
1

22 Jun 2022

W3C MiniApp CG Monthly Meeting

MINIAPP COMPONENTS

2

Background

MINIAPP COMPONENTS

3

MiniApp pages and components

4

• Component is an extensible and reusable high-level building block to create MiniApps

> Based on HTML-like elements (e.g., <div>, <image>, <text>,…)

> Supporting events specific (e.g, click, swipe…)

> Supporting a subset of CSS

> Components support data binding, like text interpolation.

• Concept similar to Web Components

> Custom HTML Elements

> HTML modules

> HTML Templates

> Shadow DOM

> CSS

• Note: MiniApp uses Virtual DOM

MiniApp components

lego by jon trillana from the Noun Project

5

Attribute Type Standard equivalency Compliant?

id string id attribute may be specified on any HTML element YES

style string style attribute may be specified on any HTML element YES

class string class attribute may be specified on any HTML element YES

MiniApp elements: common attributes

Difference with standard approach:

• None. All these basic attributes are similar (semantics and function) to the HTML element’s

attributes.

Proposed solution based on standards:

• Adoption of HTML standard element MiniApp elements to implement the Element interface

• In this case, MiniApp elements would be compatible with the standard HTML elements

https://html.spec.whatwg.org/multipage/dom.html#the-id-attribute
https://html.spec.whatwg.org/multipage/infrastructure.html#html-elements
https://html.spec.whatwg.org/multipage/dom.html#the-style-attribute
https://html.spec.whatwg.org/multipage/dom.html#the-style-attribute
https://html.spec.whatwg.org/multipage/dom.html#classes
https://html.spec.whatwg.org/multipage/infrastructure.html#html-elements
https://dom.spec.whatwg.org/#interface-element

6

• Reusing the HTMLElement interface, means that any

MiniApp element inherits the standard attributes and

methods (e.g., addEventListener, parentNode,

nextSibling…)

• These elements implement DOM manipulation methods.

• These elements are exposed to the Window interface

Element interface adoption
Implications

https://html.spec.whatwg.org/multipage/window-object.html#window

7

Attribute Interface Similar DOM Standard Events Compliant?

click BasicEvent Click (PointerEvent) YES

longpress BasicEvent

No equivalent standard (it can be implemented as a CustomEvent)

Can be implemented based on agnostic pointer events + using the Event.timestamp attribute.

(Similar example)

NO

swipe BasicEvent No equivalent standard (it can be created as a CustomEvent) – [Similar example] NO

touchstart TouchEvent pointerdown (PointerEvent) on all HTML elements NO

touchmove TouchEvent pointermove (PointerEvent) on all HTML elements NO

touchcancel TouchEvent pointercancel (PointerEvent) on all HTML elements NO

touchend TouchEvent pointerup (PointerEvent) on all HTML elements NO

MiniApp elements: common events

Difference with standard approach:

• Similar standard approach using W3C DOM standard (PointerEvents)

• Non-standard events (swipe, longpress) can be implemented with existing standards.

Proposed solution based on standards:

• If MiniApp elements are based on HTML standard elements MiniApp elements support the

standard events and can use the existing equivalent.

• Non-standard events could be proposed for standardization within W3C.

https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/pointerevents/#pointerevent-interface
https://dom.spec.whatwg.org/#interface-customevent
https://dom.spec.whatwg.org/#dom-event-timestamp
https://github.com/umanghome/swipe-listener
https://dom.spec.whatwg.org/#interface-customevent
https://github.com/umanghome/swipe-listener
https://w3c.github.io/pointerevents/#the-pointerdown-event
https://w3c.github.io/pointerevents/#pointerevent-interface
https://w3c.github.io/pointerevents/#the-pointermove-event
https://w3c.github.io/pointerevents/#pointerevent-interface
https://w3c.github.io/pointerevents/#the-pointercancel-event
https://w3c.github.io/pointerevents/#pointerevent-interface
https://w3c.github.io/pointerevents/#the-pointerup-event
https://w3c.github.io/pointerevents/#pointerevent-interface

8

Component Additional Attributes Events HTML Similar Standard Approach / Comments

div <div> Constraint of standard attributes and different events

list
scrollend Element event scroll as the standard.

element.scrollHeight - Math.abs(element.scrollTop) === element.clientHeight

list-item

swiper index, loop, vertical change - loop attribute, similar to Media loop attribute. Similar to change.event.

tabs index, vertical, disabled - OpenUI’s issue on tabs for HTML

tab-bar mode -

tab-content scrollable - Standard CSS overflow: scroll

refresh offset, type, refreshing, lasttime, friction, disabled, - No "pull-to-refresh" standard but it could be implemented using CSS overscroll-behavior-y

image src, alt, disabled complete, error element could be used with some changes

progress Type (circular, lineal), percent <progress> Element with (max, value, position, labels) attributes

text <label> (generic element, without semantics, <p>?, <label>?). Similar to SVG’s text.

