
EDGE APPLICATIONS:
DEVELOPMENT OF STANDARDS SUPPORTING AN
OPEN EDGE COMPUTING ECOSYSTEM

Michael McCool

Principal Engineer, Intel
W3C Web of Things WG Co-chair

2

OUTLINE

● Motivation
Ø Top-Down vs. Bottom-Up Deployment Models
Ø Use Cases
Ø Definition and Goals

● Possible Technical Approaches
Ø Discovery
Ø Compute Service Offload
Ø Orchestration Service Installation and Management

3

OUTLINE

● Motivation
Ø Top-Down vs. Bottom-Up Deployment Models
Ø Use Cases
Ø Definition and Goals

● Possible Technical Approaches
Ø Discovery
Ø Compute Service Offload
Ø Orchestration Service Installation and Management

4

Edge Computing: Top-DOWN VS. Bottom-UP Deployment
1. Extend Cloud Computing Down
• Services managed by provider

• General execution environment

• “DevOps”: based on containers

2. Extend Web Computing Up

• Apps accessed by user via links

• Specialized execution environment

• “FaaS”: based on functions (typ. “scripts”)

Complementary

• 1 is the foundation for 2

Edge Compute Node

Execution Environment

FaaS: Script

DevOps: Container

Cloud: Server

Client: Browser

5

USE CASES for User-CENTRIC (Bottom-UP) Deployment
Smart Retail
• Small business owners self-

managing technology (1)
• Large retail franchises deploying

applications for use on employees’
own devices (BYOD context)

Smart City
• 40% of smart city use cases

require multivendor solutions (2,3)
• Cities need to develop third-party

app ecosystem to best provide
value to citizens

https://www.conexxus.org/
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://machinaresearch.com/news/smart-cities-could-waste-usd341-billion-by-2025-on-non-standardized-iot-deployments/

6

GOALS

Primary:
• Define “compute utilities” supporting client-managed “edge worker” services

• Allow clients to offload compute to “nearby” compute utility infrastructure

• Allow clients to manage distributed IoT orchestration

Secondary:

• Support secure, monetized, differentiated (e.g. accelerated) edge computing services

• Support development of a third-party application ecosystem

• Extend web programming to simplify development and deployment of applications

• Allow clients (users) to easily and dynamically find compute utilities (discovery)

7

TARGET Capabilities and THEIR REQUIREMENTS
Capability 1: Compute Offload
• Allow browser-based applications, small IoT devices, and client computers

access to accelerated compute utility
• Compute utility may be on-board (device), local (edge), or remote (cloud)
Ø Requirement: Access to accelerated computing (GPU, FPGA, NN-ASIC, etc)
Capability 2: IoT Orchestration
• Install programmed orchestration function for derived IoT services
Ø Requirement: Access to local network and IoT devices
Ø Requirement: Persistent installation and event-driven execution

Other General Requirements
Ø Privacy: Trusted information and metadata management
Ø Security: Integrity, confidentiality, access control, authentication
Ø Discovery: Local and remote, devices and services, open but protected
Ø Management: Installation, cancellation, monitoring, payment

8

Edge COMPUTING And IOT ORCHESTRATION
Better Together!
• Compute Offload (by itself) lacks access to sensors and actuators

… interesting applications use data to make decisions and take actions
• IoT Orchestration (by itself) lacks capability to make complex decisions

… complex decisions need compute-intensive analytics

IoT orchestration + Edge Computing have many applications
• Security: motion sensor, camera, person detection
• Inventory: door open sensor, product identification
• Logistics: location tracking, 3D scanning, camera, path planning
• Energy: temp sensor, heater control, person detection, machine learning
• Marketing: door sensor, proximity sensor, camera, sentiment analysis
• Cleaning: robot vacuum cleaner, obstacle classification, path planning

9

OUTLINE

● Motivation
Ø Top-Down vs. Bottom-Up Deployment Models
Ø Use Cases
Ø Definition and Goals

● Possible Technical Approaches
Ø Discovery
Ø Compute Service Offload
Ø Orchestration Service Installation and Management

10

SUMMARY OF PROPOSED TECHNICAL STANDARDS STRATEGY
Extend PWAs, Service Workers, and Web Workers
• Web Workers extended to “Edge Workers”, supporting remote install on

compute utilities, persistent lifetimes, event-driven execution, accelerated
computing (e.g. via WebNN, TensorFlow.js, etc.), and to the local network for
IoT orchestration

• PWAs/Service Workers extended to “Edge Apps”, supporting management
lifecycle and remote “Edge Worker” components on compute utilities

• Use of WASM to package Edge App components offloaded to compute
utilities.

