
Mediastream Image Capture

W3C Editor's Draft 14 May 2014

This version:

http://gmandyam.github.com/image-capture

Latest published version:

http://www.w3.org/TR/image-capture/

Latest editor's draft:

http://gmandyam.github.com/image-capture

Editor:

Giridhar Mandyam, Qualcomm Innovation Center, Inc

Copyright © 2012-2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

This document specific the takePhoto() and grabFrame() methods, and corresponding camera settings for use with MediaStreams as

defined in Media Capture and Streams [GETUSERMEDIA].

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list

of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at

http://www.w3.org/TR/.

Comments on this document are welcomed.

This document was published by the Web Real-Time Communication Working Group and Device APIs Working Group as an Editor's Draft.

If you wish to make comments regarding this document, please send them to public-media-capture@w3.org (subscribe, archives). All

comments are welcome.

Publication as an Editor's Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated,

replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any

patent disclosures (Web Real-Time Communication Working Group, Device APIs Working Group) made in connection with the

deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent

which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent

Policy.

Table of Contents

1. Introduction

2. Image Capture API

2.1 Attributes

2.2 Methods

3. FrameGrabEvent

3.1 Attributes

3.2 FrameGrabEventInit Dictionary

3.2.1 Dictionary FrameGrabEventInit Members

4. ImageCaptureErrorEvent

4.1 Attributes

4.2 ImageCaptureErrorEventInit Dictionary

4.2.1 Dictionary ImageCaptureErrorEventInit Members

5. BlobEvent

5.1 Attributes

5.2 BlobEventInit Dictionary

5.2.1 Dictionary BlobEventInit Members

6. SettingsChangeEvent

6.1 Attributes

6.2 SettingsChangeEventInit Dictionary

6.2.1 Dictionary SettingsChangeEventInit Members

7. ImageCaptureError

7.1 Attributes

7.2 Constants

8. MediaSettingsRange

8.1 Attributes

9. MediaSettingsItem

9.1 Attributes

10. PhotoOptions

10.1 Attributes

11. ExposureMode

12. PhotoSettings

12.1 Dictionary PhotoSettings Members

13. Promise Extensions to ImageCapture

13.1 Attributes

13.2 Methods

14. Examples

14.1 Taking a picture if Red Eye Reduction is activated

14.2 Grabbing a Frame for Post-Processing

14.3 Repeated grabbing of a frame

14.4 Taking a picture if Red Eye Reduction is activated using promises

A. References

A.1 Normative references

1. Introduction

The API defined in this document taks a valid MediaStream and returns an encoded image in the form of a Blob (as defined in [FILE-API]).

The image is provided by the capture device that provides the MediaStream. Moreover, picture-specific settings can be optionally provided

as arguments that can be applied to the image being captured.

2. Image Capture API

WebIDL

[Constructor(VideoStreamTrack track)]

interface ImageCapture : EventTarget {
 readonly attribute PhotoOptions photoOptions;
 readonly attribute VideoStreamTrack videoStreamTrack;
 readonly attribute MediaStream previewStream;
 attribute EventHandler onphoto;
 attribute EventHandler onerror;
 attribute EventHandler onoptions;
 attribute EventHandler onframe;

 void setOptions (PhotoSettings? photoSettings);
 void takePhoto ();
 void grabFrame ();
};

2.1 Attributes

onerror of type EventHandler,

Register/unregister for Image Capture error events of type ImageCaptureErrorEvent. The handler should expect to get an
ImageCaptureError object as its first parameter.

onframe of type EventHandler,

Register/unregister for frame capture events of type FrameGrabEvent. The handler should expect to get a FrameGrabEvent object

as its first parameter.

onoptions of type EventHandler,

Register/unregister for photo settings change events of type SettingsChangeEvent.

onphoto of type EventHandler,

Register/unregister for photo events of type BlobEvent. The handler should expect to get a BlobEvent object as its first

parameter.

