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1. Introduction 
This document provides a definitive, implementation-focused roadmap for the 
Application Service framework. It moves beyond architectural overviews to specify the 
granular, technical details required to build a fully reactive, functional, and 
behavior-driven system. We will explore the practical application of a sophisticated 
technology stack, emphasizing a shift towards a pure Semantic Web foundation and 
deterministic, structural embeddings over probabilistic LLM-based ones. 

This version provides exhaustive detail on: 

●​ The Reference Model: A deep dive into ID/IDOccurrence, prime number 
semantics, and its implementation as a foundational property graph on a 
Semantic Web store. 

●​ FCA-based Embeddings: A novel approach to creating deterministic 
embeddings from the products of prime numbers in Formal Concept Analysis 
(FCA) contexts, replacing the need for external LLM embeddings for structural 
similarity. 

●​ The Graph Model: A set-oriented approach to knowledge representation, with 
functional interfaces for inference over Kinds. 

●​ The Activation Model: A practical guide to implementing DCI, DDD, and the 
Actor-Role pattern for dynamic, message-driven use case execution. 

●​ Core Technologies: A switch to Apache Jena/RDF4J as the primary data store, 
and detailed implementation patterns for JCA, JAF, and dynamic ContentType 
handling. 

●​ Multidimensional Analytics: A formal model for OLAP-style querying directly on 
the knowledge graph. 

Phase 1: Semantic Core & Reactive Data Ingestion 
Objective 

To establish a robust, scalable, and fully reactive microservices foundation built upon 
a Semantic Web data store, with a versatile, non-blocking data ingestion pipeline. 

1.1. Core Technology Shift: Semantic Web Store 

In this iteration, we replace Neo4j with a dedicated Semantic Web stack. 



●​ Primary Store: Apache Jena with a TDB2 persistent backend. 
●​ Reasoning: This choice provides native support for RDF, RDFS, OWL, and 

SPARQL 1.1, which is more aligned with the framework's goals of semantic 
inference and ontology alignment than a labeled property graph. The Registry 
Service will now expose a full SPARQL endpoint via Jena Fuseki. All services will 
interact with the core graph data via SPARQL queries. 

1.2. The Reference Model: A Deep Dive 

This is the foundational layer, representing the grammar of the system. It's where raw 
strings are formalized into identifiable and relatable concepts. 

1.2.1. Entities: ID and IDOccurrence 

●​ ID: Represents the canonical, context-free "idea" of a resource. It is immutable. 
○​ primeID (long): A unique prime number assigned upon first encounter. This is 

the core identifier. A centralized "Prime Number Service" (e.g., using Redis 
INCR on a pre-computed list) will dispense these to guarantee uniqueness. 

○​ urn (String): The canonical URN for the resource, e.g., urn:appservice:id:937. 
○​ did (String): The W3C Decentralized Identifier, e.g., did:key:z6Mkp..., 

providing a global, verifiable identity. 
●​ IDOccurrence: Represents an ID appearing in a specific role within a specific 

context (a statement). It is the "instance" of an idea in action. 
○​ occurringId (ID): A reference to the canonical ID. 
○​ context (IDOccurrence): A reference to the statement (IDOccurrence) in 

which this entity is participating. This creates a linked data structure. 

1.2.2. Statement Types: Data vs. Schema 

The model supports two parallel universes of statements, allowing it to describe both 
the world and the rules governing it. 

●​ Data Statements: (Interaction, Actor, Transform) - These represent the actual 
"moves in the game." They are concrete happenings. 
○​ Example: (interaction:123, actor:user_Alice, transform:SetPaymentMethod) 

●​ Schema Statements: (Context, Role, Dataflow) - These define the "rules of the 
game." They are abstract definitions. 
○​ Example: (context:Purchase, role:Buyer, dataflow:StandardCheckout) 

1.2.3. Implementation as a Property Graph on RDF 

While conceptually distinct, all three models (Reference, Graph, Activation) can be 
implemented on a single Jena TDB2 store. We use RDF's reification vocabulary 
(rdf:Statement, rdf:subject, rdf:predicate, rdf:object) to create a property graph 



structure. 