input type, placeholder…, headericon, disable, focusable change <input> input element (with all types supported), using attribute disabled, no headericon.

button
type, value, icon, waiting <button> button element, attribute disabled, no waiting, no icon. (in OpenUI)

type attribute is for styles instead of functions.

label
target, disable <label> Labelable elements: button, input, meter, output, progress, select, textarea

for instead of target in the standard element.

select disable change <select> select element. Attribute disabled (in OpenUI)

slider min, max, value, disable change <input> input@type=”range” (in OpenUI)

switch checked, showtext, texton, textoff, disable Change - No equivalent. Toggle switch as a checkbox? (in OpenUI)

picker type (text, date, time, datetime, multi-text), disable - input element (date, time, datetime-local) and datalist element (with attribute options).

video muted, src, autoplay, poster, controls prepared, seeked,… <video> video element includes all the MiniApp attributes, some differences in events

canvas <canvas> Equivalent

Form elements have the ‘data’ and ‘focusable’ attribute. The latter is equivalent of tabindex (i.e., <focusable=false> === <tabindex=null>).

MiniApp basic elements
Similar semantics

https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/grouping-content.html#the-ul-element
https://drafts.csswg.org/cssom-view/#scrolling-events
https://html.spec.whatwg.org/multipage/grouping-content.html#the-li-element
https://html.spec.whatwg.org/multipage/media.html#attr-media-loop
https://html.spec.whatwg.org/multipage/indices.html#event-change
https://open-ui.org/components/tabs.research
https://github.com/whatwg/html/issues/1809
https://html.spec.whatwg.org/multipage/embedded-content.html#the-img-element
https://html.spec.whatwg.org/multipage/form-elements.html#the-progress-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-span-element
https://www.w3.org/TR/2018/CR-SVG2-20181004/text.html
https://html.spec.whatwg.org/multipage/input.html#the-input-element
https://html.spec.whatwg.org/multipage/input.html
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#attr-fe-disabled
https://html.spec.whatwg.org/multipage/rendering.html#the-button-element-2
https://html.spec.whatwg.org/multipage/form-elements.html#the-button-element
https://open-ui.org/components/button
https://html.spec.whatwg.org/multipage/forms.html#the-label-element
https://html.spec.whatwg.org/multipage/form-elements.html#the-select-element
https://html.spec.whatwg.org/multipage/form-elements.html#the-select-element
https://open-ui.org/components/select.research
https://html.spec.whatwg.org/multipage/input.htmlrange-state-(type=range)
https://html.spec.whatwg.org/multipage/input.htmlrange-state-(type=range)
https://open-ui.org/components/slider.research
https://open-ui.org/components/switch
https://html.spec.whatwg.org/multipage/input.html
https://html.spec.whatwg.org/multipage/form-elements.html#the-datalist-element
https://html.spec.whatwg.org/multipage/media.html#the-video-element
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://html.spec.whatwg.org/multipage/interaction.html#tabindex-value

9

Component
Equivalent HTML Element

(w/ minor changes)

OpenUI Component

Research
Comments

div <div>

image

video <video>

canvas <canvas>

progress <progress>

input <input>

picker <input type=”date|time”>

slider <input type=”range”>

label <label>

button <button> <button> (research)

select <select> <select> (proposal)

switch <switch> (research)

text Text (research) Like <label>? <p>? but only text

tabs Tabs (research)

list

list-item

swiper (carousel)

refresh

MiniApp basic elements: direct equivalences

https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/embedded-content.html#the-img-element
https://html.spec.whatwg.org/multipage/media.html#the-video-element
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://html.spec.whatwg.org/multipage/form-elements.html#the-progress-element
https://html.spec.whatwg.org/multipage/input.html#the-input-element
https://html.spec.whatwg.org/multipage/input.html#the-input-element
https://html.spec.whatwg.org/multipage/input.html#the-input-element
https://html.spec.whatwg.org/multipage/forms.html#the-label-element
https://html.spec.whatwg.org/multipage/rendering.html#the-button-element-2
https://open-ui.org/components/button
https://html.spec.whatwg.org/multipage/form-elements.html#the-select-element
https://open-ui.org/components/select
https://open-ui.org/components/switch
https://open-ui.org/components/text
https://html.spec.whatwg.org/multipage/forms.html#the-label-element
https://html.spec.whatwg.org/multipage/forms.html#the-label-element
https://open-ui.org/components/tabs.research

10

Challenges and proposal based on standards

MINIAPP COMPONENTS

11

Challenges and proposals based on standards

Challenges Potential Solutions

New elements, not included in the HTML specification (but somehow

present in some web frameworks, like <swiper>, <tabs>, <switch>,…)

1. These elements could be defined using stand-alone Web Components, and

Custom Elements. Following the OpenUI CG process.

Similar elements (elements that are semantically similar to HTML standard

elements like <image> <progress> <text> <input> <video> <canvas>

<slider> <button>…)

1. Extension of the existing HTML elements (using inheritance). We could define the

new attributes, events or redefine the existing ones defining new interfaces in

the specification.