photoOptions of type PhotoOptions, readonly

Describes current photo settings

previewStream of type MediaStream, readonly

The MediaStream that provides a camera preview

videoStreamTrack of type VideoStreamTrack, readonly

The MediaStreamTrack passed into the constructor

2.2 Methods

grabFrame

When the grabFrame() method of an ImageCapture object is invoked, then if the readyState of the VideoStreamTrack provided

in the contructor is not "live", the UA MUST fire an ImageCaptureErrorEvent event at the ImageCapture object with a new
ImageCaptureError object whose code is set to INVALID_TRACK. If the UA is unable to execute the grabFrame() method for any

other reason, then the UA MUST fire an ImageCaptureErrorEvent event at the ImageCapture object with a new ImageCaptureError

object whose code is set to FRAME_ERROR. Otherwise it MUST queue a task, using the DOM manipulation task source, that runs

the following steps:

1. Gather data from the VideoStreamTrack into an ImageData object (as defined in [CANVAS-2D]) containing a single still

frame in RGBA format. The width and height of the ImageData object are derived from the constraints of the
VideoStreamTrack.

2. Raise a FrameGrabEvent event containing the ImageData to the onframe event handler (if specified). {Note: grabFrame()

returns data only once upon being invoked.}

No parameters.

Return type: void

setOptions

When the setOptions() method of an ImageCapture object is invoked, then a valid PhotoSettings object MUST be passed in the

method to the ImageCapture object. If the UA can successfully apply the settings, then the UA MUST fire a SettingsChangeEvent

event at the onoptions event handler (if specified). If the UA cannot successfully apply the settings, then the UA MUST fire an
ImageCaptureErrorEvent at the ImageCapture object whose code is set to OPTIONS_ERROR.

Parameter Type Nullable Optional Description

photoSettings PhotoSettings
✔ ✘

Return type: void

takePhoto

When the takePhoto() method of an ImageCapture object is invoked, then if the readyState of the VideoStreamTrack provided

in the constructor is not "live", the UA MUST fire an ImageCaptureErrorEvent event at the ImageCapture object with a new
ImageCaptureError object whose code is set to INVALID_TRACK. If the UA is unable to execute the takePhoto() method for any

other reason (for example, upon invocation of multiple takePhoto() method calls in rapid succession), then the UA MUST fire an
ImageCaptureErrorEvent event at the ImageCapture object with a new ImageCaptureError object whose code is set to

PHOTO_ERROR. Otherwise it MUST queue a task, using the DOM manipulation task source, that runs the following steps:

1. Gather data from the VideoStreamTrack into a Blob containing a single still image. The method of doing this will depend on

the underlying device. Devices may temporarily stop streaming data, reconfigure themselves with the appropriate photo

settings, take the photo, and then resume streaming. In this case, the stopping and restarting of streaming SHOULD cause
mute and unmute events to fire on the Track in question.

2. Raise a BlobEvent event containing the Blob to the onphoto event handler (if specified).

No parameters.

Return type: void

3. FrameGrabEvent

WebIDL

[Constructor(DOMString type, optional FrameGrabEventInit frameGrabInitDict)]

interface FrameGrabEvent : Event {
 readonly attribute ImageData imageData;
};

3.1 Attributes

imageData of type ImageData, readonly

Returns an ImageData object whose width and height attributes indicates the dimensions of the captured frame.

3.2 FrameGrabEventInit Dictionary

WebIDL

dictionary FrameGrabEventInit : EventInit {
 ImageData imageData;
};

3.2.1 Dictionary FrameGrabEventInit Members

imageData of type ImageData

An ImageData object containing the data to deliver via this event.

4. ImageCaptureErrorEvent

WebIDL

[Constructor(DOMString type, optional ImageCaptureErrorEventInit imageCaptureErrorInitDict)]

interface ImageCaptureErrorEvent : Event {
 readonly attribute ImageCaptureError imageCaptureError;
};

4.1 Attributes

imageCaptureError of type ImageCaptureError, readonly

Returns an ImageCaptureError object whose code attribute indicates the type of error occurrence.

