
Chapter 5
Representing Annotated Texts as RDF

Abstract Text annotation consists in defining markables (elements to be anno-
tated), their features (attributes and values of annotations) and relations between
markables (e.g. syntactic dependencies or semantic links). In this chapter we
describe the principles for annotating text data using RDF-compliant formalisms.
These principles provide the basis for making annotated corporate and text collec-
tions accessible from the LLOD ecosystem.

5.1 Introduction

Linguistic analysis of natural language is basically about defining markables
(elements of annotations), their features (attributes and values of annotations) and
relations between markables (e.g. syntactic dependencies or semantic links).

Before discussing RDF-based data models for representing annotations, we dis-
cuss state-of-the-art formalisms in NLP and Digital Humanities (DH) to formalize
markables and their annotations, and present possibilities to integrate LLOD-
compliant references to textual and other natural language objects on the web.

5.1.1 Tab-Separated Values: CoNLL TSV

Since 1999, the Conference on Natural Language Learning (CoNLL)1 established
a highly successful series of shared tasks in NLP. Subsequently, the data formats
employed in these tasks evolved into a widely used community standard for most
forms of linguistic annotations, as illustrated in the following example (1), slightly
simplified from a clause from the OntoNotes corpus [1], file wsj-0655:

(1) James Baker . . . told reporters Friday: “I have no reason to deny reports that
some Contras ambushed some Sandinista soldiers.”

1http://www.conll.org/, last accessed 09-07-2019.

© Springer Nature Switzerland AG 2020
P. Cimiano et al., Linguistic Linked Data,
https://doi.org/10.1007/978-3-030-30225-2_5

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30225-2_5&domain=pdf
http://www.conll.org/
https://doi.org/10.1007/978-3-030-30225-2_5

62 5 Representing Annotated Texts as RDF

James NNP B-PERSON
Baker NNP E-PERSON
told VBG O
reporters NNS O
Friday NNP S-DATE
: : O
...

Fig. 5.1 CoNLL sample with WORD, POS and NER columns

(TOP (S (NP-SBJ (NNP James) James NNP (TOP (S (NP-SBJ *
(NNP Baker)) Baker NNP *)

(VP (VBD told) told VBD (VP *
(NP (NNS reporters)) reporters NNS (NP *)
(NP-TMP (NNP Friday)) Friday NNP (NP-TMP *)
(: :) : : *

(a) (b)

Fig. 5.2 Sample of a parsed sentence in original and CoNLL format. (a) Original format (b)
CoNLL conversion

Figure 5.1 illustrates the CoNLL format for the example of parts of speech and
named entity annotation. Every word is written in one line, with a series of tab-
separated columns holding different annotations; one column contains the surface
form of the word. Sentences are separated by an empty line; comments are marked
by #. Along with word-level annotations, CoNLL formats support the annotation
of spans, illustrated here for named entity annotation using the IOBES scheme, i.e.
B-X marking the beginning of the annotation X, E-X its end, I-X intermediate
elements, S-X a single-word annotation and O the absence of an annotation.

While word- and span-level annotations can be performed in an intuitive and
extensible way with one column per annotation type, the phrase structure syntax
can be handled indirectly in CoNLL, only. The original syntax annotation of the
OntoNotes uses a bracketing format as illustrated in Fig. 5.2a: Every word is
grouped together with its POS tag in a terminal node, e.g. (NNP James). One
or more terminal (or nonterminal) nodes may be grouped to a constituent, again
marked by parentheses and a label, e.g. (NP ...). The original format is agnostic
about line breaks, but for convenience of reading, line breaks may be inserted to put
one word (and its annotations) in one single line.

Figure 5.2b shows how this information is split into three different columns for
compliance with the CoNLL format: WORD, POS and PARSE, respectively. The
column WORD contains the current word form, POS the associated POS tag and
PARSE an abbreviated version of the parse structure, where * replaces terminal
nodes.

As the phrase structure syntax example in Fig. 5.3 illustrates, some phenomena
require special handling in order to be representable in a CoNLL TSV format, but a
key advantage is that this representation can be easily extended, and easily merged
with additional columns. As an example, the conventional way to represent semantic

5.1 Introduction 63

James NNP B-PERSON (TOP (S (NP-SBJ * _ ARG0
Baker NNP E-PERSON *) _ ARG0
told VBD O (VP * tell.v.01 rel
reporters NNS O (NP *) _ ARG2
Friday NNP S-DATE (NP-TMP *) _ ARGM-TMP
: : O * _ _
skipped quote

Fig. 5.3 Integrated CoNLL representation of POS, NER, syntax and PropBank annotations

role annotations in CoNLL is to add one column for the predicate as well as another
column for every predicate that identifies its arguments. In the fourth column of
our example, semantic predicates are identified and marked by a sense identifier.
For every predicate instance, its arguments (ARGi with numerical index i for core
arguments and ARGM arguments for various modifiers) are represented in a separate
column, indicating whether a word occurs in (the span of) a frame argument and in
which role. For every predicate in a sentence, an additional column is created.2

CoNLL TSV formats are characterized by the use of one word per line, one
tab-separated column per annotation layer and an empty line to separate sentences.
While CoNLL-based formats are not generic, they are relatively simple and easy
to parse (or at least, commonly known), as they have been designed to provide
common output specifications for tools participating in these challenges, and with
support from many tools—both participating in the original shared tasks but also
their successors and competitors—the CoNLL formats ultimately evolved into de
facto standards for many types of linguistic annotation. Probably the most influential
CoNLL dialect at the moment is CoNLL-U, the format adopted by the Universal
Dependency collection of annotated corpora [2].3 Individual CoNLL dialects,
however, differ in the definition, naming and order of columns; their annotations
and tools developed on this basis are thus not mutually interoperable.

Aside from interoperability problems, the CoNLL format family suffers from
inherent limitations; CoNLL is limited to annotate words and larger units of text,
as tokens (words) constitute the minimal unit of analysis (i.e. lines). As a side-
effect, CoNLL formats normally lose information about the original layout. In fact,
column-based formats do not annotate primary data but rather a segmental annota-
tion of the primary data, in particular, tokens extracted from the primary data, listed
one per line. This approach has the disadvantage of imposing one layer of linguistic
interpretation (e.g. what constitutes a token, sentence, etc.) that may not be desired
by other users. In addition, the ‘one token per line’ assumption adopted in the
CoNLL format can seriously handicap algorithm performance. For example, some

2While generally accepted, this adds to the complexity of the format: Unlike conventional TSV
formats which form fixed-size tables, CoNLL tables have no predictable maximum width and their
width may vary from one sentence to the next.
3http://universaldependencies.org/, last accessed 09-07-2019.

http://universaldependencies.org/

64 5 Representing Annotated Texts as RDF

phenomena (e.g. dots in chemical formulas) need to be split apart for one processing
step (e.g. POS tagging), but treated as a unit for others (e.g. syntactic parsing).
In many cases, CoNLL-based NLP pipelines thus require transformations between
different tokenizations in order to process a sentence. Yet, as CoNLL formats do not
systematically preserve whitespace information, such transformations can be lossy.
Furthermore, annotations with deviating segmentations cannot be easily aggregated
into a single CoNLL file, and neither can reliable references between elements in a
CoNLL file be established.4

Despite these limitations, TSV formats offer advantages for processing and are
thus widely used. Indeed, some of their deficits can be easily compensated if words
are complemented with a community-approved way to refer to textual objects on
the web or elsewhere. URIs provide such a mechanism, and by adding an additional
column that holds a URI that identifies the original string in the original document,
it is possible to establish links, to facilitate information integration across different
CoNLL dialects (resp., tools that generate or consume these), and with the original
document, its metadata and details regarding its layout. Below, URI schemes for this
purpose are introduced.

5.1.2 Tree-Based Formats: TEI/XML

In computational philology and parts of the language resource community, XML
enjoys a high degree of popularity as a representation formalism, only recently being
challenged by JSON. Both formats formalize tree (resp., multi-tree) data structures,
so that much of what can be said about the XML-based specifications of the Text
Encoding Initiative (TEI) below extends to other approaches to formalize linguistic
annotations.

