
Producing and Consuming DID Documents
from the Abstract Data Model
2020-09-22—Justin, Markus, Drummond

Introduction
The purpose of this document is to seek alignment among the authors of the multiple issues and
PRs dealing with the production and consumption of DID documents in different
representations. This document proposes specific terminology and specific production and
consumption steps to be specified in DID Core (and reflected as necessary in DID Spec
Registries). These steps apply to all representations independent of any specific DID method.

Executive Summary
The proposal is to define the rules for producing and consuming DID documents in different
representation types in terms of conversions to and from the abstract data model (ADM). The
steps in this process are illustrated by the two diagrams below.

Production Function
The example value being converted here (red text) is a date/time stamp defined as an abstract
data type in the ADM into a JSON string in a JSON representation.

For each property in the ADM, the conversion function is:

(property name [string], property value [abstract data type])

 -> (field name [representation label], field value [representation data type])

Consumption Function
This example is the reverse of the above.

For each field in the AST that is not a ​representation-specific AST field​, the conversion
function is:

(field name [representation label], field value [representation data type])

 -> (property name [string], property value [abstract data type])

Terminology
These terms appear in ​bold​ in this document. It is not proposed that all these terms be added to
the Terminology section of DID Core; a decision about that can be made after we have
consensus on the way forward.

Abstract data type.​ A data type defined in the ADM so that any ​ADM property​ using this
abstract data type can be represented in any representation. Complex types can be composed
out of other types, such as an array of URIs.

ADM (abstract data model).​ The data model defined in ​Section 4 of the DID Core
Specification​. Specifically, it is a model for defining: a) ​abstract data types,​ and b) ​ADM
properties​ (mapped to these abstract data types) so they are independent of any specific
representation of a DID document.

https://w3c.github.io/did-core/#data-model
https://w3c.github.io/did-core/#data-model

ADM properties.​ Any property in a DID document that describes the DID subject and is
independent of any specific representation. All ADM properties must have a ​property definition
that maps the property to an ​abstract data type​. ADM properties include ​core properties​,
registered properties​, and ​unregistered properties​. ADM properties do ​not​ include
representation-specific AST fields​.

AST (abstract syntax tree).​ An intermediate data representation format used in the
production steps​ and ​consumption steps​ of DID documents.

AST fields.​ The name-value pairs used in the top level of the AST. The fields themselves are
allowed to have their own structure as required by the definition of the ​abstract data type​ in the
ADM.

Bytestream.​ The final serialization of a DID document in a specific representation type after
completing all ​production steps​ and before beginning any ​consumption steps​.

Consumption rules.​ The rules defined by a specific representation type for transforming ​AST
fields​ into ​ADM properties​.

Consumption steps.​ The set of steps taken by a consumer to transform a
representation-specific ​bytestream​ into an ​ADM​ following the ​consumption rules​ for the
specific representation type. (See the proposal below.)

Core properties.​ The ​ADM properties​ defined in ​Section 5 of the DID Core Specification​.

Production rules.​ The rules defined by a specific representation type for transforming ​ADM
properties​ into ​AST fields​.

Production steps​. The set of steps taken by a producer to transform a ​ADM​ into a
representation-specific ​bytestream​ following the ​production rules​ for the specific
representation type. (See the proposal below.)

Property definition.​ The definition of property name and ​abstract data type​ that MUST be
defined for any ​ADM property​.

Registered properties.​ All properties registered in the ​DID Spec Registries​. The registered
properties include all ​core properties​.

Representation-specific AST fields.​ ​AST fields​ that are ​not​ ​ADM properties​, but which are
defined by specific representations for their own use. Examples of representation-specific AST
fields include ​@context ​ for JSON-LD representations and ​$schema ​ for JSON-schema
representations.

Unregistered properties.​ Any ​ADM property​ defined by a specific DID method or DID
controller that is not a ​registered property​. The DID method specification or DID controller is
responsible for providing the ​property definition​ that maps to an ​abstract data type​.

https://w3c.github.io/did-core/#core-properties
https://www.w3.org/TR/did-spec-registries/

Production Steps
1. The producer generates the ​ADM ​for a specific DID document.
2. For each ​ADM property​, the producer gets the ​property definition​ to determine the

abstract data type​.
3. The producer follows the ​production rules​ defined for the representation type to

convert:
a. The name (string) of the ​ADM property​ into the label of an ​AST field​.

i. If the resulting ​AST field​ is a ​representation-specific AST field​, the
producer throws an error.

b. The value of the ​ADM property​ into the value of an ​AST field​ based on the
abstract data type​ of the ​ADM property​ from its ​property definition​.

4. The producer adds the ​AST field​ to the ​AST​.
5. After all ADM properties are added, the producer follows the ​production rules​ to add

any ​representation-specific AST fields​ to the ​AST​.
6. The producer follows the ​production rules​ to serialize the ​AST​ into the ​bytestream​.
7. The resulting ​bytestream​ is the ​representation​.

Consumption Steps
1. The consumer follows the ​consumption rules​ for the representation type to deserialize

(parse) the ​bytestream​ into an ​AST​.
2. The consumer follows the ​consumption rules​ to process any ​representation-specific

AST fields​.
a. Processing the ​representation-specific AST fields​ MAY alter the labels and

values of other ​AST fields​, for example by prepending a base context URL.
b. If the consumer finds any unrecognized ​representation-specific AST fields​ (as

declared by other registered representations), the consumer MUST throw an
error.

3. For each remaining ​AST field​ (that is not a ​representation-specific AST field​), the
consumer follows the ​consumption rules​ to determine the ​abstract data type​.

4. The consumer follows the ​consumption rules​ to convert:
a. The label of the ​AST field​ into the name (string) of an ​ADM property​.
b. The value of the ​AST field​ into the value of an ​ADM property​.

i. If the consumer knows the ​abstract data type​ of the ​ADM property​ from
its ​property definition​, the consumer MUST convert the value as defined
by the ​abstract data type​.

ii. If the consumer does not know the ​abstract data type​ of the ​ADM
property​ from its ​property definition​, the consumer MUST convert the
value to a default ​abstract data type​ based on the type of the ​AST field​,
as defined by the ​consumption rules​.

5. The producer adds the ​ADM property ​to the ​ADM​.
6. The resulting ​ADM​ is the ​DID Document​.

Normative Rules for Representation Types
1. Representation types MAY define their own ​representation-specific AST fields​.

a. Any ​representation-specific AST fields​ MUST be declared and registered with
the representation.

2. Representation types MUST define the ​production rules​ and ​consumption rules​ for
their representation type.

a. These rules MUST cover all ​abstract data types​ defined in the ​ADM​.
b. The ​consumption rules​ MUST declare a default ​abstract data type​ for each

possible data type in the ​AST​.

Normative Rules for DID Methods
1. DID method specifications MAY define their own ​registered properties​ and/or

unregistered properties​.
a. These properties MUST include a ​property definition​ mapping to an ​abstract

data type​.
2. DID method specifications MUST NOT modify the ​production rules​ or ​consumption

rules​ for any representation type. In other words, production and consumption of DID
documents into/from specific representation types MUST be entirely independent of any
DID method.