4.2 ImageCaptureErrorEventInit Dictionary

WebIDL

dictionary ImageCaptureErrorEventInit : EventInit {
 ImageCaptureError imageCaptureError;
};

4.2.1 Dictionary ImageCaptureErrorEventInit Members

imageCaptureError of type ImageCaptureError

an ImageCaptureError object containing the data to deliver via this event.

5. BlobEvent

WebIDL

[Constructor(DOMString type, optional BlobEventInit blobInitDict)]

interface BlobEvent : Event {
 readonly attribute Blob data;
};

5.1 Attributes

data of type Blob, readonly

Returns a Blob object whose type attribute indicates the encoding of the blob data. An implementation must return a Blob in a

format that is capable of being viewed in an HTML tag.

5.2 BlobEventInit Dictionary

WebIDL

dictionary BlobEventInit : EventInit {
 Blob data;
};

5.2.1 Dictionary BlobEventInit Members

data of type Blob

A Blob object containing the data to deliver via this event.

6. SettingsChangeEvent

WebIDL

[Constructor(DOMString type, optional SettingsChangeEventInit photoSettingsInitDict)]

interface PhotoSettingsEvent : Event {
 readonly attribute PhotoSettings photoSettings;
};

6.1 Attributes

photoSettings of type PhotoSettings, readonly

Returns a PhotoSettings object whose type attribute indicates the current photo settings.

6.2 SettingsChangeEventInit Dictionary

WebIDL

dictionary SettingsChangeEventInit : EventInit {
 PhotoSettings photoSettings;
};

6.2.1 Dictionary SettingsChangeEventInit Members

photoSettings of type PhotoSettings

A PhotoSettings object containing the data to deliver via this event.

7. ImageCaptureError

The ImageCaptureError object is passed to an onerror event handler of an ImageCapture object if an error occurred when the object was

created or any of its methods were invoked.

WebIDL

[NoInterfaceObject]
interface ImageCaptureError {
 const unsigned short FRAME_ERROR = 1;
 const unsigned short OPTIONS_ERROR = 2;
 const unsigned short PHOTO_ERROR = 3;
 const unsigned short ERROR_UNKNOWN = 4;
 readonly attribute unsigned short code;
 readonly attribute DOMString message;
};

7.1 Attributes

code of type unsigned short, readonly

The code attribute returns the appropriate code for the error event, derived from the constants defined in the ImageCaptureError

interface.

message of type DOMString, readonly

The message attribute must return an error message describing the details of the error encountered.

7.2 Constants

ERROR_UNKNOWN of type unsigned short

An ImageCaptureError object must set its code value to this constant if an error occurred due to indeterminate cause upon

invocation of any method of the ImageCapture interface.

FRAME_ERROR of type unsigned short

An ImageCaptureError object must set its code value to this constant if an error occurred upon invocation of the grabFrame()

method of the ImageCapture interface.

OPTIONS_ERROR of type unsigned short

An ImageCaptureError object must set its code value to this constant if an error occurred upon invocation of the setOptions()

method of the ImageCapture interface.

PHOTO_ERROR of type unsigned short

An ImageCaptureError object must set its code value to this constant if an error occurred upon invocation of the takePhoto()

method of the ImageCapture interface.

8. MediaSettingsRange

WebIDL

interface MediaSettingsRange {
 readonly attribute unsigned long max;
 readonly attribute unsigned long min;
 readonly attribute unsigned long initial;
};

8.1 Attributes

initial of type unsigned long, readonly

The current value of this setting

max of type unsigned long, readonly

The maximum value of this setting

min of type unsigned long, readonly

The minimum value of this setting

9. MediaSettingsItem

The MediaSettingsItem interface is now defined, which allows for a single setting to be managed.

WebIDL

interface MediaSettingsItem {
 readonly attribute any value;
};

9.1 Attributes

value of type any, readonly

Value of current setting.

10. PhotoOptions

The PhotoOptions attribute of the ImageCapture object provides the photo-specific settings options and current settings values. The

following definitions are assumed for individual settings and are provided for information purposes:

1. Autofocus is a setting that enables the camera hardware to automatically focus on a selected part of the imaging area.

