
OWASP Response to Draft W3C Best Practices for Mobile Web Applications

1

Open Web Application Security
Project (OWASP)

Response to Draft W3C Best Practices for
Mobile Web Applications

Summary

The Open Web Application Security Project (OWASP) supports new and improved

standards and guidance. We are pleased to contribute to the development of this draft

W3C Recommendation.

Applications, and especially web applications and web services, are increasingly being

targeted to spread malware and to access sensitive data. In our experience, many of

the flaws that affect mobile web applications are identical to flaws that affect traditional

web applications. OWASP has a large corpus of widely-referenced1 open and free

guidance which helps software developers and security engineers build better software.

Thus, we believe that our organization is uniquely qualified to comment on the sections

of this document which are security related.

We were concerned when we read section 3.2 of the current draft of the

recommendation and found that the only security recommendation is to advise against

executing unescaped JSON data. This is certainly a good recommendation, but it is

hardly the most significant security risk facing mobile web applications today.

We would like to draw your attention to our flagship document, the OWASP Top 10,

which was updated earlier this year and represents what we believe are the Top 10

Most Critical Security Risks:

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

1
 http://www.owasp.org/index.php/Industry:Citations

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Industry:Citations

OWASP Response to Draft W3C Best Practices for Mobile Web Applications

2

Note that these apply to both mobile web applications as well as traditional web

applications. Other specific issues we have discovered which are somewhat unique to

mobile web applications are as follows:

 “presence on carrier network” being considered equivalent to authentication and

authorization

 implementation of client side security controls which are not enforced server

side.

In order to provide the best guidance for W3C’s constituency, we would like to see

OWASP materials referenced in the forthcoming W3C Recommendation. The Top 10 is

obviously not an exhaustive list of security considerations for developers of mobile

apps. Thus we would also encourage the W3C to include references to our more in-

depth resources for developers, such as our “Development Guide”2 and our “Testing

Guide”3.

Apart from including references to these other documents, we believe further detail

and/or reference to more sources of information would be a great benefit to readers of

the final document. This may be using additional footnotes or by the inclusion of a

bibliography/further guidance section. In particular, we would like to recommend three

of OWASP's key projects—the Development Guide, the Testing Guide and the

Application Security Verification Standard (ASVS)4—containing detailed information on

good development, testing and verification practices respectively. These include

significant guidance on building, testing and verifying web applications, including web

applications.

Our detailed point-by-point response follows.

2
 http://www.owasp.org/index.php/Guide_Table_of_Contents

3
 http://www.owasp.org/index.php/OWASP_Testing_Guide_v3_Table_of_Contents

4
 http://www.owasp.org/index.php/ASVS

http://www.owasp.org/index.php/Guide_Table_of_Contents
http://www.owasp.org/index.php/OWASP_Testing_Guide_v3_Table_of_Contents
http://www.owasp.org/index.php/ASVS

OWASP Response to Draft W3C Best Practices for Mobile Web Applications

3

Detailed Response

We suggest the following additions to section 3.2:

3.2.2 Validate Input

3.2.2.1 What it means

When accepting user input, be sure to validate the user input against a centralized

whitelist of known good responses. For example, if accepting user input from a form

parameter called “FirstName”, and valid characters are only A-Z, a-z, and (space), the

web application should check to ensure that no invalid characters have been submitted

before passing the form input on for further processing.

Failing to perform input validation can lead to a variety of problems, including (but not

limited to) injection flaws (such as command injection, SQL injection, LDAP injection,

XPATH injection, etc.), as well as cross site scripting and other problems.

3.2.2.2 How to do it

In the example mentioned above, a suitable regex for validating the input would be [A-

Za-z].

The OWASP ESAPI5 is an open source security framework available for a variety of

languages (including J2EE, .NET, PHP, Javascript, Coldfusion and more) and can be

used to create a central input validation facility for your application. An example call to

ESAPI’s “Validator” interface is as follows (in Java):

String validatedFirstName = ESAPI.validator().getValidInput("FirstName",

 myForm.getFirstName(), "FirstNameRegex", 255, false, errorList);

3.2.3 Encode Output

3.2.3.1 What it means

Before rendering dynamic content to the user, ensure that content is encoded for the

appropriate context. For example, if rendering HTML content for display to the user,

HTML encoding must be applied, for example transforming the “<” character into “<”.

Properly encoding output is a strong defense against Cross Site Scripting (XSS).

3.2.3.2 How to do it

An example requiring both input validation and output encoding is a mobile web

application which permits a user to make a comment on a blog post.

