
Virtual Machine & Optimization Laboratory

Department of Electrical and Computer Engineering

Seoul National University

Hyuk Jin Jeong

Seoul National University

Seamless Offloading of Web App

Computations From Mobile Device to Edge

Clouds via HTML5 Web Worker Migration

2
Virtual Machine & Optimization Laboratory

Mobile clients have limited hardware resources

Require computation offloading to servers

E.g., cloud gaming or cloud ML services for mobile

Traditional cloud servers are located far from clients

Suffer from high latency

Computation Offloading

End device
Cloud data center

60~70 ms
(RTT from our lab

to the closest

Google Cloud DC)

Latency<50 ms
is preferred

for time-critical games
[Kjetil Raaen, NIK 2014]

3
Virtual Machine & Optimization Laboratory

Edge servers are located at the edge of the network
Provide ultra low (~a few ms) latency

Edge Cloud

Edge

Clouds

Mobile

Device Cloud
Small cellsWiFi APs

Central Clouds

What if a user moves?

4
Virtual Machine & Optimization Laboratory

How to seamlessly provide a service when a user moves to a

different server?

Resume the service at the new server

What if execution state (e.g., game data) remains on the previous server?

This is a challenging problem

Edge computing community has struggled to solve it

• VM Handoff [Ha et al. SEC’ 17], Container Migration [Lele Ma et al. SEC’ 17], Serverless Edge

Computing [Claudio Cicconetti et al. PerCom’ 19]

We propose a new approach for web apps based on app

migration techniques

A Major Issue: User Mobility

5
Virtual Machine & Optimization Laboratory

Motivation

Proposed system

WebAssembly migration

Evaluation

Outline

MOTIVATION

7
Virtual Machine & Optimization Laboratory

Apps running on a web browser

Widely used in mobile devices due to portability

• E.g., WebView in Android and iOS, Tizen, LG WebOS

Program logics are written in JavaScript or WebAssembly (wasm)

• wasm: low-level instructions for web

Web app threads

Main thread: User interaction

Web worker: Long-running jobs

Background: Web Apps

Main

Thread

Web

Worker

User

interaction

Long-running job

Result

8
Virtual Machine & Optimization Laboratory

Example: Physics Engine App

Web app simulating 3D cubes falling from the air

9
Virtual Machine & Optimization Laboratory

Web app simulating 3D cubes falling from the air

Example: Physics Engine App

Main

Thread

Web

Worker

Initialize

Updated locations

ID x y z

1 13.4 44.1 99.1

2 52.6 79.5 10.5

… … … …

Display

Calculate

next

locations

Cube locations

10
Virtual Machine & Optimization Laboratory

We ran the app on the server and the client and measured FPS

Client: Odroid XU4 (ARM CPU 2.0 GHz, 2GB memory)

Server: Desktop PC (x86 CPU 3.6 GHz, 16 GB memory)

Example: Physics Engine App

Display

0

30

60

50 100 200 500 1000F
ra

m
e
s

 p
e
r

s
e

c
o

n
d

(F

P
S

)

Number of cubes

Client (js) Client (wasm) Server (js) Server (wasm)

FPS needed for

smooth motion

Needs

offloading

Wasm is

faster than JS

1. Wasm is faster than JS (20~30%)

2. Even with wasm, client-only is not enough when # of cubes ≥ 500

Observations

Higher is better

11
Virtual Machine & Optimization Laboratory

Web app simulating 3D cubes falling from the air

Example: Physics Engine App

Main

Thread

Web

WorkerUpdated locations

ID x y z

1 13.4 44.1 99.1

2 52.6 79.5 10.5

… … … …

Display

Calculate

next

locations

Cube locations

(state)

Computation-intensive

Initialize

→ Do this on the server

12
Virtual Machine & Optimization Laboratory

Motivation: Mobile Scenario

Main

Thread

Move
Main

Thread

Edge server

(A) Edge server

(B)

Web

Worker

Cube locations

(state)
ID x y z

1 1 2 3

2 4 5 6

… … … …

13
Virtual Machine & Optimization Laboratory

Motivation: Mobile Scenario

How to continue service at the new edge server by

seamlessly migrating previous edge’s state?