●​ A single resource (e.g., "Alice") is a URI: urn:appservice:id:937. 
●​ Labels are applied using rdf:type: <urn:appservice:id:937> rdf:type :Resource . 
●​ Properties are standard triples: <urn:appservice:id:937> :hasName "Alice" . 
●​ The IDOccurrence is represented by the reified statement itself. A statement like 

(Alice, worksFor, Google) is stored as:​
@prefix : <urn:appservice:ont#> .​
@prefix id: <urn:appservice:id#> .​
​
:stmt_456 a rdf:Statement ;​
          rdf:subject   id:937 ;   # Alice​
          rdf:predicate :worksFor ;​
          rdf:object    id:101 .   # Google​
​
The URI :stmt_456 is the identifier for this specific IDOccurrence of Alice. 

1.3. FCA-based Embeddings: A Deterministic Approach 

We will replace LLM-based embeddings with deterministic, structural embeddings 
derived from FCA contexts and prime number products. This provides explainable 
similarity based on shared roles and relationships. 

●​ Contextual Prime Product Embedding (CPPE): For any IDOccurrence (i.e., a 
resource in a specific statement), we can calculate an embedding based on its 
relational context. 
1.​ Define FCA Contexts: For a given relation (predicate), we can form an FCA 

context. Example: For the predicate :worksFor: 
■​ Objects (G): The set of all subjects of :worksFor statements (e.g., 

{id:Alice, id:Bob}). 
■​ Attributes (M): The set of all objects of :worksFor statements (e.g., 

{id:Google, id:StartupX}). 
2.​ Calculate Prime Product: The CPPE for id:Google within the :worksFor context 

is the product of the primeIDs of all employees who work there.​
CPPE(Google, worksFor) = primeID(Alice) * primeID(Bob) * ... 

●​ Similarity Calculation & Inference: 
○​ Similarity: The similarity between two entities in the same context is the 

Greatest Common Divisor (GCD) of their CPPEs. GCD(CPPE(Google), 
CPPE(StartupX)) reveals the primeID product of their shared employees, 
giving a measure of personnel overlap. 

○​ Relational Inference: We can infer complex relationships. Consider the goal 



of finding an "uncle". 
1.​ Calculate the CPPE for "Person A" in the :brotherOf context (the product 

of their siblings' primes). 
2.​ Calculate the CPPE for "Person B" in the :fatherOf context (the product of 

their children's primes). 
3.​ If GCD(CPPE_brotherOf(A), CPPE_fatherOf(B)) > 1, it means A is the 

brother of B's father. The system can then materialize a new triple: (A, 
:uncleOf, ChildOfB). This inference is stored and queryable. 

Phase 2: The Semantic Graph Model 
Objective 

To transform the formal Reference Model into a semantically rich Graph Model based 
on set theory, inferring types (Kinds) and order. 

2.1. The Set-Oriented Graph Model 

The model reifies statements into higher-order concepts called Kinds. Kinds are sets 
of IDOccurrences that share common structural properties. 

●​ Kind Aggregation: Kinds are formed by grouping entities with common 
attributes. A SubjectKind like :Customer is formed by grouping all Subjects that 
interact with a similar set of (Predicate, Object) pairs (e.g., they all perform 
:purchase on :Products). 

●​ Reification: A Kind is a subclass of its base type. A SubjectKind is-a Subject. In 
RDF, this is a simple rdfs:subClassOf relationship.​
<:Customer> rdfs:subClassOf <:SubjectKind> .​
<:SubjectKind> rdfs:subClassOf <:Subject> . 

2.2. Functional Interfaces for Inference 

The core logic for querying this model is expressed through functional interfaces, 
implemented with SPARQL. 

