

 SoftPass 0.5 Implementation Guide 1

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

Parallelspace Corporation
Technical Note TN0016

SoftPass 0.5 Implementation
Guide
SoftPass Version 0.5.6

Document Version 1.0

Michael Herman
Parallelspace Corporation
mwherman@parallelspace.com

Abstract

This document provides an overview of the technical deliverables for SoftPass
0.5 – version 0.5 of Parallelspace’s peer activated software services solution.

Parallelspace Corporation - Confidential Information

This document is the confidential, unpublished work of Parallelspace
Corporation. It is provided to specific organizations for their review and
comment only. Further distribution of this document is prohibited.

This version of this document can only be distributed to and used by the 10
original “Rotterdam” Groove Developer Partners.

 SoftPass 0.5 Implementation Guide 2

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

SOFTPASS 0.5 ARCHITECURE AND DELIVERABLES.......................... 3

WHAT IS SOFTPASS? ... 6
Goals of SoftPass ...6

TECHNICAL ARCHITECTURE... 7

USING SOFTPASS IN YOUR GROOVE WORKSPACE TOOL 8
Best Practices ...8
Sample Code...8

SOFTPASS FUNCTION DOCUMENTATION ... 10
function SoftPassInitialize() ...10
function SoftPassTerminate() ...10
function SoftPassCheckActivation(lAuthType, sUserId, sPassword,
sProduct, sVersion, lfEditions)...10
function SoftPassGetProductEditions(lAuthType, sUserId, sProduct,
sVersion)...13
function SoftPassGetProductSolutionCount(lAuthType, sUserId, sProduct,
sVersion, lEdition)..15
function SoftPassGetProductSolutionName(lAuthType, sUserId, sProduct,
sVersion, lEdition, iSolutionIndex)...17
function SoftPassGetProductSolutionVersion(lAuthType, sUserId,
sProduct, sVersion, lEdition, iSolutionIndex) ...18
function SoftPassGetProductSolutionOEMOrgFriendlyName(lAuthType,
sUserId, sProduct, sVersion, lEdition, iSolutionIndex)...19
function SoftPassGetProductSolutionSKU(lAuthType, sUserId, sProduct,
sVersion, lEdition, iSolutionIndex)...20
function SoftPassGetProductSolutionURN(lAuthType, sUserId, sProduct,
sVersion, lEdition, iSolutionIndex)...21
function SoftPassGetProductSolutionUserSector(lAuthType, sUserId,
sProduct, sVersion, lEdition, iSolutionIndex) ...22
function SoftPassGetProductSolutionEdition(lAuthType, sUserId,
sProduct, sVersion, lEdition, iSolutionIndex) ...23
function SoftPassGetDLLVersionFromPath(sDLLPath)24
function SoftPassGetDLLVersionFromProgID(sDLLProgID).............................25
function SoftPassVerifyDLLFromPath(sDLLPath) ...25
function SoftPassVerifyDLLFromProgID(sDLLProgID).......................................25
function SoftPassVerifyHash(sDLLProgID) ..26

CONTENTS

 SoftPass 0.5 Implementation Guide 3

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

The business and technical goals of SoftPass 0.5 are to enable
Software Developers with a rich set of peer activated software services
that can be integrated into their products and deployed as quickly as
possible.

The technical deliverables consist of 3 components:
1. SoftPass 0.5 client DLL
2. SoftPass Software Activation client tool
3. SoftPass Issuer back-end services

The SoftPass 0.5 client DLL exports methods that a developer can call
from their initialization code (or anywhere in their code) to determine if
the Software Product has been activated for use by the current user and
if so, which edition(s) of the software product the end user is entitled to
use. The developer of the software product initializes the appropriate
internal or global data structures as required to control how a product
behaves for the user. Of course, this should be based on the edition of
the product the user is entitled to use. SoftPass 0.5 provides support for
the following editions of a software product. Additional editions can be
added in SoftPass 1.0. It is entirely up to the Software Developer to
determine which editions and edition names make sense for their
products and their customers.