For background, motivations and applications of the Text Encoding Initiative
see Chap. 13. Here, we focus solely on the format and its application to the
linguistic annotation of texts. The TEI P5 guidelines provide generic datatypes
for many forms of linguistic annotation, including elements for orthographic
sentences (<s>), grammatical words (<w>) and grammatical phrases (<phr>),
as well as attributes for their respective type (@type), interpretation (@ana) and

4Strategies employed by different CoNLL Shared Tasks involve ad hoc solutions such as a
reference to a word by its number (id) in the sentence (in dependency syntax), explicit ids and
co-indexation (for coreference), or off-set based solutions (for Semantic Role Labelling). Neither
of these, however, permit absolute reference, but they are defined with respect to the current
sentence (SRL, dependency syntax), a particular tokenization (dependency syntax) or ad hoc ids
(coreference). State of the art are thus more generic data models grounded in labelled directed
multigraphs [3].

5.1 Introduction 65

1 <s type="sentence">
2 <cl ana="#S">
3 <phr ana="#NP-SBJ">
4 <w ana="#NNP">James </w>
5 <w ana="#NNP">Baker </w>
6 </phr>
7 <phr ana="#VP">
8 <w ana="#VBD">told </w>
9 <phr ana="#NP">

10 <w ana="#NNS">reporters </w>
11 </phr>
12 <phr ana="#NP-TMP">
13 <w ana="#NNP">Friday </w>
14 <w ana="#colon">: </w>
15 ...
16 </phr>
17 </phr>
18 </cl>
19 </s>

Fig. 5.4 POS and syntactic annotation in TEI (inline annotation)

identification (@xml:id).5 For our example, syntactic annotations are given in
Fig. 5.4, respectively.

The tree structure that both XML and JSON build upon is very convenient to
represent syntactic annotations, as illustrated in Fig. 5.4. The direct annotation of
syntax trees with @ana requires the use of URIs (teidata.pointer) as a reference to
a feature structure <fs> or interpretation <interp> element. References to an
external terminology repository such as OLiA [4] would be syntactically valid as
well.

In comparison with CoNLL, inline XML annotations permit to preserve the
original whitespaces together with the original context of a word, and they provide
a directly processable representation of nested structures. In addition, TEI supports
standoff mechanisms to refer to markables, and thus allows to create directed graph
structures between markables. In the upper part of Fig. 5.5, the @xml:id attribute
introduces a unique identifier (tei.pointer), i.e. (the local name of) a URI within the
current document.

TEI pointers can be used as source and target of interpreted (i.e. typed) links, e.g.
for SRL annotation as in the lower part of Fig. 5.5. In this example, all elements are
URIs, which basically allows to emulate RDF triples.6 While TEI URI resolution is

5The original definition and various examples can be found under http://www.tei-c.org/release/
doc/tei-p5-doc/de/html/AI.html#AILA, last accessed 09-07-2019.
6Note that, despite interest in Linked Open Data within the TEI, TEI/XML is not a suitable
serialization of RDF in general: On the one hand, it is not sufficiently constrained, several different
serializations of RDF triples in TEI have been suggested and no consensus about preferences
among these has been achieved so far (for different approaches, see Sect. 13.3). On the other

http://www.tei-c.org/release/doc/tei-p5-doc/de/html/AI.html#AILA
http://www.tei-c.org/release/doc/tei-p5-doc/de/html/AI.html#AILA

66 5 Representing Annotated Texts as RDF

1 <s> <!-- declaration of TEI URIs with @xml:id -->
2 <w xml:id="word-1">James </w>
3 <w xml:id="word-2">Baker </w>
4 <w xml:id="word-3">told </w>
5 <w xml:id="word-4">reporters </w>
6 <w xml:id="word-5">Friday</w>
7 <w xml:id="word-6">: </w>
8 ...
9 </s>

10
11 <linkGrp type="SRL-annotation"> <!-- standoff annotation -->
12 <link source="#word-3" @ana="#ARG0" target="#word-1"/>
13 <link source="#word-3" @ana="#ARG0" target="#word-2"/>
14 <link source="#word-3" @ana="#rel" target="#word-3"/>
15 <link source="#word-3" @ana="#ARG2" target="#word-4"/>
16 <link source="#word-3" @ana="#ARGM-TMP" target="#word-5"/>
17 <!--... -->
18 </linkGrp>

Fig. 5.5 Semantic role annotation in TEI (standoff XML)

normally restricted to tei.pointers (i.e. XML elements that are defined with @xml.id
within a TEI document), this also provides a suitable device to refer to LLOD URIs
in general. In the following sections, we describe two mechanisms to address texts
and other natural language entities by means of LLOD formalisms.

5.2 Annotating Web Resources

Documents in the web come in various forms, and, often, it is not possible to embed
metadata and annotations directly into them, e.g. because the annotator is not the
owner of the document, and distributing a local copy may be restricted. Standoff
formalisms support the physical separation of annotated material and annotations.
The Open Annotation community and their Web Annotation Data Model provide
a RDF-based approach for standoff annotation of web documents, with JSON-LD
as its designated serialization. The Web Annotation Data Model provides a flexible
means to represent standoff annotations relative to any kind of document on the web.
It is being applied to linguistic annotations, primarily in the biomedical domain,
although prototypical adaptions in other domains have been described as well, e.g.
for NLP [5] or Digital Humanities [6].

hand, the TEI constructions used to emulate RDF triples can also have different interpretations—
as evident from uses of TEI pointer structures such as <relation>, <link> or <ptr> that
pre-date their (ab)use to represent or refer to linked data.

5.2 Annotating Web Resources 67

5.2.1 Web Annotation (Open Annotation)

The Web Annotation Data Model [7] provides specifications for the RDF-based
annotation of digital resources and the lossless exchange and (re-)usability of such
annotations [7]. The Web Annotation Data Model has been developed by the Open
Annotation W3C Community Group7 with precursors in the Annotation Ontology8

and the Open Annotation Model.9 The Annotation Ontology [8] was an effort to
create an open OWL-DL ontology for the annotation of scientific documents in the
web, in particular from the biological domain and BioNLP. In order to bridge the gap
between the available array of biomedical ontologies and the linguistic expression
of the corresponding concepts in scientific publications, the Annotation Ontology
was developed as an open, sharable data structure for integrating documents with
terminology resources [8, 9]. It was subsequently aligned with the specifications of
the Open Annotation Community project, finally leading to the formation of the
W3C Open Annotation Community Group [10].

The Web Annotation data model and vocabulary have been published as W3C
recommendations in 2017 [7, 11]. The aim of Web Annotation is to be applicable
across different media formats, the most common use case being “attaching a
piece of text to a single web resource” [7]. However, in a Semantic Web context,
annotations can also include structured elements which may provide, for example,
machine-readable representations for a particular textual label, e.g. by providing a
link with an external ontology. Accordingly, the data model and the vocabulary have
been extended to cover a broad band-width of use cases beyond a plain labelling
mechanism. Instead, annotations are understood as structured objects. The Web
Annotation Model provides fully reified representation of annotated elements and
annotations assigned to it. The Web Annotation Data Model follows the following
core principles [7]:

• Annotations form a directed graph: An annotation consists of a Body (the value
of the annotation) that typically expresses information about a Target (the
element which is annotated).

• Targets are external web resources: Whereas a Body may be embedded in the
annotation, a Target may be independently dereferenced.

• Annotations form a hypergraph: An annotation can have 0 or more Body
elements, and 1 or more Target elements.

• Annotations are reified: Body, Target and Annotation are distinct
resources, so that they can be further specified with properties and relationships,
e.g. a link with a Motivation resource that expresses the intent behind the
creation of an annotation.

