
Chapter 6
Modelling Linguistic Annotations

Abstract This chapter describes how linguistic annotations can be represented in
RDF. Web Annotation and NIF provide the means to reference text segments on
the web. Yet, representing linguistic annotations requires appropriate vocabularies.
We discuss relevant vocabularies and illustrate how they can be applied to support
annotation at different levels.

6.1 Introduction

In the previous chapter, we discussed mechanisms to address text segments using
URIs. While mechanisms to address text segments provide the basis for representing
annotations in RDF, an important ingredient is still missing: vocabularies that allow
to describe the linguistic phenomena annotated. In this chapter, we describe OWL-
and RDF-based vocabularies to represent annotations which provide the basis for
semantic interoperability.

With the rising importance of linguistic annotations in linguistics and language
technology, the band-width and amount of linguistic annotations is continuously
increasing in complexity and heterogeneity, and this is directly reflected in the
number and diversity of annotation formats [1].

Two relatively widely used corpus formalisms have been introduced in Sect. 5.1,
already. They are two representative examples for the variability of representation
formalisms available, but suffer either from restrictions in terms of expressivity
(CoNLL-TSV, TEI/inline XML) or processability (TEI/standoff XML):

• CoNLL-TSV (Sect. 5.1.1) annotates one word per line; it can neither adequately
represent segments smaller than words (as necessary for morphology), nor nested
structures (as necessary for phrase structure grammar). Instead, morphological
and phrase-structure grammars are reduced to opaque strings whose semantics
are not defined by the format, but left to client software.

• Inline XML (e.g. in TEI, Sect. 5.1.2, Fig. 5.4) can represent annotations at
arbitrary granularity, but is limited to tree structures.
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• Standoff XML (e.g. in TEI, Sect. 5.1.2, Fig. 5.5) can represent arbitrary graph
structures (and thus any kind of linguistic annotation). This genericity, however,
comes at the price of insufficient readability and limited technological support
outside the language resource community.

As a result, interoperability between and across formats becomes a major
concern, and has traditionally been addressed by graph-based data models and
XML standoff formats. Standoff formats have a longer history in the language
resource community, in particular for annotations with overlapping segments. While
XML had been considered a solution for language resource interoperability during
the late 1990s, such constellations required extensions of the original XML data
model, i.e. the support for directed multi-graphs in annotation.1 Standoff XML has
been considered state of the art for multi-layer corpora during the early 2000s. As
it forms the basis for the Linguistic Annotation Framework [3, LAF]—i.e. ISO
24612:2012 [4]—and its instantiations in the GrAF format [5], PAULA XML [6]
and KAF [7], it is still considered technologically relevant [1], albeit it declined in
popularity because of poor support by off-the-shelf XML technology [8] and the
rise of JSON.

More recently, standoff XML in human language technology is thus being
increasingly replaced by LLOD-compliant representations, often based on JSON-
LD, e.g. Web Annotation (Sect. 5.2) or LIF (Sect. 11.4). Like earlier standoff XML
formats, RDF implements labelled directed multi-graphs, but does benefit from
a richer technological ecosystem and a broader developer community. Burchardt
et al. [9] demonstrated that syntactic and semantic annotations can be integrated
and jointly queried on grounds of an RDF formalization. Cassidy et al. [10]
developed an early RDF serialization of LAF, and the standoff XML format NAF
[11] has been explicitly designed with the goal to facilitate its transformation to
RDF. Subsequently, various NLP infrastructures have adopted RDF-native exchange
formats, including TELIX [12], NIF [13] and LIF [14].

In this chapter, we describe two approaches to represent linguistic annotations
in RDF and as linked data: CoNLL-RDF and POWLA. Based on a fragment of
NIF, CoNLL-RDF provides a semantically shallow and isomorphic reconstruction
of TSV formats in RDF and thus represents a technological bridge between the most
popular format family in NLP and LLOD technologies. POWLA is an OWL2/DL
vocabulary that defines generic linguistic data structures, which can be used in
combination with CoNLL-RDF, Web Annotation or NIF to formalize any kind of
linguistic annotation.

1In the language resource community, it is generally assumed that labelled directed (multi-) graphs
can represent every kind of linguistic annotation [2].
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6.2 Transforming Legacy Annotation Formats into RDF

In NLP and DH, established annotation formats such as CoNLL are still much more
prevalent than native RDF-based annotation formats. Even in the case that RDF
backends are used for storing or transforming annotations, legacy formats are used
as input/output to maintain compatibility with existing NLP pipelines. However,
RDF excels at information integration, and where annotations from different sources
are to be combined with each other, to be transformed or to be linked with other
pieces of information, RDF-native formalisms enjoy increasing popularity (see
Chap. 11).

Depending on whether developers see their priority in backward compatibility
with legacy formats or in interoperability and re-usability, there are two approaches
to transform legacy annotation formats into RDF:

• Shallow transformation: In this approach, a direct mapping of the original
legacy data source to RDF is created. The mapping is shallow in that it provides
a 1:1 mapping of the data elements of the original data source to RDF properties
and classes, preserving by and large the original data model. There is thus no
semantic integration or interoperability as the resulting vocabulary is proprietary
for the source data model. Yet, this allows to transform, query and process
annotations with RDF technology and to link them with LOD resources as
required. The resulting RDF is specific to a given legacy data format and thus
lacks interoperability to other RDF datasets.

• Alignment with RDF/OWL native annotation vocabularies: In applications
where semantic integration and interoperability is important, an approach should
be followed in which the source data model is mapped to an existing OWL vocab-
ulary. This approach requires aligning/lifting the data format of the legacy data
source to existing RDF/OWL vocabularies. The advantage of this approach is that
by reuse of existing vocabularies in machine-readable formats, interoperability
across datasets is ensured.

Here, we illustrate the shallow transformation approach using CoNLL as a
popular legacy format for linguistic annotations.

6.2.1 CoNLL-RDF: Shallow Transformation
of CoNLL into RDF

In NLP, the CoNLL formats (see Sect. 5.1.1) represent a large and diverse family
of formats based on tab-separated values (TSV), and used for a wide range of
linguistic phenomena. CoNLL-compatible formats have also been the basis for
the development of corpus infrastructures, in particular, the Corpus WorkBench
[15] and SketchEngine [16], widely used in corpus linguistics and lexicography,
respectively. Individual CoNLL formats (‘dialects’) posit specific constraints on
columns and their content.
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#ID WORD LEMMA UPOS POS FEATS HEAD EDGE
1 James James PROPN NNP Number=Sing 2 name
2 Baker Baker PROPN NNP Number=Sing 3 nsubj
3 told tell VERB VBD Mood=Ind|... 0 root
4 reporters reporter NOUN NNS Number=Plur 3 obj
5 Friday Friday PROPN NNP Number=Sing 3 nmod:tmod
6 : : PUNCT : _ 3 punct

Fig. 6.1 CoNLL-U annotation for Fig. 5.1 (p. 62)

CoNLL-RDF [17] is a semantically shallow approach to render CoNLL data
structures in a generic way in RDF. Building on a minimal core vocabulary
drawn from NIF (Sect. 5.3), it provides a generic mechanism to create user-defined
datatype properties in the conll namespace, special handling for HEAD and
ARG columns to represent dependency syntax and semantic roles, and a basic
infrastructure for parsing, transforming, visualizing and converting CoNLL-RDF.
Converting CoNLL-RDF includes import from and export to CoNLL TSV, but
also to human-readable and graphical representations, as well as to a canonical
serialization in Turtle/RDF.

Figure 6.1 shows a CoNLL fragment in the CoNLL-U dialect, the CoNLL
format used by the Universal Dependencies (UD) initiative [18]2: ID is the number
of the word in the sentence, WORD is the form of the word,3 LEMMA its lemma,
UPOS its UD part-of speech tag, POS its original part-of-speech tag, FEATS its
morphosyntactic features, HEAD the ID of its parent word in dependency annotation
(or 0 for the root), and EDGE the label of its dependency relation. The final columns
DEPS and MISC are not used for this example.