Preview Bronze
Standard Silver
Professional Gold
Advanced Platinum
Server Titanium

With SoftPass 0.5, Customers purchase Software Solutions directly

from the Software Developer or a Software Developer distributor or
dealer (i.e. no eCommerce services are available with SoftPass 0.5 but
they will be available with SoftPass 1.0). As part of the purchase
transaction, the Customer agrees to the traditional End User License
Agreement (EULA) terms and conditions and downloads and injects the
Software Solution (and component products) in whichever order makes
sense for the Software Developer, their Software Solutions and Products
as well as their Customers. The EULA can be presented immediately as
part of the purchase transaction, as a pre-requisite before downloading
the software product(s) or when asked to after the software product has
been downloaded, installed and run for the first time.

A Software Solution can consist of a single product or possibly multiple
products from multiple Software Developers. In SoftPass 0.5, a Software
Solution can include one, two or three Software Products.

The SoftPass client DLL will search all of the client machine’s
SoftPasses for the first SoftPass that has a matching GrooveIdentity
URN, product name, product version and if specified, a particular product

SOFTPASS 0.5
ARCHITECURE AND
DELIVERABLES

 SoftPass 0.5 Implementation Guide 4

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

edition. If the product edition is not part of the query (i.e., the product
edition parameter is set to zero), the activation method call will return a
union of all of the SoftPass editions that match the requested
GrooveIdentity URN, product name, and product version.

By default, the freshly installed software product(s) should have a
default set of partial (or complete) functionality enabled that allows both
a solitary user as well as a team of users to experience and evaluate the
Software Solution. The usual expectation is that the default set of
functionality will be the same as for the Preview edition of the product.

At this point, the software product(s) for the Software Solution
purchased by the Customer have been downloaded and installed but the
Customer or End User has not activated the software; hence, only the
Preview level or subset of the functionality is available. The End User
now needs to activate the solution to enable the set of functionality that
corresponds to the edition of the product they have purchased. The End
User uses the SoftPass Activation tool to do this.

The SoftPass Activation tool is a free Groove Workspace tool that uses
a wizard to lead End Users through the steps of the software activation
process. In SoftPass 0.5, an End User can request activation for a single
user: themselves. In SoftPass 1.0, an End User will be able to request
activation for any list of Groove users.

Why a Groove tool? The SoftPass Activation tool is implemented as a
Groove tool for the following reasons:

• A SoftPass is issued to a particular GrooveIdentity URN and
the only practical, user friendly way to provide this information
to the SoftPass Issuer back-end is through a Groove tool.

• To enable activation of more than one user in SoftPass 1.0,
the user needs to be able to select a list of users in much the
same way they select the list of users to invite into a shared
space or to send a Groove message to.

• Future versions of SoftPass will also enable activation from
directly with a Software Developer’s Software Product.

A SoftPass activation request includes the End User’s GrooveIdentity,
name, affiliation, address, email address, Software Solution name,
version and edition information as well as the start date and duration
time period to be used to create the End User’s SoftPass.

The SoftPass Issuer back-end services component is an Internet-
hosted XML web services server that receives the activation requests
from the SoftPass Activation tool and forwards the request to the
Software Developer or Software Publisher for authorization to create and
issue a SoftPass for the specific Groove user, Software Solution, version
and edition. Upon receiving authorization from the Software Developer
or Software Publisher responsible for the Software Solution, the SoftPass
Issuer will send a notification to the End User advising them that a
SoftPass has been issued to them for the particular Software Solution as

 SoftPass 0.5 Implementation Guide 5

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

well as information about how to download and install the SoftPass.
This completes the SoftPass software activation process.

 SoftPass 0.5 Implementation Guide 6

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

Parallelspace SoftPass is a peer activated software services solution for
P2P, decentralized software solutions. The business and technical goals
of SoftPass 0.5 are to enable Software Developers with a rich set of peer
activated software services that can be integrated into their products and
deployed as quickly as possible.

A decentralized software solutions business ecosystem needs to include:

1. Software Developers who conceive, develop, own and service
their Software Solutions

2. Software Publishers who market, sell and provide first level
support for the Software Solutions

3. Software eCommerce Partner(s) who provide the eCommerce
infrastructure for Customer wishing to purchase a Software
Solution from a Software Publisher

4. SoftPass Issuer(s) who operate the Software Activation
Clearinghouse that provides software activation services for
Software Developers, Software Publishers and their Customers.

