Post-Quantum Cryptography in VC PQ and PQ/T hybrid approaches

Andrea Vesco, Ph.D.

Head of Cybersecurity Research @ LINKS Foundation

QUBIP project coordinator

andrea.vesco@linksfoundation.com

Quantum-oriented Update to Browsers and Infrastructure for the PQ Transition

Quantum computing: 2 sides of the same moon

- The quantum computer is a major revolution, paving the way for new discoveries in a wide range of disciplines.
- One small problem: the Cryptographically Relevant Quantum Computer (CRQC) will break most of the cryptography used to secure the Internet today. Asymmetric cryptography is at risk.

Quantum threat mitigation: PQC

- 1. Cryptographers: PQC a new class of algorithms based on a set of hard problems which should be immune to quantum threats.
- 2. Engineers: integration of PQ algorithms in protocols, networks, and systems while ensuring crypto-agility, pliability and possibly using hybrid schemes.
 - Crypto-agility: ability to reconfigure software by plugging in PQC algorithms without extensive code refactoring.
 - Pliability: transition must be aligned with network management best practices, supports established network services, and be integrated through standardized approaches.
 - PQ/T hybrid schemes: combine both PQ and traditional algorithms in a single crypto scheme. It is secure as long as the the security of one of the algorithms holds.

PQC Algorithms: key agreement and signatures

Federal Register Notices

 August 13, 2024
 The Secretary of Commerce approved three Federal Information Processing Standards (FIPS) for post-quantum cryptography:

- FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism Standard
- FIPS 204, Module-Lattice-Based Digital Signature Standard
- FIPS 205, Stateless Hash-Based Digital Signature Standard

draft FIPS 206 standard built around FALCON

Code-Based	Lattice-Based	MPC-in-the-Head	<u>Multivariate</u>
CROSS	EagleSign	Biscuit	3WISE
Enhanced pqsigRM	EHTv4	MIRA*	DME-Sign
FuLeeca	HAETAE	MiRitH*	HPPC
LESS	HAWK	MQOM	MAYO
MEDS	HuFu	PERK	PROV
WAVE	Raccoon	RYDE	QR-UOV
	SQUIRRELS	SDitH	SNOVA
<u>Other</u>			TUOV
ALTEQ	Symmetric-Based	Isogeny-Based	UOV
eMLE-Sig 2.0	AlMer	SQIsign	VOX
KAZ-SIGN	Ascon-Sign		
PREON	FAEST		
Xifrat1-Sign.I	SPHINCS-alpha		

Transition to PQC

- Store-Now-Decrypt-Later: data encrypted today can be decrypted by a quantum computer in the future.
- Key agreement (urgent) prioritized over signatures for authentication (before CRQC).
- Transition takes time:
 - Very diverse: many different implementation with performance constraints and update cycles.
 - Protocol ossification: despite being designed to be upgradeable, any flexibility that isn't used in practice, is probably broken, because of faulty implementations [by Bas Westerbaan Cloudflare].

CRQC and decentralized identity

- Quantum computers threaten traditional asymmetric cryptography mainly through the Shor's algorithm for factoring integers and solving discrete logarithms and Grover's search.
- The main cryptographic algorithms in VCs are the digital signatures.
- Consequently, VCs are vulnerable to Shor's algorithm, but not to the store-now-decrypt-later attacks since key agreement for encryption is not involved in any interaction among Issuers, Holders, and Verifiers.
- Therefore, the transition of decentralized identity to PQC means switching from traditional to PQ identity key pair generation and digital signature for VCs and VPs.

Pure PQ approach

Plaintext VC

Two assumptions

- The transition to PQC involves the selection of the appropriate PQ signature algorithm to be used by the Issuer and Holder to sign the VC and VP respectively, and by the Verifier to verify the signatures for authentication purposes.
- In a target web scenario, a Holder will request access to a Verifier with a higher frequency than the frequency with which he/she requests the issuance of a VC to the Issuer.

Quantum-oriented Update to Browsers and Infrastructure for the PQ Transition

The requirements

Given a NIST security level, the requirements in order of priority are:

- the signature verification time must be as short as possible to increase the number of Holders a Verifier can authenticate in a unit of time. A Verifier must verify the signature on the VC and on the VP;
- 2. the signature generation time must be as short as possible to (*i*) increase the number of VCs an Issuer can issue in a unit of time, and to (*ii*) decrease the time a Holder spends preparing the VP;
- 3. the signature size should be as small as possible to reduce the overall size of the VC and VP;
- 4. the public key size should be as small as possible to reduce the size of DID documents and of DIDs in case of DLT-less methods (*e.g.*, did:jwk).

