
Modernize gUM
Why we shouldn’t wait

Reading prep for this presentation

JS Arrow functions is used for briefer examples:

navigator.getUserMedia(constraints, function(stream) { }, function(reason) { });

navigator.getUserMedia(constraints, stream => { }, reason => { });

They’re still callback functions.

2

Reading prep for this presentation

Promises - why we are here.

foo(result => log("foo's callback called w/" + result), failure);

foo().then(result => log("foo fulfilled w/" + result)).catch(failure);

Powerful standardized pattern/error-handling/prose
http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
WebIDL-supported: http://heycam.github.io/webidl/#idl-promise
Standard prose: https://w3ctag.github.io/promises-guide
Spec: http://people.mozilla.org/~jorendorff/es6-draft.html

3

http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
http://heycam.github.io/webidl/#idl-promise
https://w3ctag.github.io/promises-guide
http://people.mozilla.org/~jorendorff/es6-draft.html

Paradigm shift has already happened

Anything new in the last year with async values
uses promises. WebRTC is main callback holdout.

● https://w3c.github.io/screen-orientation
● https://w3c.github.io/push-api
● HTML's createImageBitmap()
● https://slightlyoff.github.io/ServiceWorker/spec/service_worker

4

https://w3c.github.io/screen-orientation
https://w3c.github.io/screen-orientation
https://w3c.github.io/push-api
https://w3c.github.io/push-api
https://slightlyoff.github.io/ServiceWorker/spec/service_worker
https://slightlyoff.github.io/ServiceWorker/spec/service_worker

Why? Big reason: Error-handling

Lets reexamine the code from two slides ago:

foo(result => log("foo's callback called w/" + result), failure);

foo().then(result => log("foo fulfilled w/" + result)).catch(failure);

what if log throws?

:-)

, pass in failure?^

or try/catch around log?

if log throws it’s caught by
this final catch and sent to
failure

5

Compare to our error-handling
navigator.getUserMedia(stream => {
 doSomething(stream);
 stream.getTracks().forEach(track => pc.addTrack(track, stream));
 pc.createOffer({ }, step2, failure);
}, failure);

There’s the same disconnect between synchronous errors
(exceptions) and asynchronous errors. Both halt progress, but
the former is uncaught and only the latter is propagated out.

If doSomething throws, progress ends, but it’s uncaught!

failure never hears of it. STALL!!

6

Problem: Our error-handling is broken
Error-handling in our current API is fraught with peril and should
not be exposed to anyone. Promises fix this.
Plain callbacks without some exception-plan are not OK for async APIs. Where do
exceptions go? Spec doesn’t say. Users must vigilantly try/catch everything:

var failure = reason => log("Failed to show camera: " + reason.message);
navigator.getUserMedia(stream => { try {
 videoElement.mozSrcObject = stream;
 videoElement.play();
 } catch(e) { failure(e); } //failure must tolerate non-MediaStreamError
}, failure);

7

MediaStreamError is incompatible with Promises.

Our API guarantees that error-callbacks get a MediaStreamError, which rules out
propagation of other errors. Also, MediaStreamError doesn’t inherit from Error, which is
against the promise spec recommendation:

[1] says “Promise rejection reasons should always be instances of the ECMAScript
Error type, just like synchronously-thrown exceptions should always be instances of
Error as well.
In particular, for DOM or other web platform specs, this means you should never use
DOMError, but instead use DOMException, which per WebIDL extends Error.”

[1] https://w3ctag.github.io/promises-guide/#reasons-should-be-errors

Problem (continued)
8

https://w3ctag.github.io/promises-guide/#reasons-should-be-errors

What’s proposed - getUserMedia
navigator.mediaDevices.getUserMedia(constraints).then(stream => {
 videoElement.mozSrcObject = stream;
 videoElement.play();
}).catch(reason => log(“Failed to show camera: ” + reason.message));

// Discouraged legacy getUserMedia with callbacks intact on navigator
navigator.getUserMedia(constraints, stream => {
 videoElement.mozSrcObject = stream;
 videoElement.play();
}, reason => log(“Failed to get camera: ” + reason.message));

https://github.com/w3c/mediacapture-main/pull/18

9

https://github.com/w3c/mediacapture-main/pull/18
https://github.com/w3c/mediacapture-main/pull/18

