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Abstract: Not even five years after the standardization of HTTP/2, work is already well underway on HTTP/3. This latest version is
necessary to make optimal use of that other new and exiting protocol: QUIC. However, some of QUIC’s unique character-
istics make it challenging to keep HTTP/3’s functionalities on par with those of HTTP/2. Especially the efforts on adapting
the prioritization system, which governs how multiple resources can be multiplexed on a single QUIC connection, have led
to some difficult to answer questions. This paper aims to help answer some of those questions by being the first to provide
experimental evaluations and result comparisons for 11 different possible HTTP/3 prioritization approaches in a variety of
simulation settings. We present some non-trivial insights, discuss advantages and disadvantages of various approaches, and
provide results-backed actionable advice to the standardization working group. We also help foster further experimentation
by contributing our complete HTTP/3 implementation, raw results and custom visualizations to the community.

1 INTRODUCTION

A revolution is coming to the internet in the form of
the nearly standardized transport-layer QUIC protocol
(Langley, 2017). Sometimes called ‘TCP 2.0’, QUIC
combines over 30 years of practical internet protocol
experience into one neat package, using ‘that other’
transport layer protocol, UDP, as a flexible substrate. QUIC
re-imagines loss detection and recovery, adds full transport-
layer end-to-end encryption, allows for 0-RTT overhead
connection setups and, of main importance to this work,
solves the TCP Head-Of-Line (HOL) blocking problem.

Some of TCP’s main strengths, namely reliability and
in-order delivery, can lead to severe performance problems
in the event of heavy jitter or packet loss (Goel et al., 2017).
This is because a TCP connection considers all data trans-
mitted over it as a single, opaque bytestream. In other
words, TCP has no knowledge of a higher-layer application
protocol, such as the ubiquitous HTTP. This is problematic
if those application layer protocols multiplex data from var-
ious, independent resources on the single TCP connection.
For example, when loading a web page using the HTTP/2
(H2) protocol (RFC7540, 2015) we typically download
several separate resources at the same time (e.g., HTML,
JavaScript (JS), images). As H2 uses a single underlying
TCP connection, data for these distinct resources is sched-
uled and multiplexed onto this connection. This scheduling
can be quite complex, alternating data from different re-
sources to allow them to share the available bandwidth.

As such, if a TCP packet containing data for just one
of these resources is delayed or lost, there should be no

reason that succeeding packets containing data for the other
independent resources, can not simply be processed by
the H2 layer. However, this is not what happens in practice.
As TCP is unaware of the various HTTP resources, if a
packet is lost, subsequent packets cannot be processed
until a retransmit of the lost packet arrives. This is called
HOL-blocking, see the top part of Figure 1. While this
may seem a mild issue, it has been shown to be one of
the major downsides of the H2 protocol running on top
of TCP (Marx et al., 2017) and (Goel et al., 2017). The
key contribution of QUIC in this area is that it moves this
concept of independent resources (more generally referred
to as ‘streams’) away from the application level down into
the transport layer protocol. QUIC is inherently aware of
several streams being multiplexed on its conceptual single
connection, and will not block data from stream A or C
if there is a loss event on stream B. Thus it solves TCP’s
HOL-blocking problem, see the bottom part of Figure 1.
It is important to note though, that within a single resource
stream, all data is still delivered in order and thus there
is still HOL-blocking on that level.

QUIC incorporating the concept of streams into its
transport layer design leaves H2 in a weird position, as
it also strongly defines stream semantics on the application
layer. Running H2 on QUIC directly without changes
would thus lead to two separate and competing multiplexers.
As this can introduce much implementation complexity
and inefficiencies, the choice was made instead to define
a new mapping of H2 onto QUIC, which is now being
called HTTP/3 (H3). Despite the higher version number,
the intent is that H2 and H3 will exist side-by-side, the first
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Figure 1: Head-Of-Line blocking in TCP vs QUIC. Lacking knowledge of the three independent streams, TCP is forced to wait for
the retransmit of packet 2 (2’). QUIC can instead pass packets 3 and 4 to HTTP immediately, where they are processed before packet 2’.

over TCP, the latter over QUIC. Currently, H3 is still just
a relatively straightforward mapping of H2 onto QUIC; the
main change is that all of H3’s stream-specific amenities
have been removed in favor of QUIC’s streams. However,
this seemingly simple mapping introduces some subtle
issues, as several concepts in H2 rely on a strict ordering
between several control messages. Due to stream data now
potentially being passed onto the H3 layer out-of-order,
some H2 approaches no longer hold. Main among
them is the prioritization setup, which orchestrates the
aforementioned stream data scheduling and multiplexing
logic. This scheduling is guided by means of a resource
dependency tree (see Section 2.2) which is being built up
on both client and server side by means of control messages.
As these control messages are no longer deterministically
ordered, the prioritization system needs to be revised.

