
	

(P)WP	 Security

LEONARD 	ROSENTHOL
ADOBE SYSTEMS

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	
	
	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		 	 	 		 	 	

	 	 	 	 		 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	

Secure 	Contexts 	(WP)

• https://w3c.github.io/webappsec-secure-contexts/
o This
specification
defines
"secure
contexts",	
thereby
allowing
user
agent
implementers
and
specification
authors
to
enable
certain
features
only
when
certain
minimum
standards
of	
authentication
and
confidentiality
are
met.

• A
number
of
OWP
features
require
the
use
of
a
secure
context
o Service
Workers
o Access
to
device
features
(g.
geolocation,	
microphone,	
camera)
o Should
a
(P)WP
have
access
to
device
features
(eg.
microphone,	
camera,	l
ocation,	
etc.)?
o Is
it
up
to
the
author
or
publisher?
 To
the
UA?
 To
the
user?

o Notifications

• On	
the
web,	
this
would	
be
an	
https
connection.
 Off
the
web,	i
t’s
up	
to
the
UA.

• NOTE:
You	
can’t
load	i
nsecure
contexts
from
a
secure
context
o Eg.
you
can’t
load
http://louvre.fr/monalisa.jpg
from
https://mysite.com/book.html	

https://mysite.com/book.html
http://lourve.fr/monalisa.jpg
https://w3c.github.io/webappsec-secure-contexts

	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	

	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	

	
	 	 	

	 	 	 	 	

Restricting Content (WP)
• Using CSP (Content Security Policy - https://www.w3.org/TR/CSP/)
o A	 mechanism	 by	 which web developers can control the resources which a particular page can fetch or

execute,	 as well as a number of security-relevant policy decisions.

• Restricted CSS
o Solutions such	 as AMP (https://www.ampproject.org/) restrict the functionality for security reasons

• Restricted SVG and MathML
o XML-based	 grammars have their own	 set of concerns
o Plus ability to incorporate scripts and CSS directly

• No Plugins
o Plugins still work in some browser engines (eg. CEF),	 but should that content be allowed?
o Plugins introduce additional security risks but for what gain?

• No Embed/Object
o What would a recursive publication look like?

• Preventing “surprise”
o Access 	to 	some	OWP 	features 	that 	should 	probably 	require	 a user consent: Geolocation,	 camera,	 microphone,	
desktop-notifications,	 push,	 full-screen,	 turning off mouse-cursor,	 system exclusive midi,	 clipboard-access	 …

http:https://www.ampproject.org
https://www.w3.org/TR/CSP

	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

Restricting JavaScript (WP)
• Certainly a lot of malicious content and	 exploits can	 be prevented	 if JS execution	 is disallowed	
by default,	 or even	 not permitted	 in	 the file itself.
o NOTE: Several	 script-less hacks are equally possible (http://lcamtuf.coredump.cx/postxss/)

• However,	 JavaScript execution	 is fundamental to the OWP. Disallowing JavaScript would	
considerably cut down	 the power of WP.

• AMP	 also restricts some JS features for similar reasons

• Also what to do you	 with	 methods that block operations (eg. alert() or prompt())?

http://lcamtuf.coredump.cx/postxss

	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

PWP	 Risks
•	 Do	 malicious (P)WPs with network access carry more risk than a malicious URL? YES!

•	 User Expectation: Users understand that accessing a web site involves network access,	 but users won't expect
that	 opening a document	 can trigger the same activity.

•	 Lack of Provenance: When viewing a website,	 the user sees the service providing the content,	 but there's no
such visibility for a	 PWP	 that	 might	 have made its way	 to a user through any	 path – Facebook,	 Dropbox,	
corporate archive,	 email.

•	 Protection provided in browsers is based on domain/origin:	 Services such	 as Google Safe Browsing
(https://developers.google.com/safe-browsing/) allow browsers to identify malware sites (based	 on	 URL
blacklists,	 domain reputation etc.) and warn the user.

•	 Protection provided in browsers is based on content being available	 online: E.g.,	 Googlebots crawl the web to
identify badness. If that badness is packaged in a file (and sent via emails),	 it’s harder for online crawlers to
identify them.

•	 Lack of Mechanisms for Controlling Malicious Content:	 If there is a malware attack online,	 that can be fixed and
will only impact the small number of users that would have visited the site during the attack.	 But for a PWP	 that
contains such malware,	 it can linger and continue re-distribution. It’s also not clear if AV scanning can	 help.