To provide a generic conversion of CoNLL data, CoNLL-RDF expects column
labels to be provided at conversion time. For each column, an RDF property is
generated using the user-provided label as local name in the conll namespace.
As these properties are provided by the user, they lack any alignment to existing
RDF/OWL vocabularies. It is in this sense that CoNLL-RDF is shallow as properties
are specific for a certain CoNLL format and lack interoperability with other
vocabularies.

2http://universaldependencies.org/, last accessed 09-07-2019.
3In CoNLL-U terminology, the columns WORD and EDGE are termed FORM and DEP, respectively.
While CoNLL-RDF does not require to use these labels, it provides specialized visualization for
them in a human-readable export. We thus recommend following CoNLL-RDF terminology rather
than CoNLL-U terminology. Likewise, the column POS should be XPOS in CoNLL-U, but we
follow Fig. 5.1 in using the same column label for the same information.

http://universaldependencies.org/
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The following URI schema is used4:

• During conversion time, the user provides a base URI, e.g. identifying the corpus
or document that the current CoNLL file represents.

• The abstract sentence URI consists of the base URI, followed by #s and the
number of the sentence in the corpus, starting with 1.

• The word URI consists of the abstract sentence URI, followed by _ and the
number of the word in the sentence, starting with 1. If an explicit ID column
is provided, this value is used instead.

• The sentence URI consists of the abstract sentence URI, followed by _0. It is
thus the 0th word of the sentence, i.e. its virtual root (following a practice used
in CoNLL dependency parsing).

Basic data structures are nif:Sentence and nif:Word. Their respec-
tive sequential structure is made explicit by nif:nextSentence and
nif:nextWord. CoNLL properties are generated from user-provided column
labels for every non-empty cell:

• Syntactic dependencies: Column HEAD ⇒ object property conll:HEAD
pointing to the URI of the parent word, resp. the sentence. If no HEAD column is
provided, conll:HEAD points to the sentence.

• Semantic roles: In semantic role annotation, one column per frame in the
sentence is created, so that the nth SRL-ARGs column contains the roles of
the nth predicate in the sentence (i.e. annotated in the PRED column).5 For a
word annotated with the value, say ARG0 in the third SRL-ARGs column, the
predicate is the third word in the sentence that has an annotation for PRED ⇒
object property conll:ARG0 pointing from predicate URI to argument URI.

• Other: Other column labels yield datatype properties containing an untyped
literal. CoNLL-RDF does not require specific column labels, but it provides
enhanced visualizations for the columns WORD and EDGE.

As a result, we obtain a shallow rendering of the original CoNLL data structure
in RDF (Fig. 6.2), which can be effectively queried, manipulated and serialized
back into CoNLL using off-the-shelf RDF technology. The conll: namespace
used here is not backed by an ontology, but populated by properties as defined by
the user (column labels) or in the data (values for X-ARGs columns). One of the

4CoNLL formats do not preserve the original whitespaces, we thus cannot produce valid NIF
URIs for a CoNLL-annotated text. (CoNLL-U does provide mechanisms to express the absence of
whitespaces after a token, but this does not preserve information about the type of whitespace and
is specific to a single dialect.) Instead, CoNLL-RDF follows the naming conventions of [19, 20].
5More precisely, this is a pattern for every XARGs column label for which the corresponding X

column does exist. For CoNLL-RDF, ARGs column must not be followed by other annotations,
and their values (not their labels) must by valid URI characters.
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1 :s1_1 a nif:Word;
2 conll:ID "1";
3 conll:WORD "James";
4 conll:LEMMA "James";
5 conll:UPOS "PROPN";
6 conll:POS "NNP";
7 conll:FEATS "Number=Sing";
8 conll:HEAD :s1_2;
9 conll:EDGE "name";

10 nif:nextWord :s1_2.

Fig. 6.2 Turtle fragment for the first row in Fig. 6.1

design goals of CoNLL-RDF has been seamless round-tripping from CoNLL-TSV
to CoNLL-RDF and back to TSV. While TSV export from CoNLL-RDF can be
easily accomplished with SPARQL SELECT, such queries only support a fixed
number of columns. Export of semantic roles is somewhat more complex, as it
involves nested SELECT for every word using GROUP_CONCAT with tabulator as
separator.

Beyond format specifications and converters, the CoNLL-RDF library permits
the iterative application of sequences of SPARQL updates (resp., files that contain
these) to documents or data streams providing CoNLL(-RDF) data. Even though it
lacks formal semantics by design, the CoNLL RDF model can thus also serve as a
basis to transform CoNLL data into semantically richer formalisms such as the NIF
ontology or POWLA (Sect. 6.3). The motivation of CoNLL-RDF as a representation
formalism is to facilitate the transformation of annotation graphs provided in a
commonly used format on the basis of available Semantic Web technologies for its
querying, manipulation, storage, etc. in a backward-compatible fashion, such that
the results can be serialized back into the original format.

6.2.2 Querying and Manipulating CoNLL-RDF Annotations

Figure 5.3 introduced semantic role annotations for the example given above,
replicated in Fig. 6.3, with a CoNLL-RDF rendering in Fig. 6.4. NIF data structures
identify words and their structural relations, and user-provided column labels
(WORD, POS, NER, SRL) yield the corresponding properties in the conll:
namespace. For the label SRL-ARGs we have one column only in the example,
corresponding to semantic arguments of the first word with SRL annotations,
i.e. :s1_4, and accordingly, the predicate :s1_4 is annotated with properties
generated from the annotations in the first SRL-ARGs column.

For named entity types, we see that the CoNLL-RDF preserves the original
IOBES annotation, with B-PERSON marking the beginning of a person name, and
E-PERSON marking the end of the span annotated with PERSON. With SPARQL
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# WORD POS NER SRL SRL-ARGs
James NNP B-PERSON _ ARG0
Baker NNP E-PERSON _ ARG0
told VBD O tell.v.01 rel
reporters NNS O _ ARG2
Friday NNP S-DATE _ ARGM-TMP
: : O _ _

Fig. 6.3 POS, NER and PropBank (SRL) annotations (replicated from Fig. 5.3)

1 :s1_1 a nif:Word; conll:WORD "James"; conll:POS "NNP";
2 conll:NER "B-PERSON"; nif:nextWord :s1_2.
3 :s1_2 a nif:Word; conll:WORD "Baker"; conll:POS "NNP";
4 conll:NER "E-PERSON"; nif:nextWord :s1_3.
5 :s1_3 a nif:Word; conll:WORD "told"; conll:POS "VBD";
6 conll:SRL "tell.v01"; conll:rel :s1_3;
7 conll:ARG0 :s1_1, :s1_2; conll:ARG2 :s1_4;
8 conll:ARG-TMP :s1_5; nif:nextWord :s1_4.
9 :s1_4 a nif:Word; conll:WORD "reporters"; conll:POS "NNS";

10 nif:nextWord :s1_5.
11 :s1_5 a nif:Word; conll:WORD "Friday"; conll:POS "NNP";
12 conll:NER "S-DATE"; nif:nextWord :s1_6.
13 :s1_6 a nif:Word; conll:WORD ":"; conll:POS ":".