2. White balance mode is a setting that cameras use to adjust for different color temperatures. Color temperature is the temperature of

background light (measured in Kelvin normally). This setting can also be automatically determined by the implementation. If

'automatic' mode is selected, then the Kelvin setting for White Balance Mode may be overridden. Typical temprature ranges for

different modes are provided below:

Mode Kelvin range

incandescent 2500-3500

fluorescent 4000-5000

warm-fluorescent 5000-5500

daylight 5500-6500

cloudy-daylight 6500-8000

twilight 8000-9000

shade 9000-10000

3. Exposure is the amount of light allowed to fall on the photographic medium. Auto-exposure mode is a camera setting where the

exposure levels are automatically adjusted by the implementation based on the subject of the photo.

4. Exposure Compensation is a numeric camera setting that adjusts the exposure level from the current value used by the

implementation. This value can be used to bias the exposure level enabled by auto-exposure.

5. The ISO setting of a camera describes the sensistivity of the camera to light. It is a numeric value, where the lower the value the

greater the sensitivity. This setting in most implementations relates to shutter speed, and is sometimes known as the ASA setting.

6. Red Eye Reduction is a feature in cameras that is designed to limit or prevent the appearance of red pupils ("Red Eye") in

photography subjects due prolonged exposure to a camera's flash.

7. Brightness refers to the numeric camera setting that adjusts the perceived amount of light emitting from the photo object. A higher

brightness setting increases the intensity of darker areas in a scene while compressing the intensity of brighter parts of the scene.

8. Contrast is the numeric camera setting that controls the difference in brightness between light and dark areas in a scene. A higher

contrast setting reflects an expansion in the difference in brightness.

9. Saturation is a numeric camera setting that controls the intensity of color in a scene (i.e. the amount of gray in the scene). Very low

saturation levels will result in photo's closer to black-and-white.

10. Sharpness is a numeric camera setting that controls the intensity of edges in a scene. Higher sharpness settings result in higher

edge intensity, while lower settings result in less contrast and blurrier edges (i.e. soft focus).

11. Zoom is a numeric camera setting that controls the focal length of the lens. The setting usually represents a ratio, e.g. 4 is a zoom

ratio of 4:1. The minimum value is usually 1, to represent a 1:1 ratio (i.e. no zoom).

WebIDL

interface PhotoOptions {
 attribute MediaSettingsItem autoWhiteBalanceMode;
 attribute MediaSettingsRange whiteBalanceMode;
 attribute ExposureMode autoExposureMode;
 attribute MediaSettingsRange exposureCompensation;
 attribute MediaSettingsRange iso;
 attribute MediaSettingsItem redEyeReduction;
 attribute MediaSettingsRange brightness;
 attribute MediaSettingsRange constrast;
 attribute MediaSettingsRange saturation;
 attribute MediaSettingsRange sharpness;

 attribute MediaSettingsRange imageHeight;
 attribute MediaSettingsRange imageWidth;
 attribute MediaSettingsRange zoom;
 attribute boolean autofocus;
};

10.1 Attributes

autoExposureMode of type ExposureMode,

This reflects the current auto exposure mode setting. Values are of type ExposureMode.

autoWhiteBalanceMode of type MediaSettingsItem,

This reflects whether automated White Balance Mode selection is on or off, and is boolean - on is true

autofocus of type boolean,

This reflects the current autofocus setting. false means autofocus is disabled.

brightness of type MediaSettingsRange,

This reflects the current brightness setting of the camera and permitted range. Values are numeric.

constrast of type MediaSettingsRange,

This reflects the current contrast setting of the camera and permitted range. Values are numeric.

exposureCompensation of type MediaSettingsRange,

This reflects the current exposure compensation setting and permitted range. Values are numeric.

imageHeight of type MediaSettingsRange,

This reflects the image height range supported by the UA and the current height setting.

imageWidth of type MediaSettingsRange,

This reflects the image width range supported by the UA and the current width setting.

iso of type MediaSettingsRange,

This reflects the current camera ISO setting and permitted range. Values are numeric.