•	 Lack of update mechanisms to	 fix vulnerabilities:	 It’s difficult/impossible to update a	 PWP to fix a security
vulnerability.

https://developers.google.com/safe-browsing

	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

Origins (PWP)
• Each PWP	 needs to be considered as it’s own “site”,	 and cannot talk directly	 to any	 other PWP
o EPUB 3.1: Reading Systems need to behave as if a unique domain were allocated to each Content Document
o Similar	 to opening the OWP content in an incognito/in-private browsing session	 and	 then	 closing the session.
o NOTE 1: This prevents local persistence across document open/reads

o (https://w3c.github.io/webappsec-clear-site-data/#goals)

o NOTE 2 :	 Indirect communication	 through	 a site and	 REST APIs are fine (as it aligns with	 the web	 model)

• How	 to associate	 an origin with a PWP? Does the Web Package solution help?
o Can it scale from individuals	 to publishers?	
o And if we have an actual origin,	 how to then consider each PWP a “sub-domain” for that origin?
o How 	to	make	this 	work 	inside	a 	browser 	environment 	(eg.	 an online bookstore)?
o TLS certs aren’t the same as file/doc signing certs.

• Sub-Origins (https://w3c.github.io/webappsec-suborigins/)
o This	 specification defines	 a mechanism for programmatically defining origins	 to isolate different applications	
running in the same physical origin.

https://w3c.github.io/webappsec-suborigins
https://w3c.github.io/webappsec-clear-site-data/#goals

	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	
	
	

	 	 	 	 	 	

Restricting Network Access (PWP)

• In	 the case of PWP’s,	 should	 we restrict network access?
o All
o All but certain specific use cases (eg.	 fonts	 and streaming media)
o Only when a PWP says	 that it wants	 it
o Only when we trust it

• EPUB	 3.1: Reading Systems that enable scripting and network access also need to consider
including methods to notify the user that	 network activity is occurring and/or that	 allow them to
disable it.

• Other considerations around	 Network Isolation
o Blocking downloads
o Blocking top-level	 navigations
o Whitelisting of	 URL schemes that can be launched

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

Security	 issues	 due	to non-updatability 	(PWP)	

• If we encourage people to embed	 Javascripts in	 their documents,	 we may create a situation	 in	
which	 billions of copies of that JS are distributed	 without any mechanism for ever updating
them.
o Does 	distributing code on a massive scale without any updating mechanism seems wrong?

• Imagine some popular JS library has a serious flaw that isn't caught for a long time. Long
enough	 for many,	 many,	 copies of the buggy JS to be replicated	 in	 documents.	 Some errors
might be:
o a	 calendar-related flaw which only surfaces after a particular date is passed;
o inadvertent reliance on a bug in the JS engine,	 one which is subsequently corrected,	 breaking backward-
compatibility with code that relied on it;

o deliberate 	reliance 	on	a 	third-party site (let's say,	 for analytics),	 but the third party goes out of business
and the domain is picked up by someone else

• There 	isn’t a 	viable 	solution, 	because 	you 	cannot 	update 	the 	library 	behind 	the 	original
author’s back as you don’t know what that will do.
o E.g.,	 they could be using a method that has become deprecated in newer versions. Or the behavior of a
given method changes.

	 	 	
	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

A	 little bit	 on Privacy: Phoning	 Home
• User Behavior Tracking
o Primarily,	 “phone-home” 	checks 	prevent 	silent 	tracking 	of 	user 	actions 	on	the document (e.g.,	 knowing
when a document was opened,	 using IP-to-geolocation where it was opened,	 knowing what the user
read and for how	 long …).

o Phone-home 	checks 	were 	implemented	by 	in	Acrobat 	7.0.5 (2004)	 to solve this	 issue:
o “Phone home notification [means] that when a PDF document attempts to contact an external server for any reason,	 the end user

will be notified via a dialog box that the author of the file is auditing usage of the file,	 and be offered the option of continuing.”

• Spammer Abuse
o Email clients do not automatically download external images that are linked into an HTML email
(https://litmus.com/blog/the-ultimate-guide-to-email-image-blocking). One big reason for	 this	 behavior	
is to defeat a	 spammer technique wherein a	 spammer sends emails in bulk to thousands of	 email	
addresses,	 but with each email containing a unique image link.

• CSRF (https://www.owasp.org/index.php/Cross-Site_Request_Forgery)
o If a user visits a malicious link on the Internet,	 that malicious webpage can mount various kinds of web
attacks like CSRF that rely on the user’s ambient credentials (like cookies or HTTP authentication) being
sent	 along with the request.	

https://www.owasp.org/index.php/Cross-Site_Request_Forgery
https://litmus.com/blog/the-ultimate-guide-to-email-image-blocking

Questions