Fig. 6.4 CoNLL-RDF/Turtle fragment for Fig. 6.3

Update, this can be effectively transformed into a more compact representation. In
a first step, we eliminate the IOBES codes from conll:NER:

1 DELETE {
2 ?w conll:NER ?iobes.
3 } INSERT {
4 ?w conll:NER ?short.
5 } WHERE {
6 ?w conll:NER ?iobes.
7 BIND(replace(’^[IOBES]-’,’’) AS ?short)
8 };

In a second step, we use the dependency annotation from Fig. 6.2 to restrict the
NER annotation to the syntactic head of the corresponding phrase:

1 DELETE {
2 ?w conll:NER ?ner.
3 } WHERE {
4 ?w conll:NER ?ner.
5 ?w conll:HEAD/conll:NER ?ner.
6 };

This update eliminates all NER annotations if the syntactic head carries the same
annotation. In the same way, semantic role annotations (exemplified for the example
of ARG0 here) can be reduced to the syntactic head:

1 DELETE {
2 ?pred ?role ?arg.
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3 } WHERE {
4 ?pred conll:SRL [].
5 ?pred ?role ?argHead, ?argDep.
6 ?argDep conll:HEAD ?argHead.
7 FILTER(?role in (conll:ARG0,conll:ARG1,conll:ARG2,...))
8 };

The result can be rendered in a somewhat simplified CoNLL TSV format using
SPARQL SELECT (we leave SRL-ARGs as an exercise):

1 SELECT ?word ?pos ?ner ?srl
2 WHERE {
3 ?w conll:WORD ?word; conll:POS ?pos.
4 OPTIONAL { ?w conll:POS ?ner_raw. }
5 OPTIONAL { ?w conll:SRL ?srl_raw. }
6 BIND(IF(BOUND(?ner_raw),?ner_raw,’_’) as ?ner)
7 BIND(IF(BOUND(?srl_raw),?srl_raw,’_’) as ?srl)
8 }

This query is trivial for properties where annotations are obligatory (WORD, POS).
For properties where empty annotations are possible, CoNLL compliance requires
to insert _. Here, _ is inserted for missing (non-bound) values of optional properties.

From this query, the CoNLL RDF libraries (or any other SPARQL engine) will
produce the following table:

James NNP _ _
Baker NNP PERSON _
told VBD _ tell.v.01
reporters NNS _ _
Friday NNP DATE _
: : _ _

The CoNLL RDF libraries guarantee proper sentence segmentation and word
order, but this query can also be run using any general SPARQL engine. Reproduc-
ing the original word order requires slight modifications in this case6:

1 SELECT ?word ?pos ?ner ?srl
2 WHERE {
3 ?w conll:WORD ?word; conll:POS ?pos.
4 OPTIONAL { ?w conll:POS ?ner_raw. }
5 OPTIONAL { ?w conll:SRL ?srl_raw. }
6 BIND(IF(BOUND(?ner_raw),?ner_raw,’_’) as ?ner)
7 BIND(IF(BOUND(?srl_raw),?srl_raw,’_’) as ?srl)
8 { SELECT ?w (COUNT(DISTINCT ?tmp) AS ?id)

6Sentence-level segmentation is left as an exercise. This requires retrieving the sentence URI
for every word (by means of ?w conll:HEAD+ ?s. ?s a nif:Sentence) and GROUP
BY (and ORDER BY) sentence URIs before ordering words. If a word has no nif:nextWord
predecessor, set the value of the WORD column to concat(‘\\n’,?word) rather than to
?word.
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9 WHERE {
10 ?tmp nif:nextWord* ?w
11 } GROUP BY ?w
12 }
13 } ORDER BY ?w

This query uses an embedded SELECT statement to count the number of
preceding NIF words to create a numerical id (alternatively, the optional conll:ID
property can be used) and performs an ordering of words on this basis. The
original query can also be extended to include the dependency annotations used
for disambiguating the NER annotations:

1 SELECT ?id ?word ?pos ?head ?dep ?ner ?srl
2 WHERE {
3 ?w conll:WORD ?word; conll:POS ?pos.
4 OPTIONAL { ?w conll:POS ?ner_raw. }
5 BIND(IF(BOUND(?ner_raw),?ner_raw,’_’) as ?ner)
6 OPTIONAL { ?w conll:SRL ?srl_raw. }
7 BIND(IF(BOUND(?srl_raw),?srl_raw,’_’) as ?srl)
8 BIND(replace(str(?w),’.*_’,’’) AS ?id)
9 ?w conll:HEAD ?h.

10 BIND(replace(str(?h),’.*_’,’’) AS ?head)
11 ?w conll:EDGE ?dep.
12 };

For this query, we rely on the CoNLL-RDF URI scheme introduced above, i.e.
the URI ends with the original (or implied) ID value for every word (and its head)
is the last, separated with _. However, this information cannot be drawn from a URI
directly but must rather be cast as a string (str()), before a replacement can be
applied. These examples show how CoNLL-RDF and SPARQL can be effectively
used to perform complex transformations of CoNLL data. While export to CoNLL
TSV is somewhat more challenging (unless the CoNLL-RDF libraries are used),
the transformation itself is simple and straight-forward. In addition, it is possible to
consult external knowledge sources as part of the transformation. As an example,
consider the LLOD edition of VerbNet [21] provided as part of LemonUby [22].
The semantic role annotations of PropBank are grounded in VerbNet. Having both
corpus and dictionary available as RDF, resp. LLOD data, we can now produce an
alignment of VerbNet classes and PropBank predicates.

6.3 Top-Down Modelling: Generic Data Structures

Common annotation formats have been designed to either fulfil requirements
of a specific task (e.g. as training data for syntactic or semantic parsing), the
phenomenon they address (e.g. annotation of words and or trees) or with the goal
to adopt existing technical solutions for their processing. By rendering linguistic
data structures in directed graphs, RDF provides a means to facilitate syntactic
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or structural interoperability between such formats (resp., annotations expressed
by them), but only in the sense that they can be stored and accessed uniformly.
Neither the Web Annotation nor the NLP Interchange Format aim for semantic
interoperability of annotations. While NIF provides a vocabulary for annotations, it
is specific to the types of annotation currently supported, including parts of speech,
lemmatization, phrase structure syntax, entity linking and sentiment analysis.
For representing linguistic annotations in a way that semantic interoperability is
ensured, the above-mentioned models need to be complemented with an explicit
vocabulary that allows to describe annotations at a content level. Here, we describe
POWLA [23], a small but generic vocabulary developed to facilitate the exchange
and querying of multi-layer corpora with arbitrary annotations. As it aims to support
any kind of linguistic annotation, POWLA is the most general of the vocabularies
suggested so far.

6.3.1 Linguistic Annotations in POWLA

POWLA7 [24] is a small OWL2/DL-based vocabulary grounded in the Linguistic
Annotation Framework [4, LAF] and thus capable of representing any kind of
text-oriented annotation. This genericity sets it apart from earlier approaches on
LOD-based corpus representations in that POWLA is not tied to specific types of
annotations, e.g. constituent syntax and frame semantics [9], for syntax [25] or
selected NLP tasks [26].

POWLA is an OWL2/DL serialization of PAULA [27, 28], an early imple-
mentation of LAF [29] and serialized in a standoff XML format comparable
to GrAF [30]. PAULA and PAULA XML have been the basis for develop-
ing integrative NLP pipelines [31], a corpus information system for multi-layer
corpora [32], and a generic converter suite for linguistic annotations [33]. In
these applications, the robustness of the PAULA data model has been demon-
strated as well as its capabilities to integrate annotations from different sources.
POWLA has been applied to modelling multi-layer corpora, including case studies
on the Manually Annotated Sub-Corpus of the American National Corpus [34,
MASC], syntactic and coreference-annotated corpora [24] and for high-precision
information extraction [35], annotation engineering [36] and syntactic parsing
[37].

POWLA aims to formalize linguistic annotations by building on existing stan-
dards with respect to their anchoring in the original document. In PAULA XML,
XLink/XPointer references served this purpose. POWLA is underspecified with
respect to this, but both NIF URIs and Web Annotation selectors can be employed.
POWLA thus serves to complement existing NIF, Web Annotation or application-
specific RDF renderings of linguistic annotations with interoperable linguistic data
structures.

7http://purl.org/powla/powla.owl.

http://purl.org/powla/powla.owl
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Fig. 6.5 POWLA data model, obligatory, abstract, recommended and optional properties shown
in different shades of grey

The POWLA data model is illustrated in Fig. 6.5. It provides a scalable vocab-
ulary in that it defines a minimum core of obligatory and recommended properties
and concepts concerned with linguistic annotation, along with a number of optional
concepts and properties particularly relevant for corpus organization, or querying.