●​ Function<URI, Set<URI>> getPredicateKindsForSubjectKind: 
○​ "Given the :Customer type, what types of actions can they perform?" 
○​ Implementation: A SPARQL query that finds all PredicateKinds connected to 

the given SubjectKind in schema statements. 
●​ Function<URI, Tuple<Set<URI>, Set<URI>>> 

getValidSubjectObjectKindsForPredicateKind: 
○​ "Given the :Purchase action type, what are the valid types of subjects and 

objects?" 
○​ Implementation: A SPARQL query that returns the SubjectKind and 



ObjectKind from schema statements where the PredicateKind is :Purchase. 

2.3. Order Inference and Materialization 

Order is crucial for understanding processes. It's inferred from hierarchies in type 
(schema) and state (data). 

●​ Order from Type/Schema Hierarchies: A more general type is considered to be 
"before" a more specific one. The Aggregation Service infers type hierarchies via 
FCA. This is materialized as rdfs:subClassOf. 
○​ Example: FCA reveals all attributes of :Person are a subset of :Employee. 
○​ Materialization: <:Employee> rdfs:subClassOf <:Person> . This implies Person is 

a prerequisite for Employee. 
●​ Order from State/Data Hierarchies: States in a process follow a defined 

sequence. 
○​ Example: The system observes order events transitioning through states: 

Placed -> Paid -> Shipped. 
○​ Materialization: It creates explicit ordering relationships using a custom 

ontology:​
<:Paid> :precededBy <:Placed> .​
<:Shipped> :precededBy <:Paid> .​
This allows for path-based SPARQL queries to determine process 
prerequisites and validate state transitions. 

Phase 3: The Dynamic Activation Model 
Objective 

To infer and enable the execution of business processes using DCI, DDD, and a 
Dynamic Object Model. 

3.1. Activation Model Entities 

●​ DOM (Dynamic Object Model): An Actor's data is not a static class but a flexible 
Instance whose capabilities can change. 
○​ Instance: An IDOccurrence with a map of attributes: Map<URI, Instance>. 
○​ Class: An Instance that defines the structure (fields) for other Instances. 

●​ DCI (Data, Context, Interaction): 
○​ Context: Defines a use case schema (roles). 
○​ Role: A Class that defines behavior. It has previous, current, and next 

Dataflow maps, defining the valid state transitions. 
○​ Interaction: An instance of a Context with concrete Actors. 

●​ Actor-Role Pattern: 



○​ Actor: An Instance playing a Role. Its state is defined by its available 
Transforms. 
■​ state: Map<Context, ActorState(previous, current, next)> 

○​ Transform: A declarative message instructing an Actor on how to mutate its 
state. 

3.2. Dataflow via Transform Messages 

An Interaction's dataflow is a message-driven, distributed state machine. 

1.​ Schema Definition: A Dataflow in a Role definition is a sequence of Transform 
definitions. A Transform definition specifies an operation (SET_FIELD, 
MUTATE_FIELD) and its inputs/outputs. 

2.​ Interaction Orchestration: The Interaction orchestrator (a stateful service) 
reads the Dataflow schema. To advance the process, it creates a concrete 
Transform message from the definition, populating it with the actual Actor DIDs. 

3.​ Message Passing: This Transform message is published to a Kafka topic.​
// Example Transform Message​
{​
  "transformId": "txf_987",​
  "interactionId": "interaction_123",​
  "targetActorId": "did:key:z6...", // Actor: Alice​
  "operation": "SET_FIELD",​
  "payload": {​
    "fieldName": "shippingAddress",​
    "value": { "street": "123 Main St", "city": "Anytown" }​
  }​
}​
 

4.​ Actor State Mutation: The target Actor (a stateful microservice instance) 
consumes this message. It applies the operation to its internal DOM Instance 
data, changing its state. It then emits an ActorStateChanged event, which the 
Interaction orchestrator consumes to trigger the next Transform. 

3.3. JAF & Dynamic ContentType Handlers 

Instead of hard-coding a Spring bean for each ContentType, we will use a generic, 
data-driven approach. 

●​ GenericContentTypeDataHandler: A single Spring bean that is a 
ApplicationContextAware factory. 