7https://www.w3.org/community/openannotation/, last accessed 09-07-2019.
8http://code.google.com/p/annotation-ontology/, last accessed 09-07-2019.
9http://www.openannotation.org, last accessed 09-07-2019.

https://www.w3.org/community/openannotation/
http://code.google.com/p/annotation-ontology/
http://www.openannotation.org

68 5 Representing Annotated Texts as RDF

Web Annotation is defined by three W3C recommendations:

• The Web Annotation Data Model (https://www.w3.org/TR/annotation-model/,
last accessed 09-07-2019) defines the concept and the core vocabulary.

• The Web Annotation Vocabulary (https://www.w3.org/TR/annotation-vocab/,
last accessed 09-07-2019) provides the set of RDF classes, predicates and named
entities used by the Web Annotation Data Model.

• The Web Annotation Protocol (https://www.w3.org/TR/annotation-protocol/,
last accessed 09-07-2019) defines the mechanisms for accessing, creating and
managing annotations by means of RESTful web services, also including the
recommendation for JSON-LD as serialization.

In addition to these, the Web Annotation Ontology is also provided in a machine-
readable view under http://www.w3.org/ns/oa#, and this URL defines the oa:
namespace prefix. The core data structure of the Web Annotation Data Model is
oa:Annotation as illustrated in Fig. 5.6: Annotations are required to be declared
as instances (rdf:type) of oa:Annotation. Furthermore, the presence of a
oa:hasTarget property defining the relationship between annotation and the
annotated element is necessary. The target can be an IRI or a selector, i.e. “[a]
resource which describes the segment of interest in a representation of a Source
resource, indicated with oa:hasSelector from the Specific Resource. This class
is not used directly in the Annotation model, only its subclasses” [11].

A number of selectors for various source formats and addressing mechanisms
are supported, including, for example, the TextPositionSelector that
identifies text segments based on character offsets, the TextQuoteSelector
that identifies text segments on grounds of their textual context, and the
XPathSelector that uses XPaths to identify elements of an XML document.
Selectors for other modalities also exist, e.g. the DataPositionSelector and
the SvgSelector; it is thus possible to create annotations across different media

Fig. 5.6 Required and optional features of annotations in the Web Annotation Data Model [7]

https://www.w3.org/TR/annotation-model/
https://www.w3.org/TR/annotation-vocab/
https://www.w3.org/TR/annotation-protocol/
http://www.w3.org/ns/oa#

5.2 Annotating Web Resources 69

Fig. 5.7 Web Annotation example with named entity annotation, cf. Fig. 5.1

types, and using different reference strategies. Selectors are a highly generic and
flexible way to refer to text passages in a text, however, also a comparably verbose
one, so that for plain string references in plain text documents, users may want to
consider using string URIs (see Sect. 5.3) instead of selectors. Where selectors for
other data types exist, these should be preferred.

Additional predicates recommended for annotations are the metadata properties
dcterms:creator, dcterms:created and oa:motivatedBy, but most
importantly, the property oa:hasBody. The property oa:hasBody is an object
property that specifies its object to be the body of the annotation. Different
kinds of bodies are supported, e.g. a textual body, as illustrated in Fig. 5.7. As
this representation is rather verbose, Web Annotation also provides the datatype
property oa:bodyValue, which serves as a short-hand for the property path
oa:hasBody/rdf:value.

5.2.2 Annotating Named Entities on the Web

The primary goal of language technology as well as linguistic research has been
to analyse, to formalize and eventually to reproduce the function of language as a
relation between form (grammar) and function (meaning). Web Annotation allows
to formalize references to forms, e.g. linguistic expressions, but in addition, different
target selectors also allow to perform a similar functionality across different
modalities. In the context of linked data, the annotation of reference covers a
particularly important aspect of meaning, as entities in texts refer to the same entity
in the world, and are thus pivotal for creating links between texts and external
knowledge bases as well as across texts. Named entities have thus long stood in
the focus of interest in the Semantic Web and NLP communities. Their analysis
in texts involves several aspects, most notably Entity Linking, where an entity
mention in a text is assigned an identifier that represents this individual (say, a URI

70 5 Representing Annotated Texts as RDF

from a knowledge base such as DBpedia), and Named Entity Recognition (NER),
where entities are identified and classified for their type (say, general types such as
organizations, persons, geopolitical entities, dates, or domain-specific concepts such
as genes or drugs in BioNLP), as illustrated in example 2:

(2) Secretary of State James Baker, who accompanied President Bush to Costa
Rica, told reporters Friday: “I have no reason to deny reports that some Contras
ambushed some Sandinista soldiers. ”

A Web Annotation representation of the CoNLL representation for the NER
annotation of example 2 in Fig. 5.1 is given in Fig. 5.7. In comparison, Web Anno-
tation is less compact, but it pursues a standoff approach, so that the primary data is
left intact. Annotations are physically separated from the annotated document, with
annotations preferably serialized in JSON-LD.

For the example, we employ the oa:TextQuoteSelector (see Table 5.1),
which allows to describe a range of text by means of a literal match with the
designated string, but also (optionally) some of the text immediately before (a
prefix) and after (a suffix) in order to distinguish multiple copies of the same
character sequence. As prefix and suffix are optional, text quote selectors are a very
elegant solution to annotate all occurrences of a particular entity in a document
with the same entity link. If different entities with the same surface string are to be
distinguished (e.g. for pronouns), they can be disambiguated by context information.

Considering the first two named entities in the sentence only, this could be
encoded in the Web Annotation fragment shown in Fig. 5.8 (in JSON-LD), resp.
Fig. 5.9 (in Turtle).

Table 5.1 Characteristics of text quote selectors according to http://www.w3.org/ns/oa#
TextQuoteSelector (accessed 09-07-2019)

Term Type Description

Type Relationship The class of the selector. Text quote selectors MUST
have exactly 1 type and the value MUST be
TextQuoteSelector

TextQuoteSelector Class The class for a selector that describes a textual
segment by means of quoting it, plus passages before
or after it. The TextQuoteSelector MUST have this
class associated with it

Exact Property A copy of the text which is being selected, after
normalization. Each TextQuoteSelector MUST have
exactly 1 exact property

Prefix Property A snippet of text that occurs immediately before the
text which is being selected. Each TextQuoteSelector
SHOULD have exactly 1 prefix property, and MUST
NOT have more than 1

Suffix Property The snippet of text that occurs immediately after the
text which is being selected. Each TextQuoteSelector
SHOULD have exactly 1 suffix property, and MUST
NOT have more than 1

http://www.w3.org/ns/oa#TextQuoteSelector
http://www.w3.org/ns/oa#TextQuoteSelector

5.2 Annotating Web Resources 71

1 {
2 "@graph": [
3 {
4 "@context": "http://www.w3.org/ns/anno.jsonld",
5 "id": "http://example.org/enamex2",
6 "type": [
7 "Annotation",
8 "https://catalog.ldc.upenn.edu/docs/LDC2007T21/

ontonotes-1.0-documentation.pdf#ENAMEX"
9],

10 "body": {
11 "type" : "TextualBody",
12 "value" : "PERSON",
13 "format" : "text/plain"
14 },
15 "target": {
16 "source": "https://catalog.ldc.upenn.edu/

ldc2013t19/data/files/data/english/
annotations/nw/wsj/06/wsj_0655.name",

17 "selector": {
18 "type": "TextQuoteSelector",
19 "exact": "James Baker"
20 } }
21 }
22] }

Fig. 5.8 Partial named entity annotation with Web Annotation and JSON-LD

1 <http://example.org/enamex2>
2 a oa:Annotation, on:ENAMEX ;
3 oa:hasBody [
4 a oa:TextualBody ;
5 dc11:format "text/plain"ˆˆxsd:string ;
6 rdf:value "PERSON"ˆˆxsd:string
7] ;
8 oa:hasTarget [
9 oa:hasSelector [

10 a oa:TextQuoteSelector ;
11 oa:exact "James Baker"ˆˆxsd:string
12] ;
13 oa:hasSource wsj:06/wsj_0655.name
14] .