redEyeReduction of type MediaSettingsItem,

This reflects whether camera red eye reduction is on or off, and is boolean - on is true

saturation of type MediaSettingsRange,

This reflects the current saturation setting of the camera and permitted range. Values are numeric.

sharpness of type MediaSettingsRange,

This reflects the current sharpness setting of the camera and permitted range. Values are numeric.

whiteBalanceMode of type MediaSettingsRange,

This reflects the current white balance mode setting. Values are of type WhiteBalanceModeEnum.

zoom of type MediaSettingsRange,

This reflects the zoom value range supported by the UA and the current zoom setting.

11. ExposureMode

WebIDL

enum ExposureModeEnum {
 "frame-average",
 "center-weighted",
 "spot-metering"
};

Enumeration description

frame-average Average of light information from entire scene

center-weighted Sensitivity concentrated towards center of viewfinder

spot-metering Spot-centered weighting

12. PhotoSettings

The PhotoSettings object is optionally passed into the ImageCapture.setOptions() method in order to modify capture device settings

specific to still imagery. Each of the attributes in this object are optional.

WebIDL

dictionary PhotoSettings {
 attribute boolean autoWhiteBalanceMode;
 attribute unsigned long whiteBalanceMode;
 attribute any autoExposureMode;
 attribute unsigned long exposureCompensation;
 attribute unsigned long iso;
 attribute boolean redEyeReduction;
 attribute unsigned long brightness;
 attribute unsigned long constrast;
 attribute unsigned long saturation;
 attribute unsigned long sharpness;
 attribute unsigned long imageHeight;
 attribute unsigned long imageWidth;
 attribute unsigned long zoom;
 attribute boolean autofocus;
};

12.1 Dictionary PhotoSettings Members

autoExposureMode of type attribute any

This reflects the desired auto exposure mode setting. Acceptable values are of type ExposureModeEnum.

autoWhiteBalanceMode of type attribute boolean

This reflects whether automatic White Balance Mode selection is desired.

autofocus of type attribute boolean

This reflects the desired autofocus setting.

brightness of type attribute unsigned long

This reflects the desired brightness setting of the camera.

constrast of type attribute unsigned long

This reflects the desired contrast setting of the camera.

exposureCompensation of type attribute unsigned long

This reflects the desired exposure compensation setting.

imageHeight of type attribute unsigned long

This reflects the desired image height.

imageWidth of type attribute unsigned long

This reflects the desired image width.

iso of type attribute unsigned long

This reflects the desired camera ISO setting.

redEyeReduction of type attribute boolean

This reflects whether camera red eye reduction is desired

saturation of type attribute unsigned long

This reflects the desired saturation setting of the camera.

sharpness of type attribute unsigned long

This reflects the desired sharpness setting of the camera.

whiteBalanceMode of type attribute unsigned long

This reflects the desired white balance mode setting.

zoom of type attribute unsigned long

This reflects the desired zoom value.

13. Promise Extensions to ImageCapture

If the User Agent supports Promises, then the following may be used. Any Promise object is assumed to have resolver object, with

resolve() and reject() methods associated with it. {NOTE: The setOptions() method is not recast as a Promise due to the possibility that

its associated event handler onoptions may be repeatedly invoked.}

WebIDL

[Constructor(VideoStreamTrack track)]

interface ImageCapture : EventTarget {
 readonly attribute PhotoOptions photoOptions;
 readonly attribute VideoStreamTrack videoStreamTrack;
 readonly attribute MediaStream previewStream;
 attribute EventHandler onerror;
 attribute EventHandler onoptions;

 void setOptions (PhotoSettings? photoSettings);
 Promise takePhoto ();

 Promise grabFrame ();
};

13.1 Attributes

onerror of type EventHandler,

Register/unregister for Image Capture error events of type ImageCaptureErrorEvent. The handler should expect to get an
ImageCaptureError object as its first parameter.

onoptions of type EventHandler,

Register/unregister for photo settings change events of type SettingsChangeEvent.

