
1. Introduction 

1.1. Peers. Datasources. 
A Peer is a repository of semantic data, information and knowledge. It performs loading plain 
RDF triples from enabled datasources and interacting with other Peers sharing knowledge. 
Datasources have ‘drivers’ which enables them via an events mechanism to keep in sync with 
Peer’s operation. Lastly, Peers offer a set of APIs & ports to many protocols exposing internal 
(augmented) knowledge. 
 
Population of Peer’s internal models is done through decomposition and aggregation of input 
triples. Apache Jena models are kept for input sources (provenance) and for aligned models 
(ports). 

1.2. Type inference 
Given the fact the only input a Peer expects is ‘plain’ RDF (no RDFS, no OWL) it’s necessary for 
a given set of input triples to assert some kind of type information for each SPO part of a 
statement. The approach taken here (better explained in sets section below) is to regard, for 
example for a given Subject in a set of statements, the Predicates and Objects of those 
statements as describing a ‘class’ for this kind of Subject maybe shared with other Subjects of 
the same kind. In fact, for a Subject sharing a set of Predicate properties we say it’s of some 
‘class’ and given the value of those properties it is of some ‘metaclass’ being both class and 
metaclass the Kind of the Subject. Same applies for Predicates and Objects being class and 
metaclass the corresponding for their position in a statement. 

1.3. Resources, Sets, Services 

1.3.1. Resources 
Resources extracted from input triples are Subjects, Predicates, Objects, SubjectKinds, 
PredicateKinds, ObjectKinds and Triples. All resources are reified so, for example a Subject in 
the source graph is represented as a resource which have this Subject as its subject part and 
which identifies that Subject across occurrences and contexts with a unique name (for example 
for align & merge purposes) 
 



 

1.3.2. Sets 
Sets representations of Resource (meta) models provide the means for functional query, 
extraction and traversal of entities. Sets population, due Set definition predicates, provides for 
Resource class hierarchy instantiation and Services layer population. Sync and callbacks 
between models. 
 
Models are instances of other (meta) models, initially SPO triples. Given a metamodel, all its 
SPOs are taken as the Subjects of the next model, the Kinds are taken as the Predicates and 
the Triples as the Objects conforming new (Set) triples from which to infer new Kinds. 
 
In the Sets models diagrams attribute holds for corresponding occurrences Kind’s class and 
value for Kind’s metaclass. 
 
SPO (Initial) Metamodel: 
This model holds initial input data. 



 
 
SCO (Sign, Concept, Object) Metamodel: 
This model aggregates semiotically the SPO Metamodel. 

 
 
Behavior Model: 
This model attempts to aggregate previous concepts in a DCI design pattern like form. 



 

1.3.3. Services 
Services layer provides a functional abstraction over Resources and Sets layers. Basically 
provides mappings between the main three kinds of entities the framework provides: URIs: 
SPOs (Names), Kinds (‘Content’ Types) and Triples (Representations). 
It also provides ‘grammars’ for those mappings being a grammar the representation for a 
Content Type (Kind). Mappings and grammars are encoded as Triples / Quads. A ‘runtime’ or 
environment may be enforced by the use of OWL and an upper ontology in which to align 
resources given their abstract (grammar) structure. 

1.3.3.1. Index 

Index mapping: idx(name: ctx, representation) : type 
Index grammar: 
(Kind : parent) (Kind : name) (Kind : representation) (Kind : type) 

1.3.3.2. Naming 

Naming mapping: nam(representation : ctx, type) : name 
Naming grammar: 
(Kind : parent) (Kind : rep) (Kind : type) (Kind : name) 

1.3.3.3. Registry 

Registry mapping: reg(type : ctx, name) : representation 
Registry grammar: 
(Kind : parent) (Kind : type) (Kind : name) (Kind : representation) 



2. Features 

2.1. Links type / instance inference 
Relationship (links) inference example: X coworker Y (same employer). Develop discover 
algorithms. Infer link types (grammars). Use Kinds, classes, metaclasses (Kinds) relations. 
 
Infer attributes / rels from class (emp, sal, dept, manager) from links. Mgr. is emp's dept. leader. 
 
Infer type by contents: Occurrence having other Kinds in other contexts. Grammar (abstract) 
occurrences of subject, context merge. Sort Kinds: Grammar hiers (parent). Adult - CanDrive. 
Employee must be Person & Student. 

2.2. Type grammar inference 
Discover primitives (metamodels). Aggregate Kinds and Kinds of class / metaclass. TBD. 

2.3. Align & merge of ontologies 
Similarity from grammar equivalence (equivalent grammar graphs). TBD. 

2.4. Ordering of triples & events 
Triple context (Quad context) holds temporal relationships in metamodels. Query for specific 
time range, specified interval (bounds) may fire ‘events’. Events may be materialized into 
models. Mappings grammar could specify ‘listeners’ and templates for goals / purposes. 

3. APIs 

3.1. Services REST API 
Service layer provides functionality for seamless implement a REST HATEOAS API directly 
over the model. Roughly, protocol would be like clients requesting, previously potentially 
sending a state set of triples, and retrieving an ‘index’ triple(s) Services representation. Then 
client chooses a triple and a name in that triple to submit. Then it obtains a type (Kind) for that 
name in that context and given this Kind it can query for further properties and retrieve them 
again in the form of new triples. 
 
Client(triples) - Server(Triples) 
Client(name) - Server(type rep.) 
Client(type name) - Server(triples) 



3.2. Functional (Dimensional) API 
Functional (monads) interface for uniform Resource operations. Query, filter, traversal, 
predicates, assertions. TBD. 

3.3. Ports 

3.3.1. RDF(S) / OWL 

3.3.2. SPARQL 

3.3.3. OData 

3.3.4. SOAP 

3.3.5. Solid 

3.4.6.Activation Bundles (DOM Model) 
ORM + Services like bindings for specific platforms. Export bundles (JAR files? JS?) with 
concrete APIs. TBD. 

4. Lab 

4.1. Encoding & addressing 

4.2. Octal order rel. encoding 

4.3. Node, containers 

5. Application 

5.1. Dashboard example 
Services Dashboard matrix 
X Axis: Names (SPO URIs) : DCI Data 
Y Axis: Representations (Triples) : DCI Context 
Points: Content Types (Kinds) : DCI Interaction 
 
Tool for analysis, discovery & mining. Develop views through the use of facets. TBD. 



 