6.3.1.1 POWLA Nodes

Units of annotation are formalized as powla:Node. By means of the property
powla:hasParent (and its inverse powla:hasChild), the hierarchical com-
position of nodes can be expressed, e.g. for syntax trees or discourse structure. The
property powla:next (and its inverse powla:previous) is used to express
the sequential order of two adjacent nodes. It is recommended that powla:next
is used to link nodes which have the same parent, as this facilitates navigation
in tree structures. POWLA does not provide its own mechanism for document
linking, but can be applied in combination with NIF or Web Annotation, e.g. a
NIF URI (representing, e.g., a nif:Word) can be linked via powla:hasParent
with a powla:Node that represents a syntactic phrase. The domain declaration of
powla:hasParent RDFS entails that the NIF URI represents a powla:Node,
and thus, powla:next transitions can (and should) be created to connect it with
adjacent NIF words of the same phrase or, if necessary, with an empty element
(represented by a powla:Node without an associated NIF URI) to be inserted
between string-adjacent NIF words. It is recommended to use powla:next
transitions for powla:Nodes with the same parent not only because this facilitates
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navigation, but also because it allows to define an order of tree elements that is
independent from the order of strings. This may be necessary, e.g., to represent a
form of ‘deep’ or ‘canonical’ syntax that deviates from the actual strings, e.g. in
spoken discourse, but also in complex structures that violate syntactic projectivity.
One example here is preposition stranding as in (3):

(3) [What]PP1 are you talking [about]PP1 ?

Here, what is placed in preverbal position (‘WH-movement’), but it still forms
a syntactic unit with the preposition that remained in its ‘base position’. For
such constellations, the Penn Treebank uses empty elements and a complex
coindexing scheme, but as an alternative POWLA would also allow to specify a
direct powla:next link between both parts of the PP—independently from the
nif:nextWord transitions that express the actual sequence of words.8

POWLA defines three subclasses of nodes, albeit their use is optional, as they
can be inferred powla:hasParent annotations:

• powla:Terminal: A powla:Node which is not the object of a
powla:hasParent property. The notion of ‘terminal node’ has little practical
relevance for modelling and querying corpora in RDF, but a single ‘base
segmentation’, resp., the ‘(privileged) tokenization layer’ have been fundamental
concepts in XML standoff formats. We assume that the privileged tokenization
layer is the sequence of minimal segments, thereby identifying terminals by the
absence of powla:hasParent properties. As an alternative to the minimal
segmentation principle, explicit nif:Word and nif:nextWord annotations
can be used for querying token sequences, but this is beyond POWLA.

• powla:Nonterminal: Every powla:Node which is not a terminal.
• powla:Root: A root node is a powla:Node which is not a subject of a
powla:hasParent property. For corpus querying and corpus organization,
powla:Root is an important concept as it provides an ‘entry point’ into lin-
guistic annotations. In particular, a number of properties that organize linguistic
annotations into documents and corpora are based on the notion of root nodes as
this limits the number of necessary links between data points and data sets.

8In fact, we may even express the ‘canonical’—albeit in this case, somewhat unnatural—order
directly on NIF words. In the absence of any hierarchical annotation, we can specify the following
powla:next transitions (represented by →):

about → What → are → you → talking → ?

While there are no restrictions regarding the ordering of blank nodes defined as powla:Nodes,
the antisequential ordering of externally defined URIs must be handled with care in order to prevent
cycles when combining annotations coming from different sources. It is thus recommended to
follow the sequential order and to connect nodes with the same parent via powla:next if and
only if no sibling does exist that is intermediate in terms of the original string order.
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POWLA nodes carry the following object properties:

• powla:next: (obligatory) object property (inverse powla:previous,
optional) used for expressing the sequential order of sibling nodes.

• powla:hasParent: (recommended) object property (inverse powla:has
Child, optional) used for representing hierarchical annotations.

POWLA defines several datatype properties for nodes, including:

• powla:start, powla:end: (optional, recommended for terminals) specify
numerical indices, e.g. an offset (as in NIF) or another, structure-sensitive index
[38]. Interpretation is implementation specific, but the end value needs to be
greater than the start value.

• powla:hasAnnotation: abstract property applying to every POWLA ele-
ment, should be instantiated with annotation-specific subproperties following the
schema hasXY .

• powla:string: (optional, recommended for terminals) carries the string value
of the tokens to which this annotation unit (node) applies.

6.3.1.2 POWLA Relations

POWLA nodes represent units of annotation and their sequential and hierarchical
structure. For representing annotated relations between nodes as labelled
edges, POWLA uses a reified representation by means of powla:Relation.
By means of powla:hasSource and powla:hasTarget (inverse of
powla:isSourceOf, resp. powla:isTargetOf) POWLA relations are
linked with the nodes between which the relation holds.

Note that POWLA relations do not represent whether they encode hierarchical
or non-hierarchical relations. Hierarchical (dominance) relations are characterized
by coverage inheritance, i.e. the target (parent) node covers the same stretch of
terminals as the source (child) nodes. A prototypical example is phrase structure
syntax. Non-hierarchical relations do not impose such constrains and hold between
nodes independently from their hierarchical structure; prototypical examples are
dependency syntax or coreference annotation. In POWLA, this difference is not
marked at the relation type, but independently from the reified relation by an
accompanying powla:hasParent (powla:hasChild) property.

In the same way as POWLA nodes, relations can carry powla:hasAnnota-
tion subproperties.
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6.3.1.3 OLiA Links

The Ontologies of Linguistic Annotation (OLiA, Sect. 8.4.2) provide OWL2/DL
formalizations of annotation schemes for a plethora of linguistic annotations and
languages. Unlike NIF, POWLA does not provide a specialized property for linking
annotations with OLiA concepts. Instead, nodes and relations can be directly
assigned an OLiA class (including anonymous classes composed by description-
logic operators �, �, ¬ and/or property constraints) as an rdf:type. POWLA
nodes and POWLA relations can thus be modelled as instances of OLiA concepts
or OLiA annotation model concepts.

In fact, this has been a motivating factor in providing a reified representation
of linguistic annotations rather than ad hoc properties (as in NIF extensions for
dependency syntax). To a certain extent, dependency labels and morphosyntactic
annotations overlap,9 so that an a priori, i.e. tagset-independent, split between
relational (property) and non-relational (concept) annotations is not possible.
Instead, morphological, syntactic and semantic features are represented in the OLiA
Reference Model in terms of a single concept hierarchy. A reified representation of
relational annotations avoids type-shifting between annotation properties and OLiA
concepts. This is necessary to stay within OWL(2) semantics and thus allows the
application of OWL(2) reasoners to OLiA/POWLA data.

Unlike NIF, POWLA does thus not provide a vocabulary for specific linguistic
categories. OLiA is indeed the recommended vocabulary to represent specific
categories. In this way, POWLA is both more minimalistic than NIF annotation
classes and properties, and more expressive, as it relies on a rich background
vocabulary.

6.3.1.4 Corpus Organization

Aside from modelling linguistic annotations, annotated corpora may require an
explicit representation of the organization of annotations into documents and layers.
In principle, RDF graphs can be used for this purpose, but an explicit vocabulary
is nevertheless necessary to identify what kind of information a particular RDF
graph contains and how this relates to other RDF graphs (e.g. pertaining to the same
source document, or representing the same kind of annotation for different source
documents).

Beyond formalizing linguistic annotations, POWLA provides such a vocabulary
to organize corpora. This includes two orthogonal dimensions:

• dataset structure: A corpus is composed of individual documents and their
associated annotations. Documents can be organized into collections (e.g. sub-

9For example, the Universal Dependencies provide the POS tag DET and the dependency label
det, and ‘[m]ost commonly, a word of POS DET will have the relation det and vice versa.’
http://universaldependencies.org/u/dep/all.html#al-u-dep/det, accessed 09-07-2019.

http://universaldependencies.org/u/dep/all.html#al-u-dep/det
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corpora). A corpus is regarded as a special case of a collection. Furthermore, a
document may be composed of different parts, which may in turn be considered
independent documents in their own right (e.g. books in the Bible).

• annotation structure: Typically, a corpus features multiple types of annotations,
e.g. parts of speech along with dependency syntax. Typically, these are produced
by independent annotation efforts or using different annotation tools. Annota-
tions of the same type should be organized into a single annotation layer.