Fig. 5.9 Partial named entity annotation with Web Annotation and Turtle

Similarly, alternative body values are possible, including references to external
resources. Web Annotation thus provides an elegant mechanism to represent the
output of Entity Linking systems. Using a service such as DBpedia Spotlight
[12] (sample output in Fig. 5.10), the textual mention of James Baker can now
be enriched with the URI dbpedia:James_Baker as annotation body. Note
that an annotation can have multiple bodies (and/or targets), with the interpretation

72 5 Representing Annotated Texts as RDF

1 <?xml version="1.0" encoding="utf-8"?>
2 <Annotation text="Secretary of State James Baker, ..." confidence

="0.35" support="0" types="" sparql="" policy="whitelist">
3 <Resources>
4 <Resource URI="http://dbpedia.org/resource/James_Baker"

support="299" types="DBpedia:Agent,Schema:Person,Http://
xmlns.com/foaf/0.1/Person,DBpedia:Person,DBpedia:
OfficeHolder" surfaceForm="James Baker" offset="19"
similarityScore="0.9999999912981821"
percentageOfSecondRank="7.541871793467152E-9"/>

5 ...
6 </Resources>
7 </Annotation>

Fig. 5.10 Sample output of DBpedia Spotlight

1 {
2 "@context": "http://www.w3.org/ns/anno.jsonld",
3 "id": "http://example.org/enamex2",
4 "type": [
5 "Annotation",
6 "Schema:Person",
7 "http://xmlns.com/foaf/0.1/Person",
8 "http://dbpedia.org/ontology/Agent",
9 "http://dbpedia.org/ontology/Person",

10 "http://dbpedia.org/ontology/OfficeHolder",
11 "https://catalog.ldc.upenn.edu/docs/LDC2007T21/ontonotes

-1.0-documentation.pdf#ENAMEX"
12] ,
13 "body": [
14 "http://dbpedia.org/resource/James_Baker",
15 {
16 "type" : "TextualBody",
17 "value" : "PERSON",
18 "format" : "text/plain"
19 }] ,
20 "target": {
21 "source": "https://catalog.ldc.upenn.edu/ldc2013t19/data/

files/data/english/annotations/nw/wsj/06/wsj_0655.name",
22 "selector": {
23 "type": "TextQuoteSelector",
24 "exact": "James Baker"
25 } }
26 }

Fig. 5.11 Joint named entity and entity linking annotation with Web Annotation and JSON-LD

that every oa:Body is individually and equally related to the respective target(s).
This mechanism can be applied to joint named entity and entity linking annotations
(Figs. 5.11, resp. 5.12), but it should be noted that this integration of different body
elements also means that their respective types are being conflated.

5.3 Annotating Textual Objects 73

1 <http://example.org/enamex2>
2 a oa:Annotation, on:ENAMEX,
3 schema:Person, foaf:Person,
4 dbo:Agent, dbo:Person, dbo:OfficeHolder;
5 oa:hasBody <http://dbpedia.org/resource/James_Baker>, [
6 a oa:TextualBody ;
7 dc11:format "text/plain"ˆˆxsd:string ;
8 rdf:value "PERSON"ˆˆxsd:string
9] ;

10 oa:hasTarget [
11 oa:hasSelector [
12 a oa:TextQuoteSelector ;
13 oa:exact "James Baker"ˆˆxsd:string
14] ;
15 oa:hasSource wsj:06/wsj_0655.name
16] .

Fig. 5.12 Joint named entity and entity linking annotation with Web Annotation and Turtle

Likewise, it is now possible to extend this annotation to other modalities. For
example, if James Baker is shown on a digitized and web-accessible photograph, an
oa:FragmentSelector (providing the source image and the relevant coordi-
nates) can be added to the annotation as yet another target.

5.3 Annotating Textual Objects

Whereas Web Annotation covers the full bandwidth of web resources, more spe-
cialized and less verbose formalisms for referencing strings and formalizing them
as objects of linguistic annotation have been developed. Of particular importance
in this context is the NLP Interchange Format [13, NIF]. Building on RFC 5147
specifications for URI Fragment Identifiers for the text/plain media type, NIF
provides a URI scheme that allows to directly address strings in web-accessible
documents, as well as ontologies formalizing strings and selected aspects of
‘typical’ annotations in NLP.

A key advantage in comparison to Web Annotation is a more compact represen-
tation of string references, whereas Web Annotation provides the verbose selector
concepts, selector, reference and source document are identified in a compact
fashion in a single URI. While Web Annotation focuses on formalizing annotations,
NIF focuses on strings to which annotations may be assigned. RFC 5147 [14]
defines an extension of earlier specifications for the text/plain MIME type, i.e.
simple, unformatted text ‘seen simply as a linear sequence of characters, possibly
interrupted by line breaks or page breaks’ [15, RFC 2046]. In general, URI fragment
identifiers extend document URIs with a local name separated from the document
URI using a hash sign (#).

74 5 Representing Annotated Texts as RDF

RFC 5147 provides a simple offset mechanism to address strings, i.e. sequences
of characters, in a web document as follows:

• Position: A character offset starting from the beginning of the document, defining
an empty string at a particular position in the document. For the document https://
catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt and using the offsets
from Fig. 5.10 for James Baker from example 2, we arrive at the following
position URI:

https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#char=19
Note that the initial BOM character does not count, and that line endings

(regardless of whether defined as LF, CR or LF+CR) count as one character.
• Range: A consecutive sequence of characters with a particular start position and

a particular end position, both defined as character offsets:
https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#char=19,

30
If the first value of a range is not defined, it defaults to 0, if the second is not

defined, it defaults to the end of the document.
• Character Offsets: Number of characters before the designated string, i.e. 0 for

the first character. This is illustrated in the examples above.
• Line Offsets: Analogously to character offsets, a line offset refers to the number

of lines (resp., line separators) before the designated position. The following
example refers to the first line in the document:

https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#line=0
With a range definition and underspecified end, the following URI refers to

the textual content of the entire document (which can thus be distinguished from
the document itself):

https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#line=0,

The text scheme is optionally followed by an integrity check, i.e. a length specifica-
tion or an MD5 value:

...#char=19,30;length=12

...#char=19,30;md5=67f60186fe687bb898ab7faed17dd96a

Furthermore, a character encoding can be defined:

...#char=19,30;length=12,UTF-8

...#char=19,30;,UTF-8

Originally, RFC 5147 has been developed for highlighting strings in web docu-
ments. Aside from this application, its uses seem to be largely limited to language
technology, where its URIs can be directly used as targets of web annotations and
thus provide a compact alternative to Web Annotation selectors.

It should be noted, however, that RFC 5147 URIs are defined with reference to
the text/plain MIME type, and that their application to other kinds of documents on

https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt
https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt
https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#char=19
https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#char=19,30
https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#char=19,30
https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#line=0
https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt#line=0,

5.3 Annotating Textual Objects 75

the web (in particular, documents with markup) is somewhat abusive.10 Neverthe-
less, RFC 5147 represents the basis for all URI schemes for strings, including NIF
[13], NAF [17] and LIF [18]—which are designed to address strings in character
streams regardless of MIME type declarations.

Another potential issue of RFC 5147 URIs is that they may involve implicit
information. Most importantly, string URIs are sensitive to the respective encoding.
Defining the character encoding is optional, but without explicit declarations, RFC
5147 defaults to ASCII. However, with today’s predominant use of UTF-8, this
default can easily lead to unexpected results. Integrity checks help to detect possible
errors, but their specification is optional. To explicate such information in RDF has
been one motivation for developing the NLP Interchange Format.

5.3.1 The NLP Interchange Format (NIF 2.0)

The NLP Interchange Format (NIF) [19] is an RDF/OWL-based format designed
to combine NLP tools in a flexible, light-weight fashion, originally developed
in the FP7 LOD2 EU project (2010–2014). NIF aims to complement aggregator
infrastructures for NLP such as UiMA [20] or GATE [21] with a representation
that excels beyond either exchange format in terms of interoperability. UiMA, for
example, builds on proprietary annotation type systems which are often maintained
in-house, so that annotations between modules developed for different UiMA
pipelines, e.g. by different providers, cannot be easily interchanged—or require
writing new adapters, so that NLP modules from one pipeline can be integrated in
the other. NIF provides a way to map the annotations of two or more NLP pipelines
into a common representation and to integrate them seamlessly.