photoOptions of type PhotoOptions, readonly

Describes current photo settings

previewStream of type MediaStream, readonly

The MediaStream that provides a camera preview

videoStreamTrack of type VideoStreamTrack, readonly

The MediaStreamTrack passed into the constructor

13.2 Methods

grabFrame

When the grabFrame() method of an ImageCapture object is invoked, a new Promise object is returned. If the readyState of the

VideoStreamTrack provided in the contructor is not "live", the UA MUST return an ImageCaptureErrorEvent event to the resolver

object's reject() method with a new ImageCaptureError object whose code is set to INVALID_TRACK. If the UA is unable to

execute the grabFrame() method for any other reason, then the UA MUST return an ImageCaptureErrorEvent event to the resolver

object's reject() method with a new ImageCaptureError object whose code is set to FRAME_ERROR. Otherwise it MUST queue a

task, using the DOM manipulation task source, that runs the following steps:

1. Gather data from the VideoStreamTrack into an ImageData object (as defined in [CANVAS-2D]) containing a single still

frame in RGBA format. The width and height of the ImageData object are derived from the constraints of the
VideoStreamTrack.

2. Return a FrameGrabEvent event containing the ImageData to the resolver object's resolve() method. {Note: grabFrame()

returns data only once upon being invoked.}

No parameters.

Return type: Promise

setOptions

When the setOptions() method of an ImageCapture object is invoked, then a valid PhotoSettings object MUST be passed in the

method to the ImageCapture object. If the UA can successfully apply the settings, then the UA MUST fire a SettingsChangeEvent

event at the onoptions event handler (if specified). If the UA cannot successfully apply the settings, then the UA MUST fire an
ImageCaptureErrorEvent at the ImageCapture object whose code is set to OPTIONS_ERROR.

Parameter Type Nullable Optional Description

photoSettings PhotoSettings
✔ ✘

Return type: void

takePhoto

When the takePhoto() method of an ImageCapture object is invoked, a new Promise object is returned. If the readyState of the

VideoStreamTrack provided in the constructor is not "live", the UA MUST return an ImageCaptureErrorEvent event to the resolver

object's reject() method with a new ImageCaptureError object whose code is set to INVALID_TRACK. If the UA is unable to

execute the takePhoto() method for any other reason (for example, upon invocation of multiple takePhoto() method calls in rapid

succession), then the UA MUST return an ImageCaptureErrorEvent event to the resolver object's reject() method with a new
ImageCaptureError object whose code is set to PHOTO_ERROR. Otherwise it MUST queue a task, using the DOM manipulation

task source, that runs the following steps:

1. Gather data from the VideoStreamTrack into a Blob containing a single still image. The method of doing this will depend on

the underlying device. Devices may temporarily stop streaming data, reconfigure themselves with the appropriate photo

settings, take the photo, and then resume streaming. In this case, the stopping and restarting of streaming SHOULD cause
mute and unmute events to fire on the Track in question.

2. Return a BlobEvent event containing the Blob to the resolver object's resolve() method.

No parameters.

Return type: Promise

14. Examples

14.1 Taking a picture if Red Eye Reduction is activated

14.2 Grabbing a Frame for Post-Processing

14.3 Repeated grabbing of a frame

EXAMPLE 1

navigator.getUserMedia({video: true}, gotMedia, failedToGetMedia);

 function gotMedia(mediastream) {

 //Extract video track.

 var videoDevice = mediastream.getVideoTracks()[0];

 // Check if this device supports a picture mode...

 var captureDevice = new ImageCapture(videoDevice);

 if (captureDevice) {

 captureDevice.onphoto = showPicture;

 if (captureDevice.photoOptions.redEyeReduction) {

 captureDevice.setOptions({redEyeReductionSetting:true});

 }

 else

 console.log('No red eye reduction');

 captureDevice.onoptions = function(){

 if (captureDevice.photoOptions.redEyeReduction.value)

 captureDevice.takePhoto();

 }

 }

 }

 function showPicture(e) {

 var img = document.querySelector("img");

 img.src = URL.createObjectURL(e.data);