A software developer or publisher might choose to provide all of the
above services or alternatively choose to delegate one or more of these
services to one or more partner companies.

CustomerCustomer

Software
Developer/OEM

Software
Developer/OEM

Software
Publisher
Software
Publisher

Software eCommerce
Partner

Software eCommerce
Partner

Software Activation
Partner

Software Activation
Partner

Goals of SoftPass
The business and technical goals of SoftPass 0.5 are to enable Software
Developers with a rich set of peer activated software services that can be
integrated into their products and deployed as quickly as possible.

WHAT IS SOFTPASS?

 SoftPass 0.5 Implementation Guide 7

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

The technical deliverables consist of 2 components:
1. SoftPass 0.5 client DLL
2. SoftPass Groove Script Library (.gsl)

The SoftPass 0.5 client GSL exports methods that a developer can call
from their initialization code (or anywhere in their code) to determine if
the Software Product has been activated for use by the current user and
if so, which edition(s) of the software product the end user is entitled to
use. The developer of the software product initializes the appropriate
internal or global data structures as required to control how a product
behaves for the user. Of course, this should be based on the edition of
the product the user is entitled to use. SoftPass 0.5 provides support for
the following editions of a software product. Additional editions can be
added in SoftPass 1.0. It is entirely up to the Software Developer to
determine which editions and edition names make sense for their
products and their customers.

Preview Bronze
Standard Silver
Professional Gold
Advanced Platinum
Server Titanium

The SoftPass client DLL will search all of the client machine’s SoftPasses
for the first SoftPass that has a matching GrooveIdentity URN, product
name, product version and if specified, a particular product edition. If the
product edition is not part of the query (i.e., the product edition
parameter is set to zero), the activation method call will return a union of
all of the SoftPass editions that match the requested GrooveIdentity
URN, product name, and product version.

TECHNICAL
ARCHITECTURE

 SoftPass 0.5 Implementation Guide 8

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

SoftPass is a natural addition to any Groove Workspace Tool considering the
P2P nature of Groove. It facilitates the easy distribution of your application and
ensures that your application is always appropriately licensed.

Best Practices
To ensure that SoftPass has not be been tampered with we highly recommend

that you follow the steps below. After initializing the SoftPass DLL you should check
that the DLL has been signed and can be trusted using
SoftPassVerifyDLLFromProgID(ProgID). Once that is successful you should
ensure that the Hash value of the DLL is consistent with the SoftPass DLL shipped
so you should call SoftPassVerifyHash(ProgID).

Once you have completed these steps and everything has returned successfully
only then can you trust the DLL and the values it returns. If any of the above
functions fail the SoftPass DLL has been tampered with and should not be trusted.

Sample Code

USING SOFTPASS IN
YOUR GROOVE
WORKSPACE TOOL

 SoftPass 0.5 Implementation Guide 9

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

// Initialize the SoftPass

if(SoftPassInitialize() == gkfSoftPass_Success)

{

 // Check if the DLL is signed

 if(SoftPassVerifyDLLFromProgID("PSNSoftPass.SoftPass") ==
gkfSoftPass_Success)

 {

 // Verify the DLL's Hash

 if(SoftPassVerifyHash("PSNSoftPass.SoftPass") ==
gkfSoftPass_Success)

 {

 // Check the users activation level

 fActivation = SoftPassCheckActivation(lAuthType, sUserId,

 sPassword, sProduct,

 sVersion, lfEditions);

 if ((fActivation == gkfSoftPass_ActivationDenied) ||

 (fActivation == gkfSoftPass_BadDLL) ||

 (fActivation == gkfSoftPass_ActivationExpired))

 {

 fActivation |= gkfSoftPass_ActivationPre;

 lReturnCode = 1;

 }

 }

 else

 {

 fActivation = gkfSoftPass_ActivationPre | gkfSoftPass_BadDLL;

 lReturnCode = 0;