Main

Thread

Web

Worker

Cube locations

(state)
ID x y z

1 1 2 3

2 4 5 6

… … … …

Move
Main

Thread

Edge server

(A) Edge server

(B)

14
Virtual Machine & Optimization Laboratory

Previous Approach (1): VM Handoff [Ha et al. SEC 2017]

Edge server (A)

Move

Edge server (B)

VM VM

Live VM

migration

VM state

(memory, disk)

15
Virtual Machine & Optimization Laboratory

Previous Approach (1): VM Handoff [Ha et al. SEC 2017]

Edge server (A)

Move

Edge server (B)

VM VM

Issue

Live VM migration is heavy (due to a large base system)

• ~8 sec to migrate a Node.js instance

Live VM

migration

VM state

(memory, disk)

16
Virtual Machine & Optimization Laboratory

Previous Approach (2): Serverless computing
[Cicconetti et al. PerCom 2019]

Container

(running stateless code)

Edge server (A) Edge server (B)

Container

(running stateless code)

Move

Launch a

new container

17
Virtual Machine & Optimization Laboratory

Previous Approach (2): Serverless computing
[Cicconetti et al. PerCom 2019]

Issue

Effective only for short-lived, stateless jobs

• The worker in our physics app has state (cube locations)

Container

(running stateless code)

Edge server (A) Edge server (B)

Container

(running stateless code)

Move

Launch a

new container

18
Virtual Machine & Optimization Laboratory

We migrate a web worker across client, edge, and cloud

Execution state is automatically migrated in an application level

• No need to migrate base systems (OS or runtime) → Lightweight

Proposed Framework: Mobile Web Worker

Edge server

(A)

: Main thread

: Web worker

Fallback server

(Cloud server)

Edge server

(B)

Web worker continuously

serves a mobile client while

preserving its execution state

ID x y z

1 1 2 3

2 4 5 6

… … … …

App state

19
Virtual Machine & Optimization Laboratory

Mobile Web Worker (MWW) manager controls migration of web

workers and message passing with main thread

Directly captures and restores the web worker state

• No VM-encapsulated black box

Mobile Web Worker System

Web Platform

(Browser)

OS

Client

Edge Server

: Worker migration

: Message channel

Mobile

Worker

Main

Thread

Mobile Web

Worker (MWW)

Manager

Mobile Web

Worker (MWW)

Manager

MWW Pool

Mobile

Worker
…

Cloud

Mobile Web

Worker (MWW)

Manager

MWW Pool

Mobile

Worker
…

Web App

Web Platform

(Node.js)

OS Web Platform

(Node.js)

OS

20
Virtual Machine & Optimization Laboratory

Web worker is a JS program, whose runtime state consists of

JS scopes (variables, JS objects, functions) + events

These can be serialized into another JS code (snapshot) whose

execution restores app state automatically [Oh et al. VEE ‘15] [Kwon et al. WWW ‘17]

On any device equipped with a web platform

How to Migrate Web Worker State?

Save

Restore

Snapshot

Web Worker State

var simulate = function(m) {
…

};
self.addEventListener(“message”, simulate);
…

Global scope

Event

Global Scope

var value

simulate

… …

JS

function

“message”

event

21
Virtual Machine & Optimization Laboratory

Previous snapshot implementation does not properly

migrate

1. Webassembly functions

2. Built-in objects

Issues on Web Worker Snapshot

22
Virtual Machine & Optimization Laboratory

Previous snapshot implementation does not properly

migrate

1. Webassembly functions

2. Built-in objects

Issues on Web Worker Snapshot

WEBASSEMBLY MIGRATION

24
Virtual Machine & Optimization Laboratory

Low-level instruction format for web for high performance

Wasm file is translated from high-level languages (ex: C++, Rust)

Deployed with a web app source code

Dynamically compiled when loaded onto the browser (or JS engine)

• After compilation, wasm function and linear memory are created

Background: WebAssembly (Wasm)

wasm file

Wasm

function

Linear memory

Dynamic

compilationC++,

Rust

Translation
+

25
Virtual Machine & Optimization Laboratory

Wasm is difficult to serialize, because

(1) Wasm file is compiled into machine code when loaded

Compiled machine code may not run on different architecture

(2) Wasm maintains a large memory (linear memory)