For data set structure, POWLA provides two basic concepts, powla:Document
and powla:Corpus. The POWLA document corresponds to an annotation project
in PAULA. An annotation project may contain other annotation projects as sub-
documents (hasSubDocument). If it does not contain other annotation projects,
it represents a collection of documents (e.g., a subcorpus, or a pair of texts in a
parallel corpus). Otherwise, it contains the annotations of one particular text. In this
case, it aggregates different document layers (see below). A corpus is a document
that is not a subdocument of another document.

Annotation structure is rendered by means of powla:Layer, which serves to
group together annotations of the same kind independently from their document.
A powla:DocumentLayer is a specific layer within a document, as expressed
by the property powla:hasDocument. DocumentLayer is a nexus for linking
documents and annotations. Nodes and relations can be assigned a document layer
(and thus, a document) via powla:hasLayer. The property powla:hasLayer
is recommended for root nodes. A root may have at most one layer.

POWLA layers and documents can be assigned labels by means of subproperties
of powla:hasAnnotation that correspond to metadata rather than annotations,
e.g. date of creation or name of the annotator.

6.3.2 Complementing NIF with POWLA

We illustrate POWLA with annotations for phrasal syntax (Fig. 6.6), named enti-
ties (Fig. 6.7) and semantic relations (Fig. 6.8) for an unabridged fragment of
wsj_0655 and its annotation according to the Penn Treebank [39, phrase structure
syntax], PropBank [40, semantic roles], OntoNotes named entity types [41], RST
Discourse Treebank [42] and automated annotations with DBpedia Spotlight [43].
For presentational reasons, annotation layers are merged and structural annotations
are superimposed over each other (Fig. 6.9). Note that the annotations can still be
distinguished by means of powla:hasAnnotation subproperties. In addition,
external vocabulary can be used to encode additional information, e.g. the ITS
vocabulary for entity linking10 or the NERD ontology for entity types.11

10https://www.w3.org/TR/its20/, last accessed 09-07-2019.
11http://nerd.eurecom.fr/ontology, last accessed 09-07-2019.

https://www.w3.org/TR/its20/
http://nerd.eurecom.fr/ontology
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1 PREFIX nif: <http://persistence.uni-leipzig.org/nlp2rdf/
ontologies/nif-core#>

2 PREFIX doc: <https://catalog.ldc.upenn.edu/docs/LDC95T7/raw
/06/wsj_0655.txt#>

3 PREFIX powla: <http://purl.org/powla/powla.owl#>
4 PREFIX itsrdf: <http://www.w3.org/2005/11/its/rdf#>
5 PREFIX : <https://catalog.ldc.upenn.edu/docs/LDC2007T21/

ontonotes-1.0-documentation.pdf#>
6

7 # user-defined datatypes
8 :hasPOS rdfs:subPropertyOf powla:hasAnnotation. # cf. nif:

posTag
9 :hasNER rdfs:subPropertyOf powla:hasAnnotation. # cf. on:

EMANEX
10 :hasCAT rdfs:subPropertyOf powla:hasAnnotation. # phrase

labels
11 :hasNUC rdfs:subPropertyOf powla:hasAnnotation. # NUC/SAT

labels
12 :hasSRL rdfs:subPropertyOf powla:hasAnnotation. # semantic

roles

Before providing its data, a POWLA data set may need to introduce user-specific
subproperties of powla:hasAnnotation as shown above.

13 # data
14 doc:offset_0_9 a powla:Node;
15 powla:string "Secretary" ;
16 :hasPOS "NNP";
17 powla:hasParent _:syntax1;
18 nif:nextWord doc:offset_10_12.

The first POWLA terminal is based on the NIF part-of-speech annotation sample
above (Sect. 5.3.1, p. 79)—albeit NIF-specific information (string class, context,
offsets) being omitted. The recommended offsets have been omitted as they can be
inferred from the NIF URI. The recommended POWLA type powla:Node can in
fact be RDFS-inferred from powla:hasParent (etc.) and is thus omitted in the
following data points. For the syntactic annotation, we create an anonymous (blank)
POWLA node _:syntax1. This phrase covers exactly this token (and would be
conflated with the terminal node in NIF), so that no siblings exist which could be
linked by powla:next.

19 _:syntax1 powla:string "Secretary";
20 :hasCAT "NML";
21 powla:hasParent _:syntax2;
22 powla:next _:syntax3.

The NML phrase covers exactly one token, albeit optional, we provide its string
value to facilitate readability. Again, powla:hasParent links to a POWLA
nonterminal, but also, powla:next points to the following sibling (relative to the
same parent node).
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24 doc:offset_10_12 powla:string "of" ;
25 :hasPOS "IN";
26 powla:hasParent _:syntax3;
27 nif:nextWord doc:offset_13_18.
28

29 doc:offset_13_18 powla:string "State";
30 :hasPOS "NNP";
31 :hasNER "ORG";
32 powla:hasParent _:syntax4;
33 nif:nextWord doc:offset_19_24.
34

35 _:syntax4 powla:string "State";
36 :hasCAT "NP";
37 powla:hasParent _:syntax3.

These nodes illustrate additional annotations for named entities (:hasNER,
corresponding to on:ENAMEX above; :hasCAT for phrase labels). It should be
noted that the decision whether to create a separate nonterminal for every type of
annotation or whether to unify coextensional nonterminals is application specific.
Here, we opt for unification as this yields a sparse representation.12

39 _:syntax3 powla:string "of State";
40 :hasCAT "PP";
41 powla:hasParent _:syntax2;
42 powla:next doc:offset_19_24.

This is the first POWLA nonterminal in our data with more than one child node.

44 doc:offset_19_24 powla:string "James";
45 :hasPOS "NNP" ;
46 powla:hasParent _:syntax2, _:ner1;
47 nif:nextWord doc:offset_25_30;
48 powla:next doc:offset_25_30.
49

50 doc:offset_25_30 powla:string "Baker";
51 :hasPOS "NNP" ;
52 powla:hasParent _:syntax2, _:ner1;
53 nif:nextWord doc:offset_30_31.
54

55 _:ner1 powla:string "James Baker";
56 :hasNER "PERSON";
57 itsrdf:taIdentRef <http://dbpedia.org/resource/

James_Baker> ;
58 a dbo:Agent, dbo:Person, dbo:OfficeHolder .
59 # this is a root node not connected to _:syntax2
60

61 _:syntax2 powla:string "Secretary of State James Baker";

12Although not illustrated in the data snippet, coextensional nodes connected by
powla:hasParent would not be unified. Only the ‘highest’ non-branching nonterminals
per annotation layer would be unified with each other.
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62 :hasCAT "NML";
63 powla:isSourceOf # semantic role annotation,

pointing to predicate
64 [ :hasSRL "A0"; powla:hasTarget doc:offset_36_47

];
65 powla:hasParent _:syntax5;
66 powla:next doc:offset_30_31.

For the syntactic phrase and the token span annotated for named entities and
entity linking, different nonterminals need to be created as they are not coexten-
sional. In both annotations, however, the sibling structure is identical.

The blank node _:ner1 carries named entity annotations, but also entity linking
(using an external vocabulary in accordance with NIF recommendations). It is
important to note here a semantic difference between POWLA and NIF. In NIF, only
a string can be defined as having the type dbo:Agent. This is rather imprecise
as it conflates two levels of abstraction: The textual level and the referential level.
In POWLA, both levels can be more clearly separated, as POWLA nonterminals
are abstract entities (like annotations in Web Annotation), and are thus not a priori
incompatible with referential semantics. It is still semantically weak as it enforces
a reading that dbo:Agent (etc.) is in fact a class of descriptors rather than
entities themselves—an interpretation possibly valid in the context of DBpedia, but
probably counterintuitive.

The nonterminal _:ner1 is a root node; it does not have a following sibling
(as it does not have a parent) and thus remains isolated from _:syntax2.13

The blank node _:syntax2 is coextensional with the A0 span of the predicate
accompany.01. This is modelled here as a (non-hierarchical) relation pointing
from _:syntax2 to the verb accompanied.