NIF includes the following core components:

• URI schemes to refer to strings in documents and to add annotations to such
URIs

• An OWL-based vocabulary to express relations between String URIs
• Vocabulary extensions to represent frequent types of annotations in common

NLP pipelines
• Best practices on how to integrate NLP tools, adapt them to NIF, and expose

them as web services
• A reference implementation and a web demo for this functionality

NIF is a community standard developed at the Agile Knowledge Engineering
and Semantic Web group at the University of Leipzig, Germany, with various
external contributors. Albeit not being W3C-endorsed yet, it enjoys relatively wide
adaptation for NLP services in the LLOD ecosystem, and has also been applied

10Indeed, other recommendations for this purpose have been developed, most notably XPointer
[16]. In practical applications, however, XPointer seems to be largely unused.

76 5 Representing Annotated Texts as RDF

to represent annotated corpora—although this is not its original focus and imposes
limitations on the types of annotations that can be represented. NIF is well-suited for
word-based annotations, e.g. for entity linking, but it is not capable of differentiating
annotations of the same string on multiple annotation layers.

The core of NIF consists of a vocabulary for addressing arbitrary character
sequences by RDF URIs to which linguistic annotations can be attached in a flexible
fashion. By reference to a common pool of URIs, resp., by means of a mapping of
annotated text data to a NIF representation, annotations from different NLP tools
can be aggregated easily (if the same URI scheme is chosen).

For referencing strings, NIF provides two URI schemes [22], roughly corre-
sponding in their function to text position selectors and text quote selectors in Web
Annotation:

• offset-based URIs define strings by the character positions in the underlying
document. They consist of four parts:

1. the namespace (normally, the URI of the annotated document), followed by #
or /,

2. the scheme identifier offset, followed by _,
3. start index, followed by _, and
4. end index

Indexes start with 0, and the underlying encoding is assumed to be Unicode
Normal Form C [23, NFC]. Using the offsets from Fig. 5.10 for James Baker
from example 2, we arrive at the following URI11:

https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt
#offset_19_30

In Web Annotation, expressing the same information would require a TextPo-
sitionSelector and 5 triples.

• context-hash URIs identify strings on grounds of their forms and context.
They have been introduced as a means to improve robustness against document
changes, but they can also be applied to annotate multiple strings at the same
time if these occur in the same contexts. They consist of six parts:

1. the namespace, followed by # or /
2. the scheme identifier hash, followed by _
3. the context length, i.e. number of preceding and following characters consid-

ered, followed by _
4. the length of the string, followed by _
5. the message digest, a 32-character hexadecimal MD5 hash index generated

from preceding context, the string (enclosed in parenthesis) and the following
context, followed by _

11Note that we replaced the URI of the annotated file with the URI of the original text file in
the Penn Treebank. As LDC corpora are available for download only, but not for online access,
however, neither of these URIs resolve.

5.3 Annotating Textual Objects 77

6. the first 20 characters of the string itself, in URL encoding

For James Baker and context size 0, this yields the URI

https://catalog.ldc.upenn.edu/docs/LDC95T7/raw/06/wsj_0655.txt
#hash_0_11_67f60186fe687bb898ab7faed17dd96a_James%20Baker

The information provided by this URI corresponds to five Web Annotation
triples in Fig. 5.9.

• Other String URIs supported by NIF include RFC 5147 strings, as well as
consecutive string instantiations (CStringInst), another schema for offset- and
context-based selection introduced in compliance with Apache Stanbol.12

In practice, NIF context hash URIs seem to be rarely used, but they are a powerful
(albeit potentially dangerous) instrument to annotate all instances of a particular
string simultaneously. A disadvantage is that for every context size, the string has
a different URI and the relation between these can no longer be treated (nor easily
recognized) as owl:sameAs because a URI generated from a long context may
be unambiguous, but another URI with a short (or no) context that designates the
same string may also identify another string in the same document. In combination
with Web Annotation, the NIF URI scheme also provides an elegant alternative
to the verbose system of selectors. Because web documents may change, either
kind of URIs may resolve to an incorrect string, and to preserve interpretability,
it is recommended to include the full text of the annotated document in the NIF
RDF data. As shown below, string URIs allow us to elegantly mashup different
annotations—a feature which is desirable for NLP pipelines, but which may be
problematic for linguistic annotations in general.

In addition to string URIs, NIF allows to define relations between and contexts
of strings. As shown in Fig. 5.13, the different URI schemes can be made explicit
and their transformation can be tracked, and explicit offset information can be
added. The (optional) property nif:anchorOf allows to provide the string value
of the annotated element in RDF, a functionality required for querying NIF data.
Furthermore, strings can be positioned relatively to each other (before, after),
and string embedding can be expressed (subString, etc.)—a feature which can be
subsequently used to model parse trees. As mentioned above, it is recommended to
complement strings with an explicit representation of their context, i.e. the content
of the full document (itself modelled as a nif:String).

Beyond text anchoring, NIF provides a core vocabulary for types of annotations
specific for NLP pipelines as shown in Fig. 5.14, covering many practically rele-
vant use cases. The NIF 2.0 Core Ontology [13] provides datastructures for the
annotation of words and sentences, (hierarchical—i.e. nif:subString—and)
sequential relations between these (nif:nextWord, nif:nextSentence), as
well as concepts for groups of words, i.e. (syntactic) phrases, sentences, paragraphs

12https://stanbol.apache.org/, last access 09-07-2019.

https://stanbol.apache.org/

78 5 Representing Annotated Texts as RDF

Fig. 5.13 NIF 2.0 Core Ontology, string classes and properties according to [13]

Fig. 5.14 NIF 2.0 Core Ontology, annotation classes and properties according to [13]

and titles. Despite obvious shortcomings, this rudimentary inventory accounts for
many applications in NLP.

In addition to this, NIF has been extended for a number of use cases, and
nif:Strings can thus be annotated with the corresponding properties for
part-of-speech tagging (nif:posTag), morphological base forms (nif:stem,
nif:lemma), sentiment (nif:sentimentValue) and (not shown in the
diagram) syntactic dependencies (nif:dependency, nif:dependency
RelationType). Except for nif:dependency, which points to the URI
of the syntactic head, these are data type properties and provide literal values only.
However, part-of-speech annotations, syntactic categories and dependency relations
can be represented in a machine-readable and formal way by resolving tags to
explicit links to the Ontologies of Linguistic Annotation (nif:oliaCategory).

5.3 Annotating Textual Objects 79

This linking can be performed automatically if tags are compared against the string
values or patterns defined in the corresponding OLiA Annotation Models. Further
types of linguistic annotation are provided by external, community-maintained
vocabularies, e.g. the NERD ontology for entity linking.13

The following RDF code represents a sample annotation for tokenization and
sentence segmentation with NIF (included in other annotations):

1 PREFIX nif: <http://persistence.uni-leipzig.org/nlp2rdf/
ontologies/nif-core#>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3 PREFIX doc: <https://catalog.ldc.upenn.edu/docs/LDC95T7/raw

/06/wsj_0655.txt#>
4

5 doc:offset_0_188 a nif:Sentence, nif:Context , nif:
OffsetBasedString ;

6 nif:isString "Secretary of State James Baker, who
accompanied President Bush ..." .

7

8 doc:offset_0_9 a nif:Word, nif:OffsetBasedString ;
9 nif:anchorOf "Secretary" ;

10 nif:beginIndex "0" ; nif:endIndex "9" ;
11 nif:nextWord doc:offset_10_12 ;
12 nif:sentence doc:offset_0_188 ;
13 nif:referenceContext doc:offset_0_188 .
14

15 doc:offset_10_12 a nif:Word, nif:OffsetBasedString ;
16 nif:anchorOf "of" ;
17 nif:beginIndex "10" ; nif:endIndex "12" ;
18 nif:nextWord doc:offset_13_18 ;
19 nif:previousWord doc:offset_0_9 ;
20 nif:sentence doc:offset_0_188 ;
21 nif:referenceContext doc:offset_0_188 .