 }

 function failedToGetMedia{

 console.log('Stream failure');

 }

EXAMPLE 2

navigator.getUserMedia({video: true}, gotMedia, failedToGetMedia);

 function gotMedia(mediastream) {

 //Extract video track.

 var videoDevice = mediastream.getVideoTracks()[0];

 // Check if this device supports a picture mode...

 var captureDevice = new ImageCapture(videoDevice);

 if (captureDevice) {

 captureDevice.onframe = processFrame;

 captureDevice.grabFrame();

 }

 }

 function processFrame(e) {

 imgData = e.imageData;

 width = imgData.width;

 height = imgData.height;

 for (j=3; j < imgData.width; j+=4)

 {

 // Set all alpha values to medium opacity

 imgData.data[j] = 128;

 }

 // Create new ImageObject with the modified pixel values

 var canvas = document.createElement('canvas');

 ctx = canvas.getContext("2d");

 newImg = ctx.createImageData(width,height);

 for (j=0; j < imgData.width; j++)

 {

 newImg.data[j] = imgData.data[j];

 }

 // ... and do something with the modified image ...

 }

 function failedToGetMedia{

 console.log('Stream failure');

 }

EXAMPLE 3

<html>

 <body>

 <p><canvas id="frame"></canvas></p>

14.4 Taking a picture if Red Eye Reduction is activated using promises

A. References

A.1 Normative references

[CANVAS-2D]

Rik Cabanier; Eliot Graff; Jay Munro; Tom Wiltzius; Ian Hickson. HTML Canvas 2D Context. 6 August 2013. W3C Candidate

Recommendation. URL: http://www.w3.org/TR/2dcontext/

[FILE-API]

Arun Ranganathan; Jonas Sicking. File API. 12 September 2013. W3C Last Call Working Draft. URL: http://www.w3.org/TR/FileAPI/

[GETUSERMEDIA]

Daniel Burnett; Adam Bergkvist; Cullen Jennings; Anant Narayanan. Media Capture and Streams. 3 September 2013. W3C

Working Draft. URL: http://www.w3.org/TR/mediacapture-streams/

 <button onclick="stopFunction()">Stop frame grab</button>

 <script>

 var canvas = document.getElementById('frame');

 navigator.getUserMedia({video: true}, gotMedia, failedToGetMedia);

 function gotMedia(mediastream) {

 //Extract video track.

 var videoDevice = mediastream.getVideoTracks()[0];

 // Check if this device supports a picture mode...

 var captureDevice = new ImageCapture(videoDevice);

 var frameVar;

 if (captureDevice) {

 captureDevice.onframe = processFrame;

 frameVar = setInterval(captureDevice.grabFrame(), 1000);

 }

 }

 function processFrame(e) {

 imgData = e.imageData;

 canvas.width = imgData.width;

 canvas.height = imgData.height;

 canvas.getContext('2d').drawImage(imgData, 0, 0,imgData.width,imgData.height);

 }

 function stopFunction(e) {

 clearInterval(myVar);

 }

 </script>

 </body>

 </html>

EXAMPLE 4

navigator.getUserMedia({video: true}, gotMedia, failedToGetMedia);

 function gotMedia(mediastream) {

 //Extract video track.

 var videoDevice = mediastream.getVideoTracks()[0];

 // Check if this device supports a picture mode...

 var captureDevice = new ImageCapture(videoDevice);

 if (captureDevice) {

 if (captureDevice.photoOptions.redEyeReduction) {

 captureDevice.setOptions({redEyeReductionSetting:true});

 }

 else

 console.log('No red eye reduction');

 captureDevice.onoptions = function(){

 if (captureDevice.photoOptions.redEyeReduction.value)

 captureDevice.takePhoto().then(showPicture(blob),function(error){alert("Failed to take photo");});

 }

 }

 }

 function showPicture(e) {

 var img = document.querySelector("img");

 img.src = URL.createObjectURL(e.data);

 }

 function failedToGetMedia{

 console.log('Stream failure');

 }