68 doc:offset_30_31 powla:string ",";
69 :hasPOS ",";
70 powla:hasParent _:syntax5;
71 nif:nextWord doc:offset_32_35.
72

73 _:syntax5 powla:string "Secretary of State James Baker,";
74 :hasCAT "NP";
75 powla:hasParent _:syntax6;
76 powla:next _:syntax8; # next relative to syntax parent
77 powla:hasParent _:rst1;
78 powla:isSourceOf # relation label "NUC"
79 [ :hasNUC "NUC"; powla:hasTarget _:rst1 ];
80 powla:next _:syntax8. # next relative to RST parent

13 It is possible to infer that _:ner1 is enclosed by _:syntax2 via the following SPARQL
fragment:

?ner1 ˆpowla:hasParent+/powla:hasParent+ ?syntax2.
# at least one descendant of ?ner1 is in ?syntax2
MINUS { ?tmp powla:hasParent+ ?ner1.
MINUS { ?x powla:hasParent ?tmp }
MINUS { ?tmp powla:hasParent+ ?syntax2 }
# there is no terminal descendant of ?ner1 that is not a descendant of ?syntax2
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This last snippet illustrates a labelled hierarchical relation (i.e. a relation
accompanied by powla:hasParent). It also shows how the same POWLA node
may carry two powla:hasParent statements. In principle, a node can also
have different powla:next statements relative to each parent, illustrated by two
powla:next triples. In this particular case, the RST sibling and the syntactic
sibling are coextensional and have been merged.

6.3.3 Transforming CoNLL-RDF to POWLA

As mentioned above, CoNLL-RDF can be used as an intermediate representation
between a specific format and a full-fledged linked data representation. A generic
transformation of CoNLL to POWLA can be easily accomplished with CoNLL-
RDF and six SPARQL Update rules.

1. Define words and sentences as powla:Nodes, but otherwise retain their
original annotation.

1 INSERT {
2 ?w a powla:Node.
3 ?w powla:hasParent ?s.
4 ?s a powla:Node.
5 } WHERE {
6 ?w a nif:Word.
7 ?w conll:HEAD+ ?s.
8 ?s a nif:Sentence.
9 };

As CoNLL(-RDF) is based on word-level annotations, and supports phrase-level
annotations only in the form of string fragments, we define the sentence of any
particular word as its parent node.

2. Define the sequential order of nodes. As CoNLL does not provide native
support for phrase nodes, map nif:nextWord and nif:nextSentence
to powla:next:

10 INSERT {
11 ?x powla:next ?y
12 } WHERE {
13 ?x ?rel ?y
14 FILTER(?rel in (nif:nextWord,nif:nextSentence))
15 };
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3. Define string values and offsets for terminal nodes14:

16 INSERT {
17 ?w powla:string ?word ;
18 powla:start ?start ;
19 powla:end ?end .
20 } WHERE {
21 ?w conll:WORD ?word.
22 { SELECT ?w (COUNT(DISTINCT ?pre) as ?start)
23 WHERE {
24 ?pre nif:nextWord+ ?w
25 } GROUP BY ?w
26 }
27 BIND( (?start + 1) as ?end)
28 };

4. Define annotations: Datatype properties from the conll namespace are
(re)defined as subproperties of powla:hasAnnotation. As we cannot
directly check for the prefix, we perform a string match on the underlying
URI:

29 INSERT {
30 ?annotation rdfs:subPropertyOf powla:hasAnnotation
31 } WHERE {
32 ?w ?annotation ?x.
33 FILTER(literal(?x) && strstarts(str(?prop),
34 ’http://ufal.mff.cuni.cz/conll2009-st/task-description.html

#’)
35 };

5. Create relations for dependency syntax: Dependency annotations in CoNLL-
RDF are represented by two properties: the obligatory conll:HEAD annotation
and the optional conll:EDGE annotation. In POWLA, these can be comple-
mented by powla:Relation:

36 INSERT {
37 ?dependent powla:isSourceOf [
38 rdfs:label ?edge;
39 powla:hasTarget ?head ]
40 } WHERE {
41 ?dependent conll:HEAD ?head.
42 OPTIONAL { ?dependent conll:EDGE ?edge }
43 };

14We follow CoNLL-RDF conventions for naming the column containing the string value WORD.
If a different column label is used, the rule needs to be adjusted accordingly. Optionally, the
conll:WORD property may be deleted to facilitate backward compatibility; we leave it intact
here.

Note that POWLA does not define the type of offsets and that we assume the number of
preceding tokens. Alternatively, one may use the STRLEN function to get an approximate character
offset.
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In order to avoid confusion between the original conll:EDGE property and
the annotation attached to the relation; this is represented here by means of an
rdfs:label.

6. Create relations for semantic roles: Create a novel annotation property and to
map relevant CoNLL properties by means of a FILTER:

44 INSERT {
45 :hasSRL rdfs:subPropertyOf powla:hasAnnotation.
46 ?arg powla:isSourceOf [
47 :hasSRL ?role;
48 powla:hasTarget ?pred ].
49 } WHERE {
50 ?pred ?srl ?arg.
51 FILTER(?srl in (syn:ARG0,syn:ARG1,syn:ARG2)) # etc
52 BIND(replace(str(?srl),’.*#’,’’) as ?role)
53 };

The resulting representation is compliant with POWLA data structures and thus
provides the basis for semantic interoperability. POWLA allows to infer recom-
mended and optional properties and classes from obligatory (and recommended)
POWLA properties and classes. With this information, the resulting data structure
is suitable for effective navigation.

6.4 Querying Annotated Corpora

One motivation for modelling linguistic annotations in RDF is to facilitate accessi-
bility and integration of linguistic annotations from different sources and across pro-
cessing tools. Other applications include information integration in NLP pipelines
(cf. Chap. 11) and enrichment with external knowledge repositories, which may pro-
vide annotation terminology (Sect. 8.4.2) or lexical information about a particular
domain.

For demonstrating access to and information retrieval from linguistic annotations
provided in RDF, we focus on corpus querying using the POWLA vocabulary as a
basis. We demonstrate the capability of SPARQL and POWLA for querying corpora
by addressing a number of critical problems used to assess the expressivity of corpus
query languages. Lai et al. [44] designed seven reference queries to evaluate the
extent to which a query language is capable to match and return specific nodes, to
navigate trees, sequences and other relations, and their transitive closure, as well as
to demonstrate the need for an update mechanism (cf. our solution to Q4 below).
We illustrate the application of (expanded) POWLA+NIF and SPARQL for these
queries, slightly adapted to match the example data from Sect. 6.3.2, cf. Fig. 6.9
(p. 107) for a visualization of the data.

Q1 Find sentences that include the word told.
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For identifying sentences, we resort to syntax annotations, i.e., POWLA nodes
without parents and with :hasCat "S".15

The corresponding SPARQL query would look as follows:

1 SELECT ?s
2 WHERE {
3 ?s a powla:Root; :hasCAT "S".
4 ?told powla:string "told"; powla:hasParent+ ?s.
5 }

As a result, we return the sentence URI. Resolving this URI should point to
the underlying string, using the means of Web Annotation or NIF to address text
fragments. However, we can also reconstruct the full string of the sentence from
POWLA alone:

1 SELECT ?s ?string
2 WHERE {
3 ?s a powla:Root; :hasCAT "S".
4 ?told powla:string "told"; powla:hasParent+ ?s.
5 { SELECT ?s
6 (GROUP_CONCAT(?word; separator=" ") as ?string)
7 WHERE {
8 ?w a powla:Terminal; powla:hasParent+ ?s;
9 powla:start ?start; powla:string ?word.

10 } GROUP BY ?s ORDER BY ?s ?start
11 }
12 }

Note that this reconstruction is approximative only as a whitespace is inserted
between two tokens whereas the original distribution and number of whitespaces
between tokens is unknown (and may already have been lost in the source formats,
e.g. if provided in CoNLL TSV).

Q2 Find sentences that do not include the word told.