●​ Dynamic Registration: When the Alignment Service infers a new ContentType 
(e.g., :sell-able), it materializes not just the type but also its associated Dataflow 



definition (a sequence of Transform schemas) in the Jena store. 
●​ Runtime Lookup: When the Activation Service needs to process a Verb on a 

ContentType, it asks the GenericContentTypeDataHandler. The handler queries 
the Jena store for the Dataflow associated with that ContentType and Verb, and 
then uses that definition to orchestrate the Interaction. This makes the system's 
behaviors entirely configurable at runtime without redeployment. 

Phase 4: Multidimensional Features & Analytics 
Objective 

To implement powerful, OLAP-style analytics directly on the live, operational 
knowledge graph. 

4.1. The Dimensional Service & Data Model 

A dedicated helper service, the DimensionalService, manages all dimensional 
information. 

●​ Storage - Nested Context Statements: We encode dimensional data using RDF 
reification to create explicit, queryable paths. A single sale event is encoded as a 
series of nested statements. 
1.​ The "What": stmt1 a rdf:Statement; rdf:subject :order_456; rdf:predicate 

:hasValue; rdf:object "118.00"^^xsd:decimal . 
2.​ The "When": stmt2 a rdf:Statement; rdf:subject stmt1; rdf:predicate 

:has_dimension; rdf:object :dim_Time . 
3.​ The "Which": stmt3 a rdf:Statement; rdf:subject stmt2; rdf:predicate 

:has_dimension; rdf:object :dim_Product . 
4.​ The "Where": stmt4 a rdf:Statement; rdf:subject stmt3; rdf:predicate 

:has_dimension; rdf:object :dim_Region . 
●​ Functional Retrieval: This nested structure creates a queryable path: 

(stmt4)->(stmt3)->(stmt2)->(stmt1). An OLAP-style query like "Show me all sales 
for the Pro-Lite shoe in Boston" becomes a SPARQL SELECT query that finds all 
paths matching this pattern. 

4.2. Alignment Feature Materialization 

The Alignment Service is responsible for creating a unified understanding of 
measurement and order. 

●​ Ontology Matching: It finds that user.creation_date from one system and 
customer.signup_timestamp from another are semantically equivalent. It 
materializes this link:​
<:creation_date> owl:sameAs <:signup_timestamp> . 



●​ Dimensional Alignment: It finds price_eur: 100 and price_usd: 118 linked to the 
same product. It uses the DimensionalService to confirm they are comparable 
along the Currency dimension and materializes the aligned value in a canonical 
unit (e.g., USD) in the Reference Model. 

Appendix A: Business Intelligence & Analytics 
Each organization's ApplicationService instance becomes a source for powerful, 
real-time analytics. 

●​ Use Case Flow Analysis: 
○​ Report: "Average Time between Payment and Shipment by Warehouse." 
○​ Data: Analyze the materialized state transition graphs (:Paid :precededBy 

:Placed). The timestamps of these Interaction events are sliced by the 
Warehouse dimension. 

○​ Indicator: AVG(timestamp(Shipped_Event) - timestamp(Paid_Event)) grouped 
by warehouse. 

●​ Product Concept Affinity: 
○​ Report: "Cross-Sell Opportunity Identification." 
○​ Data: Analyze the FCA-derived concept lattices. Find products that are 

frequently co-occurring in the same :Purchase contexts but are not in the 
same explicit product category. 

○​ Indicator: "Concept Affinity Score" calculated as the Jaccard similarity of 
their FCA attribute sets (or the GCD of their CPPEs). A high score between 
ProductCategory:CampingGear and CustomerAttribute:Owns4x4Vehicle 
suggests a marketing opportunity. 

●​ Customer Lifetime Value (LTV): 
○​ Report: "True Customer LTV". 
○​ Data: Since all data is unified around a single customer DID, we can combine 

purchasing data (from ERP), marketing interaction data (from CRM), and 
customer support data (from a ticketing system). 

○​ Indicator: A comprehensive LTV calculation that was previously impossible 
becomes a straightforward query across the unified graph. 
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