Serious transmission and recovery overhead

Challenges on Wasm Migration

wasm file

Dynamic

compilation

(1) may not run on different architecture

Wasm

function

Linear memory

machine code

(2) long transmission time

(~tens of MB)

26
Virtual Machine & Optimization Laboratory

Send a wasm file along with the code that compiles it

Linear memory is asynchronously transmitted and lazily restored

Proposed Method for Wasm Migration

+
…
compile(“foo.wasm”);
…

foo.wasm

snapshot.js

Wasm

function

Linear

memory

27
Virtual Machine & Optimization Laboratory

Send a wasm file along with the code that compiles it

Linear memory is asynchronously transmitted and lazily restored

Proposed Method for Wasm Migration

+
…
compile(“foo.wasm”);
…

foo.wasm

snapshot.js

Compile wasm file

Wasm

function

Linear

memory

Wasm

function

0-valued

memory

28
Virtual Machine & Optimization Laboratory

Send a wasm file along with the code that compiles it

Linear memory is asynchronously transmitted and lazily restored

Proposed Method for Wasm Migration

+
…
compile(“foo.wasm”);
…

foo.wasm

snapshot.js

Compile wasm file

Wait

Wasm

function

Linear

memory

Wasm

function

0-valued

memory

29
Virtual Machine & Optimization Laboratory

Send a wasm file along with the code that compiles it

Linear memory is asynchronously transmitted and lazily restored

Proposed Method for Wasm Migration

+
…
compile(“foo.wasm”);
…

foo.wasm

snapshot.js

Compile wasm file

Wait

Copy linear memory

Wasm

function

Linear

memory

Wasm

function

Linear

memory

Wasm

function

0-valued

memory

EVALUATION

31
Virtual Machine & Optimization Laboratory

Evaluation Environment

Edge Server Edge Server

Handoff

Cloud server
Fallback

Uplink: 42 Mbps

Downlink: 118 Mbps

Service Area

Offload
Uplink: 10 Mbps

Downlink: 36 Mbps

Client: Odroid XU4 (ARM 2-core CPU 2.0 GHz and 2 GB Memory) with chromium

Edge server: PC (x86 4-core CPU 3.6 GHz and 16~32 GB Memory) with Node.js

Cloud server: Google cloud (8 vCPU 2.0 GHz and 32 GB memory) with Node.js

Network: Average internet speed of US in April 2019 (mobile network, fixed

broadband)

32
Virtual Machine & Optimization Laboratory

Test Applications

1. Physics simulation (ammo.js)

2. Face detection (OpenCV.js)

3. Blur filter (web-dsp)

33
Virtual Machine & Optimization Laboratory

Migrating a web worker was significantly faster than migrating a

Node.js VM instance

Web worker migration does not need migration of base system

Mobile-to-edge took a long time for migration, due to

low mobile network speed, slow mobile device

But, it may happen infrequently

Web Worker Migration Time

Migration

time

VM migration Web Worker Migration

Node.js

instance

physics

simulation

face

detection

blur

filter

mobile to

edge
18.2 3.1 11.9 0.39

edge to

edge
7.9 1.0 3.8 0.15

edge to

cloud
7.7 1.5 4.1 0.22

Unit: Second

34
Virtual Machine & Optimization Laboratory

Offloading of wasm code significantly improved app performance

Achieved 37 FPS in physic app

Achieved 2.6x speedup in face app, and 1.4x in filter app

• Low speedup in filter app is due to sending input/output images

App Execution Performance

19

37

60

0

20

40

60

local offload server

F
P

S

Physics

203

79
51

0

50

100

150

200

250

local offload server

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s
)

Face detection

212

154

26

0

50

100

150

200

250

local offload server

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

Blur filter

Higher is better Lower is better

35
Virtual Machine & Optimization Laboratory

We proposed a lightweight, state-preserving edge computing

framework for web apps

The system migrates web worker using snapshot

Experiment showed promising results in both migration time

and app performance

Conclusion

THANK YOU

Q & A