Some corpus query languages do not permit existential negation or universal
quantification. In SPARQL this is possible as shown in the following query:

1 SELECT ?s
2 WHERE {
3 ?s a powla:Root; :hasCAT "S".
4 MINUS { ?told powla:string "told"; powla:hasParent+ ?s }
5 }

Q3 Find noun phrases whose rightmost child is a noun.

This query exploits the fact that powla:next holds between siblings only.
However, as siblings are defined only in relation to a particular parent node and

15 Alternatively, one may use NIF data structures and retrieve nif:Sentences.
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multiple parent nodes are possible, we need to make sure that the next element is
also a child of the same noun phrase. For identifying nouns from Penn Treebank
annotations, we need to check against different parts of speech and hence use a
corresponding FILTER expression.

1 SELECT ?np
2 WHERE {
3 ?np :hasCAT "NP"; powla:hasChild ?noun.
4 ?noun :hasPOS ?pos FILTER(?pos="NNP" || ?pos="NNS").
5 MINUS {
6 ?noun powla:next/powla:hasParent ?np
7 }
8 }

Q4 Find verb phrases that contain a verb immediately followed by a noun phrase
that is immediately followed by a prepositional phrase.

Verbs are identified by several tags in Penn Treebank annotation, but characterized
with a ‘V’ as a first character. This is used here to define a filter condition. A
challenge in this query is that it is not restricted to direct child nodes of verb phrases
(between powla:next would hold), but to any descendant. This is solved here by
using nif:nextWord (alternatively, start and end indices of terminal nodes may
be used). As we compare phrases, we need to rule out that one phrase is contained
in another.

1 SELECT ?vp
2 WHERE {
3 ?vp :hasCAT "VP"; powla:hasParent+ ?v, ?np, ?pp.
4 ?v :hasPOS ?pos FILTER(strstarts(?pos,’V’)).
5 ?np :hasCAT "NP".
6 ?pp :hasCAT "PP".
7 ?v nif:nextWord/powla:hasParent+ ?np.
8 ?np powla:hasChild+/nif:nextWord/powla:hasParent+ ?pp.
9 MINUS { ?np powla:hasParent* ?pp }

10 MINUS { ?pp powla:hasParent* ?np }
11 MINUS { ?v powla:hasParent+ ?np }
12 MINUS { ?v powla:hasParent+ ?pp }
13 }

As an alternative, a SPARQL update may be applied to the data beforehand to
assign every nonterminal its left- and right-most token and use this precompiled
information to formulate the query in easier terms:

1 INSERT {
2 ?node :left ?left; :right ?right.
3 } WHERE {
4 ?node powla:hasChild+ ?left, ?right.
5 ?left a nif:Word. ?right a nif:Word.
6 MINUS { ?node powla:hasChild+/nif:nextWord+ ?left }
7 MINUS { ?right nif:nextWord+/powla:hasParent+ ?node }
8 };
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Using these task-specific properties, we can simplify the query:

1 SELECT ?vp
2 WHERE {
3 ?vp :hasCAT "VP"; powla:hasParent+ ?v, ?np, ?pp.
4 ?v :hasPOS ?pos FILTER(strstarts(?pos,’V’)).
5 ?np :hasCAT "NP".
6 ?pp :hasCAT "PP".
7 ?v nif:nextWord/^:left ?np.
8 ?np :right/nif:nextWord/^:right ?pp.
9 }

Q5 Find the first common ancestor of sequences of a noun phrase followed by a
verb phrase.

This query requires a result set of all ancestors and its subsequent reduction to
the first common ancestor. The variable ?tmp is introduced to eliminate every
descendant of a result candidate which is ancestor to both the verb phrase and the
noun phrase.

1 SELECT ?ancestor
2 WHERE {
3 ?np :hasCAT "NP".
4 ?np powla:hasChild+/nif:nextWord/powla:hasParent+ ?vp.
5 MINUS { ?np powla:hasParent* ?vp }
6 MINUS { ?vp powla:hasParent* ?np }
7 ?ancestor powla:hasChild+ ?np, ?vp.
8 MINUS {
9 ?ancestor powla:hasChild+ ?tmp.

10 ?tmp powla:hasChild+ ?np, ?vp
11 }
12 }

Q6 Find a clause which dominates a verb phrase, restricted to cases in which this
verb phrase is dominated by an RST nucleus.

For this query, we assume an integrated representation of RST and syntax anno-
tations, i.e. that RST segments point to the largest constituents they contain, not
directly to strings (cf. lines 73–80 in the listing on p. 110). In Penn Treebank
annotation, clauses are identified by category labels starting with S.16

1 SELECT ?clause
2 WHERE {
3 ?clause :hasCAT ?cat FILTER(strstarts(?cat,’S’)).
4 ?clause powla:hasChild ?vp.
5 ?vp :hasCAT "VP".

16Q6 is reformulated from an example in phonology. It is designed to show that queries can be
run across different annotation layers. In fact, our version is slightly more complex than Lai et al.’s
original as we do not just need to check the annotations of the RST node, but the annotation of its
relation.
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6 ?vp powla:hasParent ?rst.
7 ?rstrel powla:hasSource ?vp;
8 powla:hasTarget ?rst;
9 :hasNUC "NUC".

10 }

Q7 Find a noun phrase dominated by a verb phrase. Return the subtree dominated
by that noun phrase only.

1 SELECT ?np
2 WHERE {
3 ?vp :hasCAT "VP"; powla:hasChild ?np.
4 ?np :hasCAT "NP".
5 }

The challenge here is that corpus query languages often do not allow to constrain
the returned result, but that they rather return the entire context for a match to the
query. Given the expressivity of SPARQL, it should not come as a surprise that each
of these seven queries can be expressed in a relatively straightforward fashion, i.e.
with a little more complexity than the solutions in existing query languages provided
by Lai et al. [44]. Unlike the languages compared by Lai et al., however, every single
query can be expressed by SPARQL.

A clear benefit of the combined application of SPARQL and LLOD-native
vocabularies to represent linguistic data structures in RDF is that queries can be
more easily ported over different data sources, and that information conveyed in
corpora can be flexibly combined with external knowledge sources.

Beyond expressivity, portability and resource integration, a great benefit in
comparison to common corpus query languages is that query fragments can be
precompiled in the data (cf. Q4), so that query-specific optimizations can be
developed on the fly. Indeed, the direct application of SPARQL (and other RDF
query languages) to linguistic corpora has been suggested repeatedly [9, 24, 45, 46].

Yet, SPARQL also has disadvantages in comparison to existing corpus query
languages:

• The semantic restrictions of existing corpus language queries are motivated by
the need to guarantee adequate response times. With SPARQL being semanti-
cally unconstrained, the user is responsible to keep an eye on run time.17

17In fact, advanced users need to acquire some insight into the inner mechanics of SPARQL
to optimize queries and to guard themselves against unexpected results. As such, SPARQL is
evaluated in a bottom-up fashion: {}-enclosed graph fragments are compiled first, and then joined
with the context set. In order to prevent large result sets for optional or alternative statements,
users should take care to make the relation between all variables in, say, an OPTIONAL fragment
explicit—even if redundant with information expressed before. Moreover, SPARQL engines
normally evaluate the query left to right. This means that filters on a variable should only be
expressed after this variable is bound, and queries can be optimized by positing the most restrictive
conditions first.
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• Most RDF databases do not come with graphical visualizations that are appealing
to linguists. For this purpose, external tools can be used, but shifting between
different applications is relatively inconvenient.

• Many corpus information systems provide user-friendly graphical query builders.
It would be possible to develop such a system for SPARQL, but for linguistics-
specific visualization, the supported vocabulary needs to be restricted.

• SPARQL has a rather technical appeal in that it is neither developed by nor
normally taught to linguists.

Given the state of the art in corpus linguistics, an appealing solution to these
problems is to continue to use existing corpus query infrastructures, but to provide
SPARQL generators that allow to replicate them against a triple store if data from
different sources is to be integrated or a specific problem requires a level of semantic
expressivity that the original corpus query does not provide:

• Such a hybrid solution can be used by anyone familiar with existing query
languages.