5
 http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

OWASP Response to Draft W3C Best Practices for Mobile Web Applications

4

The OWASP ESAPI can easily be used to perform both of these functions. An example

follows:

//performing input validation

String cleanComment = ESAPI.validator().getValidInput("comment",

 request.getParameter("comment"), "CommentRegex", 300, false, errorList);

//performing output encoding for the HTML context

String safeOutput = ESAPI.encoder().encodeForHTML(cleanComment);

3.2.4 Set “HttpOnly” and “Secure” Flag on Session Cookies

3.2.4.1 What it means

If cookies are used as session variables to track the logged in state of a user in the

application, ensure that these cookies are set with the HttpOnly and secure flags. The

HttpOnly flag, when appended to a Set-Cookie response header, will instruct supporting

browsers to disallow client-side script to access the cookie. This mounts an effective

defense against XSS attacks designed to steal session cookies.

The secure flag, when appended to a Set-Cookie response header, prevents supporting

browsers from providing the session cookie when connecting to the same origin but

without transport layer security (SSL). This mounts an effective attack against SSL

stripping attacks6.

3.2.4.2 How to do it

Java developers can set the flags manually as follows

String sessionid = request.getSession().getId();

response.setHeader("SET-COOKIE", "JSESSIONID=" + sessionid + "; HttpOnly" + "; secure");

Various web frameworks allow these cookies to be set automatically via configuration

files. See http://www.owasp.org/index.php/HttpOnly for more information.

6
 http://www.thoughtcrime.org/software/sslstrip/

http://www.owasp.org/index.php/HttpOnly
http://www.thoughtcrime.org/software/sslstrip/

OWASP Response to Draft W3C Best Practices for Mobile Web Applications

5

3.2.5 Prevent Cross Site Request Forgery (CSRF)

3.2.5.1 What it means

Cross Site Request Forgery (CSRF) is possible when a site does not validate that a

request it receives was sent intentionally.

Consider the following HTML:

<html>

<p>this is a website for nothing in particular

<img src=http://1.2.3.4/admin.cgi?uiViewUserName=admin&uiViewPassword=admin

&setDNS1=5.6.7.8>

</html>

A user who visits this page may unintentionally set the default DNS server of their

wireless router to an attacker controlled malicious server. This is due to the fact that

the admin.cgi in the example does require that the user prove that they intended to

send the request. See http://www.owasp.org/index.php/Cross-

Site_Request_Forgery_%28CSRF%29 for more information about CSRF attacks.

3.2.5.2 How to do it

To properly mitigate CSRF, a developer of a mobile web application must ensure that

with every form that is rendered to the user, a unique random value (token or nonce)

must be included. This token should be submitted as a hidden variable in the form,

and should be validated for correctness prior to performing processing on the form

input.

Detailed information about using the OWASP ESAPI to implement robust anti-CSRF

protections is available at http://www.owasp.org/index.php/Cross-

Site_Request_Forgery_%28CSRF%29#How_to_Prevent_CSRF_Vulnerabilites.

http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29#How_to_Prevent_CSRF_Vulnerabilites
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29#How_to_Prevent_CSRF_Vulnerabilites

OWASP Response to Draft W3C Best Practices for Mobile Web Applications

6

About OWASP

This response is submitted on behalf of the Open Web Application Security Project

(OWASP) by the OWASP Global Industry Committee. OWASP is a worldwide free and

open community focused on improving the security of application software. Our mission

is to make application security "visible," so that people and organizations can make

informed decisions about application security risks. Everyone is free to participate in

OWASP and all of our materials are available under a free and open software license.

The OWASP Foundation is a U.S. recognized 501(c)(3) not-for-profit charitable

organization, that ensures the ongoing availability and support for our work at OWASP.

Further information:

 OWASP Foundation

http://www.owasp.org/index.php/OWASP_Foundation

 About The Open Web Application Security Project

http://www.owasp.org/index.php/About_OWASP

 The Open Web Application Security Project

http://www.owasp.org/

 OWASP Global Industry Committee

http://www.owasp.org/index.php/Global_Industry_Committee

 Legislation, standards, guidelines, etc referencing OWASP

http://www.owasp.org/index.php/Industry:Citations

Contact for this response

This response is submitted by the OWASP Global Industry Committee. If you have any

queries, please contact:

 David Campbell

dcampbell 'at' owasp.org

http://www.owasp.org/index.php/OWASP_Foundation
http://www.owasp.org/index.php/About_OWASP
http://www.owasp.org/
http://www.owasp.org/index.php/Global_Industry_Committee
http://www.owasp.org/index.php/Industry:Citations