At the time of writing, QUIC and H3 are still being
standardized1 within the dedicated IETF QUIC working
group. Recently, there have been many discussions on how
to approach prioritization in H3. This is only partly due to
the out-of-order streams issue though. Another important
component is that several implementations of H2’s
prioritization approach seem to severely underperform in
real-world deployments (see Section 2.3). As H2’s prioriti-
zation system was originally added without much practical
experience or proof of validity, the working group is weary
of making the same mistake twice. It is torn between
wanting to retain as much consistency as possible between
H3 and H2 on one hand, and attempting to fix some of H2’s
most glaring prioritization issues on the other. While sev-
eral concrete proposals have been made for the latter option,
the group is adamant about requiring insights from practical
experiments before any major changes to H2’s system can
be considered. This paper is the first to provide such in-
sights. Firstly, we explain the subtle issues and background
underlying the prioritization systems (Sections 2 and 3).
Secondly, we compare the different proposed options on
their various merits (Sections 3.3 and 4.1). Thirdly, we
perform experiments for 11 different prioritization schemes
on realistic websites in various conditions (Section 5).
Lastly, we make several actionable recommendations to the
wider QUIC community in an in-depth discussion (Section
6). All our source code, results and visualizations are made

1tools.ietf.org/html/draft-ietf-quic-http

publicly available at https://h3.edm.uhasselt.be.

2 HTTP/2 PRIORITIZATION

2.1 Background: web page loading

Web pages typically consist of different (types of) resources,
e.g., HTML, JavaScript (JS), CSS, font, image files. Not
all these resources are equally important however and
most have very distinct characteristics during the web page
loading process. For example, HTML can conceptually
be parsed, processed and rendered incrementally. This
is different from JS and CSS files, which can be parsed
as data comes in (at least in some browsers) but have
to be fully downloaded to be actually executed and
applied. Additionally, CSS files are said to be HTML
render-blocking: the browser engine cannot just continue
rendering any HTML after a new CSS file is included, as
this CSS might impact what that following HTML should
look like. JS is even worse; it is HTML parser-blocking,
as it might programmatically change the HTML structure,
removing or adding elements. As such, there is the concept
of a ‘critical path’ in the web page loading process, where
any delay for a resource on this path will delay the entire
page load (Tangari et al., 2019). Consequently, it is
typically imperative that JS and CSS files referenced early
in the HTML are downloaded as soon as possible.

Another issue is that the browser does not know about
all the needed resources up-front, as they are discovered
incrementally during the page load. Most of them are
mentioned in the HTML markup directly, but many (e.g.,
fonts, background images, API data) are often imported
from within CSS or JS files, and are only discovered when
those files are fully downloaded and executed. As such,
they are typically requested on the network after resources
mentioned in the HTML.

A final aspect is that the user typically does not get to
see or interact with the full web page immediately, as it
often extends below the current screen height. The part
that is immediately visible is typically called ‘Above The
Fold’ (ATF). As such, resources such as large images
that are ATF, are conceptually more important than those
that are ‘Below The Fold’. Similarly, JS files that fetch

https://tools.ietf.org/html/draft-ietf-quic-http
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the page’s main content from an API are more important
than JS for Social Media integrations. Thus, resources that
appear first in the HTML (and their direct children) are
usually considered the most important ones.

Combining all these points, it is clear that web pages
can have very complex resource interdependencies.
Individual resource importance depends on its type, precise
function, (potentially) location within the HTML and
how many children it will end up including. As much
of this information is unknown to the browser before the
page load starts, user agents typically resort to complex
heuristics for determining relative resource importance
in practice. To complicate things even more, all browser
implementations employ (subtly) different heuristics, see
(Wang et al., 2013) and (Wijnants et al., 2018).