 }

 }

}

 SoftPass 0.5 Implementation Guide 10

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

function SoftPassInitialize()
SoftPassInitlialize must be called prior to any other call to SoftPass.
SoftPassInitilize first creates the SoftPass DLL reference. This function
also iniliazes internal sturtures within the SoftPass DLL.
Parameters
 None.
Returns
 gkfSoftPass_Success – On success

gkfSoftPass_Failure – On failure
Notes:

gkfSoftPass_Failure usually occurs if the SoftPass DLL has not been
registered properly or has been corrupted.

function SoftPassTerminate()
SoftPassTerminiate ensures that all the structures used in the SoftPass
DLL and are deleted and all memory allocated is freed.
Parameters
 None.
Returns
 gkfSoftPass_Success – On success

gkfSoftPass_Failure – On failure
Notes:

None.

function SoftPassCheckActivation(lAuthType, sUserId,
sPassword, sProduct, sVersion, lfEditions)
SoftPassCheckActivation enumerates all the SoftPass this user has then
searches them for the criteria specified in the call.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove
gkfSoftPass_SoftPassAuthType_Email Reserved for future

use do not use
gkfSoftPass_SoftPassAuthType_Passport Reserved for future

use do not use

SOFTPASS FUNCTION
DOCUMENTATION

 SoftPass 0.5 Implementation Guide 11

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

 sPassword [in]
Type – String
Description – This is the user’s password, required for

gkfSoftPass_SoftPassAuthType_Email,
gkfSoftPass_SoftPassAuthType_Passport.
Reserved for future user do not use, must be
empty string.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lfEditions [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
Optionally this parameter can be 0(zero) which will
have this function return all valid editions available
to this user.

Returns

If the value for lfEditions is 0 then the following values will be
bitwise or’ed together.

Value Meaning
gkfSoftPass_ActivationDenied This will be returned if a

SoftPass can not be found
with the parameters
specified in the function
call.

gkfSoftPass_ActivationPre This will be returned if the
preview edition is
authorized for the

 SoftPass 0.5 Implementation Guide 12

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

parameters specified in
the function call.

gkfSoftPass_ActivationStd This will be returned if the
standard edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationPro This will be returned if the
professional edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationAdvanced This will be returned if the
advanced edition is
authorized for the
parameters specified in
the function call. This will
be returned if the preview
edition is authorized for
the parameters specified
in the function call.

gkfSoftPass_ActivationServer This will be returned if the
server edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationBronze This will be returned if the
bronze edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationSilver This will be returned if the
silver edition is authorized
for the parameters
specified in the function
call.

gkfSoftPass_ActivationGold This will be returned if the
gold edition is authorized
for the parameters
specified in the function
call.

gkfSoftPass_ActivationPlatinum This will be returned if the
platinum edition is
authorized for the
parameters specified in

 SoftPass 0.5 Implementation Guide 13

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

the function call.
gkfSoftPass_ActivationTitanuium This will be returned if the

titanium edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationExpired This will be returned if the
user has SoftPass but it
has expired for the
parameters specified in
the function call.

gkfSoftPass_BadDLL If the DLL is corrupt.
gkfSoftPass_ActivationOverdrive Reserved for future use
gkfSoftPass_ActivationFutureVersion Reserved for future use

Notes:

None.

function SoftPassGetProductEditions(lAuthType, sUserId,
sProduct, sVersion)
SoftPassGetProductEditions returns the editions this person is authorized
for.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove
gkfSoftPass_SoftPassAuthType_Email Reserved for future

use do not use
gkfSoftPass_SoftPassAuthType_Passport Reserved for future

use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The

 SoftPass 0.5 Implementation Guide 14

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

Returns

If more than one edition is authorized for this user then the
return value will be bitwise or’ed together.

Value Meaning
gkfSoftPass_ActivationDenied This will be returned if a

SoftPass can not be found
with the parameters
specified in the function
call.

gkfSoftPass_ActivationPre This will be returned if the
preview edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationStd This will be returned if the
standard edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationPro This will be returned if the
professional edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationAdvanced This will be returned if the
advanced edition is
authorized for the
parameters specified in
the function call. This will
be returned if the preview
edition is authorized for
the parameters specified
in the function call.

gkfSoftPass_ActivationServer This will be returned if the
server edition is
authorized for the
parameters specified in