What’s proposed - applyConstraints
videoTrack.applyConstraints({ frameRate: { min: 60 } })
 .then(() => log(“Yeah!”), reason => log(“Nope! ” + reason.message))
 .catch(reason => log(“Proper errhandling rulz! ” + reason.message));

Not yet implemented in Firefox; others?

https://github.com/w3c/mediacapture-main/pull/18

10

https://github.com/w3c/mediacapture-main/pull/18
https://github.com/w3c/mediacapture-main/pull/18

What’s proposed - enumerateDevices
navigator.mediaDevices.enumerateDevices().then(devices =>
 devices.forEach(device => log(“Device: ” + device.label));
}).catch(reason => log(“Couldn’t display devices: ” + reason.message));

Introduced June 16th. Not yet implemented in Firefox; others?

Better name may be: navigator.mediaDevices.enumerate()
since one can only say “device” so many times!

https://github.com/w3c/mediacapture-main/pull/18

11

https://github.com/w3c/mediacapture-main/pull/18
https://github.com/w3c/mediacapture-main/pull/18

Why? Standardised prose
After:
When enumerateDevices() is called,
the UA must run the following steps:

1. Let p be a new promise.
2. Run the following steps in parallel:

1. Let resultList be an empty list.
2. ...
3. Resolve p with resultList.

3. Return p.

No parameters.

Return:
Promise<sequence<MediaDeviceInfo>>

Before:
When enumerateDevices() is called, the UA
must queue a task that runs the following
steps:

1. Let resultCallback be the first argument.
2. Let resultList be an empty list.
3. ..
4. Invoke resultCallback with resultList as

its argument.

Parameters:
resultCallback MediaDeviceInfoCallback

Return: void

12

Why? WebRTC is next! <3
function dial(pc, signal) {

 return mediaDevices.getUserMedia(constraints)

 .then(stream => {

 stream.getTracks().forEach(track =>
 pc.addTrack(track, stream));

 })

 .then(()=> pc.createOffer(options))

 .then(offer => pc.setLocalDescription(offer))

 .then(() => signal.then(answer =>
 pc.setRemoteDescription(answer)));

}

function pickup(pc, signal) {

 return mediaDevices.getUserMedia(constraints)

 .then(stream => {

 stream.getTracks().forEach(track =>
 pc.addTrack(track, stream));

 })

 .then(() => signal.then(offer =>
 pc.setRemoteDescription(offer)))

 .then(() => pc.createAnswer(options))

 .then(answer => pc.setLocalDescription(answer));

}

 Promise.all([dial(pc1, pc2.stable), pickup(pc2, pc1.haveLocalOffer)])

.then(() => log("Connected!"))

.catch(failed); // 1-line error handling

13

Degrees of backwards compatibility
1. In Specification

Number of existing uses so widespread across multiple implementations that all
future browsers must implement it as truth for all eternity (navigator.getUserMedia)

2. Implementation-specific
Existing use limited to early adopters (who will be quick to adapt again!)
Browser continues its support transitionally with web-console warnings. Other
browsers not required to adopt. Spec is clean (webkitMediaDevices.enumerateDevices?)

3. Behold to the webkit/moz-prefix Action Card!
Browser breaks early adopters because prefixes!
(navigator.getUserMedia({ facingMode: “user”, require[“facingMode”] }, success, fail))

14

 The webkit/moz-prefix Action Card

Technical value: Bupkis
Psychological value: “Get out of jail free”!
Discard after play.

Lets player say “Told you!” and break smaller
things. All early adopters must fix their stuff to
comply for the benefit of the group, and like it.

Backwards-comp. polyfills (if needed)
function getUserMedia(constraints, success, failure) {
 var p = navigator.mediaDevices.getUserMedia(constraints);
 p.then(success);
 p.then(failure);
}

function enumerateDevices(success) {
 var p = navigator.mediaDevices.enumerate();
 p.then(success);
}

16

Summary: Reasons to do this now

● Fix our broken error-handling.
● Modern specification language.
● Inevitability. In a year’s time we’ll regret not

having done this (proof: a year ago).
● Fan-out. WebRTC is next. Whatever we decide

here likely impacts what WebRTC decides.
● Decent backwards compatibility.
● Last chance while we’re still prefixed!

17