2.2 Dependency tree: what and why?

Even though the browser uses heuristics rather than exact
importance indicators, one might say it is in a good
position to determine individual resource importance
during the page load process, as this can also partly depend
on the browser’s internal implementation. This idea that
the client should steer the server’s resource scheduling
underpins H2’s prioritization system. H2 provides the
client with so called PRIORITY frames, control messages
that it can use to communicate its desired per-resource
scheduling setup to the server.

The practical system by which this scheduling is accom-
plished on the server is in the form of a ‘dependency tree’,
in which each individual resource stream is represented
as a single node. Available bandwidth is then distributed
across these nodes by means of two simple rules: parents
are transferred in full (or as long as they are able to make
progress) before their children, and sibling nodes share
bandwidth among each other based on assigned weights.
For example, given a sibling A with weight 128 (out of
a maximum of 256) and a sibling B with weight 64, A
will receive 2/3 of the available bandwidth, leaving 1/3 for
B. In an optimal implementation, this would result in the
following scheduled packet sequence: AABAABAAB. . . .

As such, the browsers have to map their internal heuris-
tics onto this type of tree structure. While the tree setup is
tremendously flexible and allows for an abundance of ap-
proaches (Section 4.1), it is non-trivial to define a good map-
ping for the heuristics in practice. For example, it is unclear
up-front what this dependency tree should look like, as its
form can change frequently during the page load, when the
client discovers new resources to request. If these newly dis-
covered resources are of a higher priority than other, previ-
ously requested resources (which already have a node in the
tree), the browser might wish to initiate a re-prioritization.
This means the new, high-priority resource node needs to
somehow be added to the tree so that it will (immediately)
receive more bandwidth than the already present, but lower-
priority resource nodes. Alternatively, these latter resources
can be moved around in the tree to achieve the same effect.
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Figure 2: HTTP/2 dependencies: exclusivity.
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behaviour when referenced parent does not exist. E is added as
a sibling of D on the root, (unintentionally) sharing its bandwidth.

As such, the structure and scheduling logic of the tree can
become very volatile and complex indeed.

H2 adds to this complexity by remaining flexible and
allowing various ways for clients to (re-)prioritize resources.
Firstly, nodes can be added as children to a parent in two
ways: exclusively and non-exclusively. As can be seen
from Figure 2, non-exclusive addition is the ‘normal’,
less-invasive way of adding nodes to the tree. Exclusive
addition however, changes all of its potential siblings
beneath its parent to instead become children of the newly
added node itself. This allows aggressive (re-)prioritization,
by displacing (large) groups of nodes in a single operation.
Secondly, as nodes can depend upon other nodes, it is
also possible to group nodes together under conceptual
‘placeholder’ nodes: these placeholders do not necessarily
represent a real resource stream, but rather just serve as
anchors for other streams in more complex tree setups (Fig-
ure 9). As with exclusive addition, moving placeholders
around equally allows highly impactful re-prioritization.

Now, whenever the server has the ability to send packets
(e.g., as notified by the transport’s congestion controller) it
re-processes the dependency tree (as it might have changed
in the mean time), determining which resource data should
be put on the wire. Depending on the implementation how-
ever, the frequent (re-)processing of the tree to determine
the proper next resource can be exceedingly non-trivial
and computationally expensive. Additionally, there is the
memory cost of maintaining the tree structure if there are
a large number of resources. To combat this, servers are
allowed to remove nodes from the tree once their resource
is transmitted fully. However, this can lead to problems if
the client attempts to add a new node to a parent node that
was already removed. At this point, H2 specifies that the
server should fall back to the conceptual root of the tree
as a parent instead. This can unintentionally promote the
importance of a resource, as it is now a sibling of potentially
more important nodes under the root. See for example
Figure 3, where on the right side E should conceptually
have been added as a child of D instead. Note that while, in
this example, there is only one mis-prioritized node (E), its
possible that there are many at the same time, exacerbating
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the problem. This imperfect ‘default fallback’ can also oc-
cur in other situations, for example when employing Server
Push. Put differently, there is no continuous or explicit
synchronization of the dependency tree between client and
server, which can lead to both peers having different views
of the proper scheduling, leading to unexpected behaviour.

