
W3C Music Notation 
Community Group Meeting

Musikmesse Frankfurt
8 April 2016



Agenda
● SMuFL 1.2 update
● MusicXML 3.1 update
● Stories, requirements, and technical considerations
● Reception at 16:30 sponsored by Newzik



SMuFL 1.2 update
W3C Music Notation Community Meeting

2016-04-08





SMuFL 1.2 status
– Currently 30 issues in scope

– 23 are (largely uncontroversial) proposals for new characters and/or ranges

– 3 (#7, #8, #9) recommend changes in form to existing characters

– 2 (#20, #28) are proposals for stylistic alternates for existing characters

– 1 (#36) is a proposal for extending metadata for cut-outs to include noteheads

– 1 (#38) is some housekeeping to convert to the appropriate W3C license

– Expect to complete this work no later than end of Q3 2016



MusicXML 3.1 Update
W3C Music Notation Community Meeting

2016-04-08



MusicXML 3.1 Overview
● An incremental update to maintain application compatibility 

while we work on longer-range issues
● Focused on

○ Support for SMuFL font symbols
○ Documentation and other bug fixes
○ Small set of additional new features and updates

● Expect to complete no later than end of Q3 2016





MusicXML 3.1 Status
● Currently 37 open issues in scope

○ SMuFL symbol support (28 open issues)
○ Documentation and other bug fixes (3 open issues + 9 closed)
○ Small set of additional new features / updates (6 open issues)

● Development plan
○ Propose an implementation as a GitHub comment
○ Discuss on GitHub
○ Pull request to merge the actual changes into the schemas
○ Please respond soon to proposals; we want to move quickly



Stories, Requirements, and 
Technical Considerations
W3C Music Notation Community Meeting

2016-04-08



Topics
● User Stories
● Document Content Types - common Western music notation + ???
● Conflicts in Capture, Representation and Rendering
● Encoding Profiles
● Requirements Matrix
● Architectural Demo: Document-Based Development
● Architectural Recommendations



User Stories
● We now have 70+ User Stories (narrative use cases)
● Many evolved from shorthand descriptions into short narratives
● Multiple contributors
● How is this process working?
● How complete is it?



● No constraints on semantics => semantic interpretation is hard
● Common Music Notation (whatever that means!) is a core type
● Guitar Tablature and Chord/Lyric Sheets have cultural currency
● Neumes and Mensural Notation imply fuzzier semantics
● Open-ended graphical notation best suited by a graphical standard, 

not a semantic one
● We do not need to represent every work in the compositional canon

Document Content Types



● Many stories reflect a need to capture what is “actually there” in a document
● Capturing what is “actually there” means omitting what is not there
● Conclusion: faithful capture implies documents that are semantically...

○ inconsistent
○ incomplete
○ ambiguous

● Many other stories reflect a need to accurately and flexibly render notation
● Accurate rendering implies semantic consistency, completeness, specificity
● Some rendering stories are based on encoding a score’s “original 

geometry”; others must dynamically cook up a fresh layout.
● How do we reconcile these conflicts?
● Do we reconcile these conflicts?

Conflicts in Capture, Representation and Rendering



Encoding Profiles
● An encoding profile is a set of guarantees made by documents that 

conform to it
● Profiles reflect “encoding intent”
● A profile is a set of constraints, not just a subset of the schema
● Standardized profiles can solve many portability problems
● Corollary: ad hoc profiles create many portability problems :)
● “Loose” profiles are appropriate for archival capture
● “Tight” profiles are appropriate for rendering and semantic 

manipulation
● New features can be soft-launched by not adding to profiles



Requirements Matrix
● Initial attempt to derive and categorize requirements
● Traceable back to user stories
● About 50 requirements so far
● Many require a great deal of elucidation and further work



Architectural Live Demo:

Discover Your Roots
(Notation DOM example)



● Define/Adopt Encoding Profiles
○ Cake: it’s good to eat and good to have!

● Gear Encoding towards a DOM Approach
○ We need much more than an interchange and archival format

● Standardize Key Aspects of Layout and Performance Rendering
○ Give content creators and publishers meaningful, yet optional control

● Use CSS for Visual and Performance Facets
○ Styles run the gamut from general to specific
○ Different styles are appropriate to different contexts
○ CSS is a best-in-class answer to these needs

Architectural Recommendations