Extend Web of Things
• Extend WoT Discovery (WIP) to also apply to compute utilities
• Support IoT orchestration via WoT Scripting API (WIP) in Edge Workers
New Standards Development
• Standardized Management API for compute utilities

Directory Node

11

DISCOVERY Process (OPTIONAL; WOT)

Directory Service

Client

1. Register: Services and Devices register with
Directory as part of onboarding process

2. Introduction: Introduction Protocol is used
to discover address of directory services.

• Address may be local or remote
• More than one first contact protocol

may be used
• Location-based search support

3. Access Control: Client authenticates with
one or more authorized directory services
• Via standard method, e.g. OAuth2

4. Exploration: Client executes query on
directory service and retrieves metadata
describing available services.
• Metadata in form of WoT TDs
• Semantic search support possible

5. Use: Client accesses services.

�

�

�

Compute Utility Node

Device Node

Compute Service

Device Service

Introduction Protocol �

�

Client: Browser

12

EXISTING: COMPUTE OFFLOAD VIA Web Workers

Web Worker Thread

Web Worker

Server

Script

1. Fetch script and worker package from server
2. Create web worker and offload worker script.
3. Worker instantiated on separate thread inside client, runs in parallel with main thread
4. Main thread communicates with instantiated worker service to retrieve results

Worker Script

�

�

�

�

Compute Utility Node

13

PROPOSED: COMPUTE OFFLOAD VIA EDGE WORKERS

Management Service

Accelerator

Accelerated Computation

Directory Service

Edge Worker

Acceleration API

Server

Client: Browser

Script (PWA/Edge App)

1. Download script and package from server
2. Optional: Search for available compute utility

using discovery mechanism
(Alternative: use prespecified compute utility)

3. Instantiate remote edge worker by installing
package using management service API

4. Communicate with instantiated worker service
via socket, and then to accelerator via API.

Package (e.g. WASM, script)

�
�

�

�

Compute Utility Node

Edge Worker

IoT Orchestration API

14

PROPOSED: IoT ORCHESTRATION VIA EDGE WORKERS (and PWAS/EDGE APPS)

Management Service

Directory Service

Server

Client: Browser

Script (PWA/Edge App)

1. Download script and package from server
2. Optional: Search for available compute utility

using discovery mechanism
(Alternative: use prespecified compute utility)

3. Instantiate remote edge worker by installing
package using management service API

4. Communicate with instantiated worker service
via socket, and then to IoT devices via API.

Package (e.g. WASM, script)

�
�

�

�

IoT Device 1 IoT Device 2

Compute Utility Node

15

MULTIPLE APIS ACCESSED FROM EDGE WORKERS

Management Service

Directory Service

Edge Worker

IoT Orchestration API

IoT Device

Accelerator

Accelerated Computation

Acceleration APIStorage API

Database

16

REQUIRED STANDARDS DEVELOPMENT
Management API (network and scripting) to Instantiate Workers
• API for a compute service that allows installation of a packaged worker
Packaging and Worker Management
• Worker encapsulation that allows installation in a sandboxed and isolated

environment with all their dependencies and suitable (but controlled) access to
other services. Options: WASM, scripts, containers.

APIs for Compute Acceleration (e.g. WebNN) and IoT Device Access (e.g. WoT)
• Orchestration services need to access other IoT devices
• Compute services need access to accelerated compute capabilities
• Installation of edge workers should be possible from browser and web

application contexts, e.g. as extension of PWAs and/or web workers
Optional: Discovery (network and scripting API)
• Find a compute utility that can host a worker (requirements-based search)
• Can be an extension/application of WoT Discovery process