Algorithm	NIST	JWK(Public Key)	Sign Size	Key Pair Generate	Sign Generate	Sign Verify	
	Security Level	Size (Bytes)	(Bytes)	(ms)	(ms)	(ms)	
Ed25519	-	145	64	0,042	0,042	0,070	
FALCON 512	1	1291	752	13,361	0,685	0,086	
SLH-DSA-SHA2-128f	1	147	17088	2,745	61,541	3,686	
SLH-DSA-SHA2-128s	1	147	7856	167,310	1263,700	1,331	
SLH-DSA-SHAKE-128f	1	148	17088	3,802	86,079	5,023	
SLH-DSA-SHAKE-128s	1	148	7856	238,820	1807,600	1,848	
ML-DSA-44	2	1845	2420	0,252	0,694	0,151	
ML-DSA-65	3	2698	3293	0,373	1,028	0,241	
SLH-DSA-SHA2-192f	3	168	35664	3,892	100,110	5,375	
SLH-DSA-SHA2-192s	3	168	16224	241,470	2250,100	1,925	
SLH-DSA-SHAKE-192f	3	169	35664	5,575	141,390	7,815	
SLH-DSA-SHAKE-192s	3	169	16224	348,670	3124,700	2,613	
FALCON 1024	5	2487	1462	40,792	1,140	0,168	
ML-DSA-87	5	3551	4595	0,503	1,263	0,405	
SLH-DSA-SHA2-256f	5	190	49856	10,001	204,800	5,490	
SLH-DSA-SHA2-256s	5	190	29792	159,610	1990,700	2,796	
SLH-DSA-SHAKE-256f	5	191	49856	14,513	291,390	7,824	
SLH-DSA-SHAKE-256s	5	191	29792	230,200	2766,500	3,815	

Selection of algorithms for PQ VCs / VPs

- ML-DSA-44 sl-2 equivalent to SHA-256/SHA3-256 collision search
- ML-DSA-65 sl-3 equivalent to AES192 key search
- ML-DSA-87 sl-5 equivalent to AES256 key search

PQ/T hybrid approach

Plaintext VC

The reason behind PQ/T hybrid

- Although the PQ signature algorithms standardized by the NIST have undergone rigorous reviews in recent years, they are not as much mature as the traditional algorithms.
- Hybrid schemes:
 - combine both PQ and traditional signature algorithms in a single cryptographic scheme;
 - are secure as long as the security of one of the algorithms holds;
 - hybrid authentication: authentication is achieved by the hybrid signature scheme, provided that at least one signature algorithm remains secure; an adversary must violate both signatures to forge a credential and impersonate another user's identity.
- PQ/T Hybrid in VC: if the PQ assumption is found to be flawed in the future, the composition of the signature algorithms ensures that the scheme is as secure as the traditional signature algorithm (option for the transition period)

Hybrid scheme design

- There are several ways to combine algorithms to build a hybrid scheme.
- Hybrid signature scheme combining PQ and traditional signatures using the concatenation combiner to achieve the Weak Non-Separability (WNS) property.
- Non-Separability property defined for hybrid signatures prevents an adversary from removing the signature generated by the secure algorithms, forcing the Verifier to rely only on the signature generated by the broken algorithm (stripping attack).
- WNS property implies that an adversary cannot remove one of the signatures without the Verifier noticing.
- Through the adoption of an artifact, the evidence of the will of Issuers and Holders to hybridize their signature on VC and VP respectively.
- Our design places the artefact at the protocol level within the DID document.

Composite ML-DSA For use in X.509 Public Key Infrastructure and CMS draft-ietf-lamps-pq-composite-sigs-03

compositeJwk object

```
"id": "did:method_name:method_specific_id",
"authentication": [{
  "id": "did:method_name:method_spec_id#keys-1",
  "controller": "did:method_name:method_spec_id",
 // the new type in the verification method
  "type": "CompositeSignaturePublicKey",
  "compositeJwk": {
    "alqId": "id-MLDSA44-Ed25519-SHA512",
    "pqPublicKey": { // contain a JsonWebKey
      "kty": "ML-DSA",
      "alq": "ML-DSA-44",
      "kid": ".. key thumbprint ...",
      "pub": ".. encoded public key ..." },
    "traditionalPublicKey": { // contain a JsonWebKey
      crv": "Ed25519",
      "x": "... x coordinate ...",
      "kty": "OKP",
      "kid": ".. key thumbprint ..." }
```