• SPARQL queries generated from semantically constrained corpus query lan-
guages lead to more constrained (i.e. more effective) queries.

• If a specific visualization is needed (e.g. to fine-tune query results), the same
query can be run against existing infrastructure.

In this way, a linguist can design a query, e.g. to extract features to be fed
into an NLP pipeline, and the generated SPARQL query can then be refined if a
higher level of expressivity is needed than provided by the original query language.
Such reconstructions of corpus query languages in SPARQL have been described
by Chiarcos et al. [23] and [46]. Given the increasing shift in the language resource
community from XML-based to graph-based corpus infrastructures [47, 48], as well
as the growing maturity of RDF-based NLP service architectures (Chap. 11), we
expect an increasing interest in this line of research.

6.5 Summary and Further Reading

This chapter has described mechanisms and data models to represent linguistic
annotations in RDF, be it for processing and integration with Semantic Web
technology and resources or for publication of corpora as Linked Open Data. Both
functions overlap, but have very different requirements:

• For applications where backward compatibility with existing community stan-
dards is important, a direct reconstruction of the respective format (resp., its
semantics) in RDF(S) provides a viable way to facilitate the processing and
publication of data. This was illustrated for the CoNLL format and the use
of CoNLL-RDF for annotation manipulation. CoNLL-RDF may be serialized
back into CoNLL, or, alternatively, transformed into a full-fledged LLOD
representation as required by the second use case.
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• For applications aiming to facilitate interoperability and resource integration, and
for publication of annotated data as LLOD, we recommend the use of generic
data models for linguistic data structures. At the time of writing, no widely
used community standard for this purpose has emerged yet. We described the
POWLA vocabulary which may represent a basis from which such a vocabulary
may eventually evolve, and its application for querying linguistic annotations.

In the wider context of LLOD vocabularies, CoNLL-RDF and POWLA complement
NIF (resp., Web Annotation) in that they extend them with application-specific,
resp., general data structures for representing linguistic annotations. Aside from
other applications, it is thus possible to model, to share and to access linguistically
annotated corpora on the web of data in an interoperable way. At the time of writing,
it is not uncommon to encounter ad hoc formats to model annotations in RDF,18

or to devise novel, application-specific formats to integrate specific annotations
into a coherent representation.19 In the longer perspective, however, we expect a
tendency towards greater harmonization, and ultimately, convergence towards more
widely used conventions, most probably based on widely used community standards
rather than proprietary or task-specific formats. For open data and data which can
be related to LLOD resources, RDF represents a useful publication format, also
because it allows to separate the data model from its serialization—be it RDF/Turtle,
RDF/XML, JSON-LD, RDF-Thrift or a TSV rendering as produced from CoNLL-
RDF. Depending on the respective use case, other serializations can be generated in
a lossless fashion.

As for further reading on linguistic annotations, we suggest consulting the
Handbook of Linguistic Annotation [51] which provides a general overview and a
detailed discussion of most representative formats currently being used for linguistic
annotation in various modalities. With respect to linguistic annotations in the context
of linguistic linked (open) data, it is hard to give a specific recommendation at
this time, as the field is evolving at a fast pace. Aside from the present volume,
another upcoming publication on the topic includes the book edited by Pareja-
Lora et al. [52]. As a general suggestion, the interested reader may want to follow up
on proceedings and associated publications of the workshop series on Linked Data
in Linguistics (LDL, biannually, since 2012) and the conference series on Language,
Data and Knowledge (LDK, biannually, since 2017), as these take the most specific
focus on semantic technologies in application to language technology. Beyond this,
it is possible to get directly involved, e.g., in the context of the W3C community
group on Linked Data for Language Technology Community Group (LD4LT),20

which provides a mailing list for discussing these issues.

18For example, the MATE SRL system [49] provides an ad hoc representation in RDF/N3 under
http://barbar.cs.lth.se:8081/, accessed 09-07-2019.
19For example, the Concrete format [50], designed as an application of Apache Thrift, or JSON-
NLP [53], designed as a JSON replacement of earlier generic formats for NLP.
20https://www.w3.org/community/ld4lt/, accessed 09-07-2019.

http://barbar.cs.lth.se:8081/
https://www.w3.org/community/ld4lt/


120 6 Modelling Linguistic Annotations

References

1. N. Ide, C. Chiarcos, M. Stede, S. Cassidy, Designing annotation schemes: from model to
representation, in Handbook of Linguistic Annotation, ed. by N. Ide, J. Pustejovsky. Text,
Speech, and Language Technology (Springer, Berlin, 2017)

2. S. Bird, M. Liberman, A formal framework for linguistic annotation. Speech Commun.
33(1–2), 23 (2001)

3. N. Ide, K. Suderman, The Linguistic Annotation Framework: a standard for annotation
interchange and merging. Lang. Resour. Eval. 48(3), 395 (2014)

4. ISO, ISO 24612:2012. Language resource management—Linguistic Annotation Framework.
Technical Report, ISO/TC 37/SC 4, Language resource management (2012). https://www.iso.
org/standard/37326.html

5. N. Ide, K. Suderman, GrAF: a graph-based format for linguistic annotations, in Proceedings of
the 1st Linguistic Annotation Workshop (LAW 2007), Prague, 2007, pp. 1–8

6. C. Chiarcos, S. Dipper, M. Götze, U. Leser, A. Lüdeling, J. Ritz, M. Stede, A flexible
framework for integrating annotations from different tools and tag sets. TAL (Traitement
Automatique des Langues) 49(2), 217 (2008)

7. W. Bosma, P. Vossen, A. Soroa, G. Rigau, M. Tesconi, A. Marchetti, M. Monachini,
C. Aliprandi, KAF: a generic semantic annotation format, in Proceedings of the 5th Inter-
national Conference on Generative Approaches to the Lexicon GL 2009, Pisa, 2009

8. R. Eckart, Choosing an XML database for linguistically annotated corpora, in Sprache und
Datenverarbeitung. Proceedings of the KONVENS 2008 Workshop on Datenbanktechnologien
für Hypermediale Linguistische Anwendungen, Berlin, 2008

9. A. Burchardt, S. Padó, D. Spohr, A. Frank, U. Heid, Formalising multi-layer corpora in
OWL/DL—Lexicon modelling, querying and consistency control, in Proceedings of the 3rd
International Joint Conference on NLP (IJCNLP), Hyderabad, 2008, pp. 389–396

10. S. Cassidy, An RDF realisation of LAF in the DaDa annotation server, in Proceedings of the
5th Joint ISO-ACL/SIGSEM Workshop on Interoperable Semantic Annotation (ISA-5), Hong
Kong, 2010

11. A. Fokkens, A. Soroa, Z. Beloki, N. Ockeloen, G. Rigau, W.R. van Hage, P. Vossen, NAF
and GAF: linking linguistic annotations, in Proceedings of the 10th Joint ISO-ACL SIGSEM
Workshop on Interoperable Semantic Annotation (2014), pp. 9–16

12. E. Rubiera, L. Polo, D. Berrueta, A. El Ghali, TELIX: an RDF-based model for linguistic
annotation, in Proceedings of the 9th Extended Semantic Web Conference (ESWC 2012),
Heraklion, 2012

13. S. Hellmann, J. Lehmann, S. Auer, M. Brümmer, Integrating NLP using linked data, in
Proceedings of the 12th International Semantic Web Conference (ISWC). Lecture Notes in
Computer Science, vol. 8219 (Springer, Heidelberg, 2013), pp. 98–113

14. N. Ide, K. Suderman, E. Nyberg, J. Pustejovsky, M. Verhagen, LAPPS/Galaxy: current state
and next steps, in Proceedings of the 3rd International Workshop on Worldwide Language
Service Infrastructure and 2nd Workshop on Open Infrastructures and Analysis Frameworks
for Human Language Technologies (WLSI/OIAF4HLT2016) (2016), pp. 11–18

15. O. Christ, A modular and flexible architecture for an integrated corpus query system, in
Proceedings of the 3rd Conference on Computational Lexicography and Text Research
(COMPLEX’94), Budapest, 1994
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