Building blocks and XAdES baseline

signatures, V1.1.1 (2016-04)

[ETSI TS 119 182-1] ETSI Technical Specification, Electronic Signatures and Infrastructures

(ESI); JAdES digital signatures; Part 1: Building blocks and JAdES baseline

signatures, V1.2.1 (2022-02)

[ETSI TS 119 495] ETSI Technical Specification, Electronic Signatures and Infrastructures

(ESI); Sector Specific Requirements; Certificate Profiles and TSP Policy

Requirements for Open Banking, V1.5.1 (2021-04)

[RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP", RFC 3230, DOI

10.17487/RFC3230, January 2002,https://www.rfc-editor.org/info/rfc3230

[RFC7515] Jones, Bradley, Sakimura, "JSON Web Signatures (JWS)", May 2015,

https://datatracker.ietf.org/doc/rfc7515/

[RFC7518] Jones, "JSON Web Algorithms (JWA)", May 2015,

https://datatracker.ietf.org/doc/rfc7518/

[RFC 7797] Jones, "JSON Web Signature (JWS) Unencoded Payload Option", February

2016, https://datatracker.ietf.org/doc/rfc7797/

DRAFT

https://www.rfc-editor.org/info/rfc3230
https://datatracker.ietf.org/doc/rfc7515/
https://datatracker.ietf.org/doc/rfc7518/
https://datatracker.ietf.org/doc/rfc7797/

Security Measures supported by XS2A and openFinance API

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 15

 (ref. License Notice for full license conditions)

 [W3C XMLSig] W3C Recommendation: "XML Signature and Processing",

Version 1.1, 11 April 2013

[W3C XMLSig V2] W3C Recommendation: "XML Signature and Processing",

Version 2.0, 23 July 2015

DRAFT