Hybrid signature and verification

$$\sigma_h = (\sigma_{pq}, \sigma_t) \tag{1}$$

$$m' = hash(m)$$

$$\sigma_{pq} \leftarrow Sign(sk_{pq}, A_{pq}, DER(OID)||m') \qquad (2)$$

$$\sigma_t \leftarrow Sign(sk_t, A_t, DER(OID)||m')$$

$$m' = hash(m)$$

Verify(pk_{pq}, DER(OID)||m', σ_{pq}, A_{pq}) (3)
Verify(pk_t, DER(OID)||m', σ_t, A_t)

https://github.com/Cybersecurity-LINKS/did-compositejwk/blob/main/spec.md

٦

did:compositejwk method

did-compositejwk / spec.md ... 🛍 andreavesco Update spec.md 46ec09d · 2 months ago () History Raw 🖸 🛃 🖉 👻 🗄 Preview Code Blame 119 lines (85 loc) · 3.27 KB **DID Method Specification** did:compositejwk is a deterministic transformation of a compositeJwk into a DID Document. compositeJwk The compositeJwk is a new Verification Material property introduced to handle Post-Quantum/Traditinal (PQ/T) hybrid keys. This object contains the PQ and traditional public keys, both JWK encoded, and the algld string representing the name of algorithms used to generate the hybrid signature. Q "compositeJwk": { "algId": ".. composite key OID ..", "pqPublicKey": { ".. PQ JWK encoded key .." }, "traditionalPublicKey": { ".. Traditional JWK encoded key ..." } } **DID Format**

did-compositejwk-format := did:compositejwk:<base64url-value>
base64url-value := [A-Za-z0-9_-]+

The base64url-value is a base64url encoded compositeJwk.

Selection of algorithms for PQ/T hybrid VCs / VPs

The same requirements and principles for the selection of the PQ signature algorithms discussed for PQ apply to PQ/T hybrid case:

- id-MLDSA44-Ed25519-SHA512
- id-MLDSA65-Ed25519-SHA512

Implementation in IOTA Identity framework

https://github.com/QUBIP/pq-identity.rs

Coherent with key pair generation time			Coherent with signature generation time					
		•			↓ 		↓ 	
Algorithm	DID Doc Size (Bytes)	DID Create (ms)	JWT(VC) Size (Bytes)	JWT(VP) Size (Bytes)	JWT(VC) Generate (ms)	JWT(VC) Verify (ms)	JWT(VP) Generate (ms)	JWT(VP) Verify (ms)
Ed25519	778	0,063	871	1894	0,091	0,115	0,100	0,223
ML-DSA-44	2478	0,289	4018	9236	0,741	0,178	0,762	0,403
ML-DSA-65	3331	0,425	5182	11952	1,118	0,268	1,129	0,607
ML-DSA-87	4184	0,561	6918	16003	1,306	0,431	1,358	0,954
AlgID-1	2766	0,347	4189	9621	0,805	0,275	0,847	0,582
AlgID-2	3619	0,486	5353	12337	1,183	0,361	1,220	0,888
	Ť		1	1		1		1
Coherent with Cohe		Cohere	ent with			Coherent with	า	
size o	of PQ public	keys	size of PQ	signature		signa	ture generatio	n time

Conclusions

- Transition of VCs / VPs to PQC using NIST selected algorithms with a practical implementation.
- Both PQ and PQ/T hybrid approaches.
- PQ/T hybrid leverage a new compositeJwk object as an artifact to achieve WNS.
- PQ/T hybrid performance comparable to pure PQ performance while ensuring today's level of security in case ML-DSA (lattice in general) is found to be theoretically flawed in the future.

Zero-Knowledge VC

- BBS+
- https://github.com/Cybersecurity-LINKS/json-proof-token
- https://github.com/Cybersecurity-LINKS/zkryptium
- adopted by 3 SSI frameworks: IOTA Identity, SpruceID, Hushmesh Inc.

Ongoing work on PQ ZK VC with SD

A Framework for Practical Anonymous Credentials from Lattices https://eprint.iacr.org/2023/560

Efficient, privacy preserving, and quantumresistant revocation