A data sample for part-of-speech annotations is provided below:

1 PREFIX nif: <http://persistence.uni-leipzig.org/nlp2rdf/
ontologies/nif-core#>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3 PREFIX doc: <https://catalog.ldc.upenn.edu/docs/LDC95T7/raw

/06/wsj_0655.txt#>
4

5 doc:offset_0_9 nif:anchorOf "Secretary" ; # included for
readability, only

6 nif:posTag "NNP" .
7

8 doc:offset_10_12 nif:anchorOf "of" ;
9 nif:posTag "IN" .

10

11 doc:offset_13_18 nif:anchorOf "State";
12 nif:posTag "NNP" .

13http://nerd.eurecom.fr/ontology, last accessed 09-07-2019.

http://nerd.eurecom.fr/ontology

80 5 Representing Annotated Texts as RDF

13

14 doc:offset_19_24 nif:anchorOf "James";
15 nif:posTag "NNP" .
16

17 doc:offset_25_30 nif:anchorOf "Baker";
18 nif:posTag "NNP" .
19

20 doc:offset_30_31 nif:anchorOf ",";
21 nif:posTag "," .
22

23 doc:offset_32_35 nif:anchorOf "who";
24 nif:posTag "WP" .
25

26 doc:offset_36_47 nif:anchorOf "accompanied";
27 nif:posTag "VBD" .
28

29 doc:offset_48_57 nif:anchorOf "President";
30 nif:posTag "NNP" .
31

32 doc:offset_58_62 nif:anchorOf "Bush";
33 nif:posTag "NNP" .

Named entity categories can be represented analogously in NIF. NIF does not
provide a designated property for the purpose, instead one can apply a property that
points to the original documentation (using the same URI as in Web Annotation, i.e.
on:ENAMEX).

1 PREFIX nif: <http://persistence.uni-leipzig.org/nlp2rdf/
ontologies/nif-core#>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3 PREFIX doc: <https://catalog.ldc.upenn.edu/docs/LDC95T7/raw

/06/wsj_0655.txt#>
4 PREFIX on: <https://catalog.ldc.upenn.edu/docs/LDC2007T21/

ontonotes-1.0-documentation.pdf#>
5

6 doc:offset_13_18 # context information skipped
7 nif:anchorOf "State"; # cf. POS example above
8 nif:beginIndex "13" ; nif:endIndex "18" ;
9 on:ENAMEX "ORG" .

10

11 doc:offset_19_30
12 nif:anchorOf "James Baker";
13 nif:beginIndex "19" ; nif:endIndex "30" ;
14 on:ENAMEX "PERSON" .
15

16 doc:offset_58_62
17 nif:anchorOf "Bush";
18 nif:beginIndex "58" ; nif:endIndex "62" ;
19 nif:posTag "PERSON" .

5.3 Annotating Textual Objects 81

The first annotated nif:Word takes a URI that equals that of the POS
annotation. Accordingly, both can be trivially merged.

1 doc:offset_13_18
2 a nif:Word; # tokenization
3 nif:beginIndex "13" ; nif:endIndex "18" ;
4 nif:anchorOf "State";
5 nif:nextWord doc:offset_19_24 ;
6 nif:referenceContext doc:offset_0_188 ;
7 nif:sentence doc:offset_0_188 ; # sentence splitting
8 nif:posTag "NNP" ; # POS annotation
9 on:ENAMEX "ORG" . # NER annotation

In the example, the IOBES annotation of the original CoNLL annotation
(Fig. 5.1) has been expanded to full tokens.14 However, this leads to a problem in
that James Baker does not directly correspond to a URI in the POS annotation.
Automated merging is thus limited to single-word expressions. With explicit
nif:beginIndex, and nif:endIndex, it is possible to query for word spans
containing each other.

Similarly, the entity linking annotation from Fig. 5.10 can be rendered in NIF as
follows:

1 PREFIX itsrdf: <http://www.w3.org/2005/11/its/rdf#>
2

3 doc:offset_19_30 a nif:Word;
4 nif:anchorOf "James Baker";
5 nif:beginIndex "19" ; nif:endIndex "30" ;
6 itsrdf:taIdentRef <http://dbpedia.org/resource/

James_Baker> ;
7 a dbo:Agent, dbo:Person, dbo:OfficeHolder .
8

9 doc:offset_48_62 a nif:Word;
10 nif:anchorOf "President Bush";
11 nif:beginIndex "48" ; nif:endIndex "62" ;
12 itsrdf:taIdentRef <http://dbpedia.org/resource/

George_W._Bush> ;
13 a dbo:Agent, dbo:Person, dbo:OfficeHolder .

While doc:offset_19_30 matches the URI generated by NER annotation,
we have to observe another mismatch with multi-word expressions: Again, the URI
doc:offset_48_62 can only be indirectly related to the URI
doc:offset_58_62.

In Natural Language Processing, different annotation tools can produce their
annotations independently. If the same tokenization is applied, word URIs generated
by different annotators become identical, such that the information from different
annotators is seamlessly integrated. This is a particularly useful feature for word-
level annotations. At those points where the tokenization differs, the anchoring in

14As an alternative to multi-word expressions, it is possible, of course, to operate with IOBES-
based single-word annotations, thereby facilitating the merging process.

82 5 Representing Annotated Texts as RDF

the same context as well as nif:beginIndex and nif:endIndex allows to
infer overlaps and spans. Implicit unification of annotations as illustrated above
requires the use of the same URI scheme. If annotators use different NIF URI
schemes, an explicit conversion routine is to be applied. If the complete original text
is provided as reference context and the URI scheme can be identified, NIF URIs are
convertible. URI conversion, however, benefits from explicating offset and context
information.

5.3.2 Provenance and Annotation Metadata in NIF

In a typical NIF workflow, a stream of textual data or a single document is consumed
and transformed by a web service which returns NIF so that the result can be
further enriched by further NIF annotation services. Instead, the output of different
NIF annotators can be put into different RDF graphs which then represent the
corresponding levels of annotation.

It is somewhat problematic, though, in ensemble combination architectures
where different NLP modules generate annotations of the same kind in order to
achieve a more robust annotation [24]. Similar problems may arise in multi-layer
corpora, where the same document may be annotated for the same phenomenon
in independent annotation efforts. In both cases, an explicit representation of
documents and annotation layers within a document would be preferred.

Coming back to the example, the file wsj_0655 has not only been annotated
within OntoNotes, but also as part of the Penn Treebank [25] as well as various
corpora that build on the Penn Treebank, cf. Sect. 6.3.2. For parts of speech and
syntax annotation of most OntoNotes texts, we have at least three versions (with
marginal differences in tokenization and annotation) of Penn Treebank annotations,
as well as an independent annotation (according to the same scheme, but with
adjustments in tokenization and certain design decisions) as part of OntoNotes.

Annotations may differ slightly, and without a versioning system, different
annotators may generate different values for the same property, thereby leading
to a clash of annotations. A NIF 2.1 solution to provenance is to define
companion properties for properties that express linguistic annotations, e.g.
nif:taIdentConf (confidence) and nif:taIdentProv (provenance) for
the property itsrdf:taIdentRef (entity linking) [26]. However, different
entity linking routines can produce alternative linkings, and there is no explicit
association between a particular itsrdf:taIdentRef and a particular
nif:taIdentProv property. In the NIF 2.1 draft, nif:AnnotationUnits
have been introduced to cluster annotations of the same string generated from
different annotators. However, this is described as a future extension, and this is not
reflected in the persistent NIF documentation. If provenance, confidence or other
metadata is to be provided, the interested reader may resort to Web Annotation
instead, as their specifications are more stable and more mature than those of
NIF 2.1.