2. Reuse and refine the existing HTML elements using the OpenUI CG process.

Ideal to leverage the existing Web capabilities.

Non-standard attributes in MiniApp components (e.g., disable, focusable..)

1. Adapt and use directly the standard attributes. If new attributes are needed, to

propose changes in the standards.

2. Creation of a basic, essential MiniAppElement that extends the HTMLElement

with the specific requirements (new attributes, redefinition of existing attributes).

Problem: this prevent MiniApps to reuse Web Components.

Similar events in MiniApp components that are similar to existing standard

ones (e.g., touchstart, touchend, etc.)
1. Adoption of the standard version as it is (PointerEvents).

New events for MiniApp components (e.g., longpress, swipe…)
1. Propose new events to the existing standards if really needed.

2. Definition of new CustomEvents based on the standard DOM interfaces.

Creation of profiles for STANDARD HTML, CSS and DOM MiniApps supported by browsers

12

How to implement a
MiniApp component

Extension of HTMLElement

Definition of new events

https://jsbin.com/qetaguy/edit?html,output

Mapping of attributes

https://jsbin.com/qetaguy/edit?html,output

13

Definition of new elements
Extension of MiniAppElementDefinition of <miniapp-text> as a new element

Template of the <miniapp-text>

Use of the <miniapp-text> (developers only need to use this)

https://jsbin.com/qetaguy/edit?html,output

Definition of styles

https://jsbin.com/qetaguy/edit?html,output

14

Extension of the existing elements

Using the standard version of the component but indicating the

profile (this select is a ‘miniapp-select’)

Definition of the specific behavior for the MiniApp component, with

specific attributes, events, etc. Extending the standard element

https://jsbin.com/qetaguy/edit?html,output

https://jsbin.com/qetaguy/edit?html,output

15

How to write the UI Components specification

MINIAPP COMPONENTS

16

If the MiniApp model doesn’t follow the standard DOM/HTML (incompatible with existing Web standards)

> We need to define a new model, or at least a new markup language (for instance, based on XML).

> We should indicate how to interact/manipulate the DOM for our solution (example in the SVG spec.).

> We can use some examples as references: SMIL, TTML, SVG.

> This solution would require at least the definition of XML schemas for the markup language.

> We need to indicate how to bind CSS stylesheets and events (in the SVG spec, we have examples)

How to write the UI Components specification
Case 1: non-standard DOM/HTML

https://www.w3.org/TR/SVG11/svgdom.html
https://www.w3.org/TR/SMIL/
https://www.w3.org/TR/ttml1/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/styling.html

17

If the MiniApp model follows the standard DOM/HTML (compatible with existing Web standards)

> We could define HTML extensions (e.g., EPUB’s attributes) if needed.

> We should present what technologies (HTML, CSS) are supported.

> We would use HTML and CSS subsets, so we need to indicate these subsets (e.g., EPUB’s Deviations & Constraints or CSS).

> We should define the scripting mechanisms supported in MiniApps (e.g., EPUB’s Scripting)

> Mechanisms to include localized strings.

First step: to organize a meeting with OpenUI CG (I am part of the CG already)

The UI Components specification could be a Group Note to define MiniApp contents, including:

> Structure of a MiniApp page (how to bind components)

> Overview of the basic elements (or components) no technical definition, just high level.

> What styles are supported (e.g., the CSS subset, how to bind external stylesheets)

> Scripts supported (e.g., version and limitations for security)

> Mechanisms to extend the components.

How to write the UI Components specification
Case 2: standard DOM/HTML

https://www.w3.org/publishing/epub3/epub-contentdocs.html#sec-xhtml-extensions
https://www.w3.org/publishing/epub3/epub-contentdocs.html#sec-xhtml-deviations
https://www.w3.org/publishing/epub3/epub-contentdocs.html#sec-css
https://www.w3.org/publishing/epub3/epub-contentdocs.html#sec-scripted-content

18

If the MiniApp model follows the existing MVVM (non-compatible with current standards)

> We could define an informative (non-standard) specification to document the architecture;

> We should include what technologies (HTML, CSS) are supported and the extensions.

> We should document the data and event binding.

> We should define the scripting mechanisms supported in MiniApps.

First step: publicly confirm that MiniApps wouldn’t follow the HTML/DOM standards. No WebAPIs available

To avoid friction with other W3C groups, the UI Components specification should be an informative

Group Note or similar to define MiniApp contents, including something like the documentation of Vue.js:

> Structure of a MiniApp page (how to bind components);

> Explain the differences with HTML.

> What styles are supported (e.g., the CSS subset, how to bind external stylesheets);

> Scripts supported (e.g., version and limitations for security);

> Data interpolation, internationalization, etc.

How to write the UI Components specification
Case 3: Vue.js-like framework

Thank you.

More info:

https://github.com/w3c/miniapp-components

https://github.com/w3c/miniapp-components