 SoftPass 0.5 Implementation Guide 15

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

the function call.
gkfSoftPass_ActivationBronze This will be returned if the

bronze edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationSilver This will be returned if the
silver edition is authorized
for the parameters
specified in the function
call.

gkfSoftPass_ActivationGold This will be returned if the
gold edition is authorized
for the parameters
specified in the function
call.

gkfSoftPass_ActivationPlatinum This will be returned if the
platinum edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationTitanuium This will be returned if the
titanium edition is
authorized for the
parameters specified in
the function call.

gkfSoftPass_ActivationExpired This will be returned if the
user has SoftPass but it
has expired for the
parameters specified in
the function call.

gkfSoftPass_BadDLL If the DLL is corrupt.
gkfSoftPass_ActivationOverdrive Reserved for future use
gkfSoftPass_ActivationFutureVersion Reserved for future use

Notes:

None.

function SoftPassGetProductSolutionCount(lAuthType,
sUserId, sProduct, sVersion, lEdition)
SoftPassGetProductSolutionCount returns the number of the solutions
that this product and version belong to. This function is used so that a

 SoftPass 0.5 Implementation Guide 16

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

developer can enumerate through solutions.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove

gkfSoftPass_SoftPassAuthType_Email Reserved for future
use do not use

gkfSoftPass_SoftPassAuthType_Passport Reserved for future
use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
This parameter must be set.

Returns

A zero based index of all the solutions that the specified product
is associated with.

Notes:
None.

 SoftPass 0.5 Implementation Guide 17

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

function SoftPassGetProductSolutionName(lAuthType,
sUserId, sProduct, sVersion, lEdition, iSolutionIndex)
SoftPassGetProductSolutionName returns the name of the solution at
iSolutionIndex.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove

gkfSoftPass_SoftPassAuthType_Email Reserved for future
use do not use

gkfSoftPass_SoftPassAuthType_Passport Reserved for future
use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
This parameter must be set.

iSolutionIndex [in]
Type – Integer
Description – This parameter

Returns

The solution name for the given index value.
Notes:

 SoftPass 0.5 Implementation Guide 18

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

None.

function SoftPassGetProductSolutionVersion(lAuthType,
sUserId, sProduct, sVersion, lEdition, iSolutionIndex)
SoftPassGetProductSolutionVersion returns the solution version at
iSolutionIndex.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove
gkfSoftPass_SoftPassAuthType_Email Reserved for future

use do not use
gkfSoftPass_SoftPassAuthType_Passport Reserved for future

use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
This parameter must be set.

iSolutionIndex [in]
Type – Integer
Description – This parameter

 SoftPass 0.5 Implementation Guide 19

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

Returns

The solution’s version for the given index value.
Notes:

None.

function SoftPassGetProductSolutionOEMOrgFriendlyName(
lAuthType, sUserId, sProduct, sVersion, lEdition,
iSolutionIndex)
SoftPassGetProductSolutionOEMOrgFriendlyName returns the OEM
Friendly Name of the solution at iSolutionIndex.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove

gkfSoftPass_SoftPassAuthType_Email Reserved for future
use do not use

gkfSoftPass_SoftPassAuthType_Passport Reserved for future
use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.

 SoftPass 0.5 Implementation Guide 20

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

This parameter must be set.

iSolutionIndex [in]
Type – Integer
Description – This parameter

Returns

The solution’s OEM friendly name for the given index value.
Notes:

None.

function SoftPassGetProductSolutionSKU(lAuthType,
sUserId, sProduct, sVersion, lEdition, iSolutionIndex)
SoftPassGetProductSolutionSKU returns the SKU of the solution at
iSolutionIndex.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove

gkfSoftPass_SoftPassAuthType_Email Reserved for future
use do not use

gkfSoftPass_SoftPassAuthType_Passport Reserved for future
use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

 SoftPass 0.5 Implementation Guide 21

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
This parameter must be set.

iSolutionIndex [in]
Type – Integer
Description – This parameter

Returns

The solution’s SKU number for the given index value.
Notes:

None.