5.4 Summary and Further Reading 83

For the moment, advanced challenges in NLP (architectures that implement
parallel rather than sequential processing, i.e. blackboard or ensemble architectures)
and corpus linguistics (redundantly annotated corpora) are beyond the scope of NIF
and require a representation that disentangles strings and units of annotations and
that provides an explicit organization of units of annotations in annotation layers or
tiers. Both aspects will be addressed in Chap. 6.

5.4 Summary and Further Reading

We described two representative corpus formalisms currently used in language
technology, resp., computational philology and corpus linguistics, and described
how they can be complemented with URI references to LLOD resources and thereby
establish bridges between state-of-the-art technology and resources on the one hand
and the emerging field of linguistic linked data on the other hand. In CoNLL TSV
formats, an additional column may be added that links every word to a URI; for
TEI/XML, the current use of TEI-specific URIs can be easily extended to URIs in
general.

Existing approaches to refer to textual (and non-textual) objects on the web in a
linked-data-compliant fashion are based either on the use of target-specific selectors
or compact string URIs:

• Web Annotation represents a promising and widely used approach to address
textual and non-textual objects on the web by means of selectors, and by linking
them with an annotation. If these annotations define a resolvable URI on their
own, these URIs may be referred to from pre-RDF formalisms.

• RFC 5147 is a URI scheme that directly allows to address strings in a web docu-
ment and represents a more compact alternative to Web Annotation selectors. It
is the basis for the development of the NLP Interchange Format that extends the
applicability of offset- and context-based URI schemes from plain text to web
documents in general.

Note that these strategies and formalisms to refer to and to annotate textual objects
on the web are not mutually exclusive. The NIF String ontology allows to describe
information that underlies the URI formation process, thereby acting in analogy
with Web Annotation selectors. Likewise, Web Annotation can refer to NIF or RFC
5147 URIs as targets of annotations as an alternative instead of declaring selectors.

Beyond merely referencing strings and other web objects as units of annotation,
Web Annotation provides the expressive means to represent annotations on their
own, in particular for annotations that can be reduced to labelling and identification.
It is less clear how complex annotations for, say, syntactic dependencies, phrase
structure syntax or semantic roles are to be represented in this context. NIF does
provide explicit data structures for selected types of linguistic annotation frequently
occurring in NLP pipelines, but it is not exhaustive in this regard.

84 5 Representing Annotated Texts as RDF

At the time of writing, Web Annotation and NIF (resp., RFC 5147) are the
most popular RDF-based formalisms to refer to natural language objects as units
of annotation in the web. Far from being the only proposals, both are representative
for JSON/LD and RDF/OWL-based approaches, respectively. In technical contexts,
NIF enjoys considerable popularity, and its application to NLP pipelines is described
in Chap. 11. Likewise, Web Annotation is an established community standard in
BioNLP and Digital Humanities.

Independently from developments in language technology, URI-based methods
to address text segments have been developed in computational philology: The
Canonical Text Service (CTS, see Sect. 13.2.4) in the CITE architecture defines
a URI (URN) scheme to address canonical units of texts. One goal of CTS is
to facilitate intertextuality and stemmatology; these canonical units are thus not
defined for an individual text, but rather for a family of texts or fragments of
texts that originate from a common source, and thereby explicate corresponding
passages. These efforts aim at defining intertextual reference points rather than
units of annotation and are thus not directly comparable. In the context of language
technology, alternative, application- or system-specific representation formalisms
have been developed: For example, TELIX [27] used RDFa to infuse RDF content
into an exchange format for an NLP pipeline, with the goal of linking it with lexical
entries defined in SKOS XL [28].

In the NewsReader project,15 the standoff format NAF was employed in NLP
pipelines for entity and event extractions for Dutch, English and German [29]. NAF
is an XML format that uses standoff mechanisms as described in Sect. 5.1.2, but
an RDF conversion along the lines of NIF has been suggested [17].16 NAF covers
several types of NLP annotations relevant for event extraction and entity tracking,
but only provides a vocabulary specifically oriented towards the NLP pipeline(s) it
was originally designed for.

The LAPPS Interchange Format (LIF) was designed to integrate various NLP
tools into the LAPPS Grid [30], a workflow system for multi-step analyses,
evaluation tools and facilities for sharing and publishing results. LIF thus serves a
similar purpose as NIF and NAF, but it adopts JSON-LD as RDF serialization. A LIF
document consists of three sections: metadata, text and views. The metadata
section contains optional metadata, the text section contains the text that is originally
input to the service and the views section contains the annotations that have been
added by the service to the text—together with an id and annotation-specific
metadata. Similar to the oa:TextPositionSelector in Web Annotation,
explicit attributes encode start and end positions of markables. We discuss LAPPS
in more detail in Chap. 11.

Furthermore, a number of application- or tool-specific formats with their own
URI schemes can be mentioned, e.g. the MATE parser [31],17 a system for

15https://github.com/newsreader/NAF, accessed 09-07-2019.
16Also see http://wordpress.let.vupr.nl/naf/, accessed 09-07-2019.
17http://barbar.cs.lth.se:8081/, accessed 09-07-2019.

https://github.com/newsreader/NAF
http://wordpress.let.vupr.nl/naf/
http://barbar.cs.lth.se:8081/

References 85

dependency parsing and semantic role labelling, the machine reading system FRED
[32]18 or the LODeXporter [33],19 a component for automatic knowledge base
construction integrated in the GATE architecture [21]. In the longer perspective,
and with continuing growth of the LLOD cloud and LLOD-aware applications, we
expect an increasing degree of convergence in this area, probably based on formats
and schemes already popular now.

Promising candidates are NIF and Web Annotation. But also these have been
developed from an application perspective in a bottom-up fashion and thus require
extensions for unforeseen applications, e.g. the annotation of morphology—
currently neither addressed by the Web Annotation community nor by maintainers
and users of NIF. Such limits of applicability of NIF and Web Annotation are not
evident to most of their users, as they focus on frequently requested functionalities
such as handling metadata about web objects, and the output of off-the-shelf NLP
and Entity Linking pipelines, respectively. With the continuing growth of LLOD
technology, we expect that increased exchange between different groups of users
of LLOD technology will eventually lead to more expressive and more robust
means to address and to annotate textual objects on the web as well as to the
emergence of increasingly mature standards. At the moment, we recommend using
Web Annotation for the conjoint handling of textual objects and non-textual objects
in the web, and NIF/RFC 5147 for representing the output of NLP pipelines. For the
future, we expect increased convergency between these and related representations.

Web Annotation and NIF thus aim to facilitate the transition from pre-RDF repre-
sentation formalisms for linguistic annotation to LLOD-compliant representations.
This aspect is further explored in the following chapter.

References

1. E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, R. Weischedel, OntoNotes: the 90% solution,
in Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology (HLT-NAACL 2006) (Association
for Computational Linguistics, New York, 2006), pp. 57–60

2. J. Nivre, Ž. Agić, L. Ahrenberg, et. al., Universal dependencies 1.4 (2016). http://hdl.handle.
net/11234/1-1827

3. N. Ide, C. Chiarcos, M. Stede, S. Cassidy, Designing annotation schemes: from model to
representation, in Handbook of Linguistic Annotation, ed. by N. Ide, J. Pustejovsky, Text,
Speech, and Language Technology (Springer, Berlin, 2017)

4. C. Chiarcos, Ontologies of linguistic annotation: survey and perspectives, in Proceedings of the
8th International Conference on Language Resources and Evaluation (LREC), Istanbul, 2012,
pp. 303–310

5. K. Verspoor, K. Livingston, Towards adaptation of linguistic annotations to scholarly anno-
tation formalisms on the Semantic Web, in Proceedings of the 6th Linguistic Annotation
Workshop (Association for Computational Linguistics, Jeju, 2012), pp. 75–84

18http://wit.istc.cnr.it/stlab-tools/fred/, accessed 09-07-2019.
19https://github.com/SemanticSoftwareLab/TextMining-LODeXporter, accessed 09-07-2019.

http://hdl.handle.net/11234/1-1827
http://hdl.handle.net/11234/1-1827
http://wit.istc.cnr.it/stlab-tools/fred/
https://github.com/SemanticSoftwareLab/TextMining-LODeXporter