function SoftPassGetProductSolutionURN(lAuthType,
sUserId, sProduct, sVersion, lEdition, iSolutionIndex)
SoftPassGetProductSolutionURN returns the URN of the solution at
iSolutionIndex
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove
gkfSoftPass_SoftPassAuthType_Email Reserved for future

use do not use
gkfSoftPass_SoftPassAuthType_Passport Reserved for future

use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

 SoftPass 0.5 Implementation Guide 22

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
This parameter must be set.

iSolutionIndex [in]
Type – Integer
Description – This parameter

Returns

The solution’s URN for the given index value.
Notes:

None.

function SoftPassGetProductSolutionUserSector(lAuthType,
sUserId, sProduct, sVersion, lEdition, iSolutionIndex)
SoftPassGetProductSolutionURN returns the user sector of the solution at
iSolutionIndex.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove
gkfSoftPass_SoftPassAuthType_Email Reserved for future

use do not use
gkfSoftPass_SoftPassAuthType_Passport Reserved for future

use do not use

sUserId [in]
Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]

 SoftPass 0.5 Implementation Guide 23

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
This parameter must be set.

iSolutionIndex [in]
Type – Integer
Description – This parameter

Returns

The solution’s user sector for the given index value.
Notes:

None.

function SoftPassGetProductSolutionEdition(lAuthType,
sUserId, sProduct, sVersion, lEdition, iSolutionIndex)
SoftPassGetProductSolutionURN returns the edition of the solution at
iSolutionIndex.
Parameters

lAuthType [in]
Type – Long
Description – Flag value indicating the authentication type

Value Meaning
gkfSoftPass_SoftPassAuthType_Groove

gkfSoftPass_SoftPassAuthType_Email Reserved for future
use do not use

gkfSoftPass_SoftPassAuthType_Passport Reserved for future
use do not use

sUserId [in]

 SoftPass 0.5 Implementation Guide 24

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

Type – String
Description – The users Groove Identity URL. The user follows the

format “grooveIdentity://....”.

sProduct [in]
Type – String
Description – This parameter is required and should be your

products name as specified in the SoftPass. The
comparison is case sensitive.

sVersion [in]
Type – String
Description – This parameter is required and should be your

products version as specified in the SoftPass. The
comparison is case sensitive.

lEdition [in]
Type – Long
Description – This parameter can be the specific edition you are

looking for example gkfSoftPass_ActivationStd.
This parameter must be set.

iSolutionIndex [in]
Type – Integer
Description – This parameter

Returns

The solution’s edition for the given index value.
Notes:

None.

function SoftPassGetDLLVersionFromPath(sDLLPath)
SoftPassGetDLLVersionFromProgID returns the file version of the file
given a path (sDLLPath).
Parameters

sDLLPath [in]
Type – String
Description – The path to the file.

Returns
The files version information.

Notes:
None.

 SoftPass 0.5 Implementation Guide 25

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

function SoftPassGetDLLVersionFromProgID(sDLLProgID)
SoftPassGetDLLVersionFromProgID returns the file version of the file
given a ProgID.
Parameters

sDLLProgID [in]
Type – String
Description – The ProgID of the DLL.

Returns
The files version information.

Notes:
None.

function SoftPassVerifyDLLFromPath(sDLLPath)
SoftPassGetDLLVersionFromPath verifies whether a file is signed given a
file path.
Parameters

sDLLPath [in]
Type – String
Description – The path to the file.

Returns
 gkfSoftPass_Success – On success

gkfSoftPass_Failure – On failure
Notes:

None.

function SoftPassVerifyDLLFromProgID(sDLLProgID)
SoftPassVerifyDLLFromProgID verifies whether a file is signed given a
ProgID.
Parameters

sDLLProgID [in]
Type – String
Description – The ProgID of the DLL.

Returns
 gkfSoftPass_Success – On success

gkfSoftPass_Failure – On failure
Notes:

None

 SoftPass 0.5 Implementation Guide 26

 © Copyright 2002. Parallelspace Corporation. All Rights Reserved.

function SoftPassVerifyHash(sDLLProgID)
SoftPassVerifyHash returns the files hash value given a ProgID.
Parameters

sDLLProgID [in]
Type – String
Description – The ProgID of the DLL.

Returns
 gkfSoftPass_Success – On success

gkfSoftPass_Failure – On failure
Notes:

None