86 5 Representing Annotated Texts as RDF

6. L. Isaksen, R. Simon, E.T. Barker, P. de Soto Cañamares, Pelagios and the emerging graph of
ancient world data, in Proceedings of the 2014 ACM Conference on Web Science (ACM, New
York, 2014), pp. 197–201

7. R. Sanderson, P. Ciccarese, B. Young, Web Annotation Data Model. Technical Report, W3C
Recommendation (2017). https://www.w3.org/TR/annotation-model/

8. P. Ciccarese, M. Ocana, L.J. Garcia Castro, S. Das, T. Clark, An open annotation ontology for
science on web 3.0, J. Biomed. Semant. 2(Suppl. 2), S4 (2011). https://doi.org/10.1186/2041-
1480-2-S2-S4, http://www.jbiomedsem.com/content/2/S2/S4/abstract

9. D.C. Comeau, R. Islamaj Doğan, P. Ciccarese, K.B. Cohen, M. Krallinger, F. Leitner, Z. Lu,
Y. Peng, F. Rinaldi, M. Torii, et al., BioC: a minimalist approach to interoperability for
biomedical text processing, Database 2013, bat064 (2013)

10. R. Sanderson, P. Ciccarese, H. Van de Sompel, Designing the W3C Open Annotation data
model, in Proceedings of the 5th Annual ACM Web Science Conference, WebSci ’13 (ACM,
New York, 2013), pp. 366–375. https://doi.org/10.1145/2464464.2464474

11. R. Sanderson, P. Ciccarese, B. Young, Web Annotation vocabulary. Technical Report, W3C
Recommendation (2017). https://www.w3.org/TR/annotation-vocab/

12. P. Mendes, M. Jakob, A. García-Silva, C. Bizer, DBpedia Spotlight: shedding light on the
web of documents, in Proceedings of the 7th International Conference on Semantic Systems
(I-Semantics 2011), Graz, 2011

13. S. Hellmann, NIF 2.0 Core Ontology. Technical Report, AKSW, University Leipzig
(2015). http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core.html, version of 08-04-
2015. Accessed 9 July 2019

14. E. Wilde, M. Duerst, RFC 5147 – URI fragment identifiers for the text/plain media type.
Technical Report, Internet Engineering Task Force (IETF), Network Working Group (2008)

15. N. Freed, N. Borenstein, RFC 2046 – Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types. Technical Report, Internet Engineering Task Force (IETF), Network
Working Group (1996)

16. P. Grosso, E. Maler, J. Marsh, N. Walsh, XPointer Framework. W3C Recommendation 25
March 2003. Technical Report, W3C (2003)

17. A. Fokkens, A. Soroa, Z. Beloki, N. Ockeloen, G. Rigau, W.R. van Hage, P. Vossen, NAF
and GAF: Linking linguistic annotations, in Proceedings of the 10th Joint ISO-ACL SIGSEM
Workshop on Interoperable Semantic Annotation (2014), pp. 9–16

18. N. Ide, K. Suderman, E. Nyberg, J. Pustejovsky, M. Verhagen, LAPPS/Galaxy: Current state
and next steps, in Proceedings of the 3rd International Workshop on Worldwide Language
Service Infrastructure and 2nd Workshop on Open Infrastructures and Analysis Frameworks
for Human Language Technologies (WLSI/OIAF4HLT2016) (2016), pp. 11–18

19. S. Hellmann, J. Lehmann, S. Auer, M. Brümmer, Integrating NLP using Linked Data, in
Proceedings of the 12th International Semantic Web Conference, 21–25 October 2013, Sydney,
2013. Also see http://persistence.uni-leipzig.org/nlp2rdf/

20. M. Egner, M. Lorch, E. Biddle, UIMA Grid: Distributed large-scale text analysis, in Pro-
ceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’07), Rio de Janeiro, 2007, pp. 317–326

21. H. Cunningham, GATE, a general architecture for text engineering. Comput. Hum. 36(2), 223
(2002)

22. S. Hellmann, J. Lehmann, S. Auer, Linked-data aware URI schemes for referencing text
fragments, in Proceedings of the International Conference on Knowledge Engineering and
Knowledge Management (Springer, Berlin, 2012), pp. 175–184

23. M. Davis, K. Whistler, Unicode Standard Annex #15. Unicode Normalization Forms. Technical
Report, Unicode, Inc. (2017). Unicode 10.0.0, version of 2017-05-26, revision 45

24. E. Brill, J. Wu, Classifier combination for improved lexical disambiguation, in Proceedings
of the 36th Annual Meeting of the Association for Computational Linguistics and the 17th
International Conference on Computational Linguistics (COLING-ACL 1998), Montréal,
1998, pp. 191–195

https://www.w3.org/TR/annotation-model/
https://doi.org/10.1186/2041-1480-2-S2-S4
https://doi.org/10.1186/2041-1480-2-S2-S4
http://www.jbiomedsem.com/content/2/S2/S4/abstract
https://doi.org/10.1145/2464464.2464474
https://www.w3.org/TR/annotation-vocab/
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core.html
http://persistence.uni-leipzig.org/nlp2rdf/

References 87

25. M.P. Marcus, B. Santorini, M.A. Marcinkiewicz, Building a large annotated corpus of English:
the Penn treebank. Comput. Linguist. 19, 313 (1993)

26. S. Hellmann, M. Brümmer, M. Ackermann, Provenance and confidence for NIF annotations.
Technical Report, AKSW, University of Leipzig, Germany (2016). Version of Oct 17, 2016

27. E. Rubiera, L. Polo, D. Berrueta, A. El Ghali, TELIX: An RDF-based model for linguistic
annotation, in Proceedings of the 9th Extended Semantic Web Conference (ESWC 2012),
Heraklion, 2012

28. A. Miles, S. Bechhofer, SKOS Simple Knowledge Organization System eXtension for Labels
(SKOS-XL). Technical Report, W3C Recommendation (2009)

29. R. Agerri, I. Aldabe, E. Laparra, G. Rigau Claramunt, A. Fokkens, P. Huijgen,
R. Izquierdo Beviá, M. van Erp, P. Vossen, A.L. Minard, et al., Multilingual event detection
using the NewsReader pipelines, in Proceedings of the Workshop on Cross-Platform Text
Mining and Natural Language Processing Interoperability, collocated with International
Conference on Language Resources and Evaluation (LREC) (2016)

30. M. Verhagen, K. Suderman, D. Wang, N. Ide, C. Shi, J. Wright, J. Pustejovsky, The LAPPS
Interchange Format, in Proceedings of the International Workshop on Worldwide Language
Service Infrastructure (Springer, Berlin, 2015), pp. 33–47

31. B. Bohnet, J. Kuhn, The best of both worlds: a graph-based completion model for transition-
based parsers, in Proceedings of the 13th Conference of the European Chapter of the Associ-
ation for Computational Linguistics (Association for Computational Linguistics, Stroudsburg,
2012), pp. 77–87

32. A. Gangemi, V. Presutti, D. Reforgiato Recupero, A.G. Nuzzolese, F. Draicchio, M. Mongiovì,
Semantic Web machine reading with FRED Semantic Web 8(6), 873 (2017)

33. R. Witte, B. Sateli, The LODeXporter: flexible generation of linked open data triples from
NLP frameworks for automatic knowledge base construction, in Proceedings of the 11th
International Conference on Language Resources and Evaluation (LREC) (2018)

	5 Representing Annotated Texts as RDF
	5.1 Introduction
	5.1.1 Tab-Separated Values: CoNLL TSV
	5.1.2 Tree-Based Formats: TEI/XML

	5.2 Annotating Web Resources
	5.2.1 Web Annotation (Open Annotation)
	5.2.2 Annotating Named Entities on the Web

	5.3 Annotating Textual Objects
	5.3.1 The NLP Interchange Format (NIF 2.0)
	5.3.2 Provenance and Annotation Metadata in NIF

	5.4 Summary and Further Reading
	References