Given this possibility for a de-synchronization and the
complexity of this setup, one might start to wonder why
we decided it was the client that had to determine the
resource priorities in the first place. Could we not make
a similar argument that the server (usually) already has
all the resources for the web page and thus has a good
overview from the start? We could also say that the server
is controlled by the web developers, who (provided they
are aware of the concepts in Section 2.1) have intimate
knowledge of the intended resource priorities up front.
While these seem like solid arguments, in practice there
are many reasons why this is typically much easier said
than done in practice. However, to support such use cases,
the H2 spec also allows the server to simply ignore the
client’s PRIORITY messages and instead decide upon
the proper resource scheduling itself. As such, our road
to flexibility seems complete, being able to choose either
client-side or server-side prioritization and scheduling.

It is clear however that this flexibility comes at the price
of complexity and one might make the argument that this
setup is too complex just to support the requirements of the
web page loading use case. Indeed, as we will see in Section
3, there are several proposals for H3 that dramatically
simplify this setup (e.g., by not constructing a dynamic tree),
while still supporting fine-grained bandwidth distribution
among resources. In fact, H2’s predecessor, SPDY, had
a much simpler prioritization setup, centered around just
eight levels of resource priorities (SPDY, 2014). Why then
was this complex system chosen in the first place? As with
many protocol design decisions, a lot of the finer details
are lost in the sands of time. From what we were able to
piece together from various H2 mailing list threads2 and
conversations with original contributors, it seems that it
was mainly meant to support more advanced use cases for
cross-connection prioritization. For example, some parties
envisioned multiplexing multiple (H2) connections onto
a single H2 connection. This is for example interesting
in the case of a general purpose proxy/VPN server or a
load balancing/edge server in a Content Delivery Network
(CDN). Here the edge server connects directly to a large
amount of end users and can multiplex their data over a
single, persistent and warmed-up H2 connection to the
actual application/origin server. In such a setup, the edge
server might want to give some clients better performance
than others by assigning their requests a higher priority.
For such a use case, a (very) large dependency tree can
be constructed to manage cross-client priorities. Another
use case was for browsers to have multiple tabs/windows
open of the same web site. In theory, those tabs can share
the same, underlying H2 connection, with the currently

2lists.w3.org/Public/ietf-http-wg/2019AprJun/0113.html

visible/focused tab having the highest priority. Again, this
can be done by using a complex, cross-tab dependency tree.

Surely, you might think, if the dependency tree schedul-
ing was added to H2 to support these use cases, they must
be implemented and deployed at scale? Sadly, this is not
the case. To the best of our knowledge and as indicated to
us by many of the involved companies, no browsers, CDNs,
proxy or web servers implement these advanced use cases
today. In fact, even the simpler use cases of fine-grained
bandwidth sharing for a single web page load are barely uti-
lized or improperly implemented and deployed in practice.

2.3 Related work: Theory vs Practice

(Wijnants et al., 2018) looked at how modern browsers
utilize H2’s prioritization system in practice. They found
that out of 10 investigated browsers, only Mozilla’s Firefox
constructs a non-trivial dependency tree and prioritization
scheme, using multiple levels of placeholders and complex
weight distributions (see Figure 9). Google’s Chrome
instead opts for a purely sequential model where all
resources are added to a parent exclusively. Apple’s Safari
goes the other route with a purely interleaved model where
all resources are added non-exclusively to the root, using
different weights to achieve proper scheduling. Microsoft’s
Edge browser (before its move to the Chromium engine)
even neglected to specify any priorities at all, relying
on H2’s default behaviour of adding all the resources to
the root with a weight of 16 (leading to a Round-Robin
bandwidth distribution). They reviewed these various
methods of prioritization, and come to the conclusion that
H2’s default Round-Robin behaviour is actually the worst
case scenario (the reasons why are made clear in Section
3.3 of our work), while the other browser’s approaches
are also suboptimal in various ways.

Next, Patrick Meenan and Andy Davies conducted sev-
eral experiments to determine how well various H2 im-
plementations actually (re-)prioritize resources in practice
(Davies and Meenan, 2018). They perform these tests
by first requesting some low-priority resources. After a
short delay, they then request a few high priority resources,
expecting them to re-prioritize the dependency tree and be
delivered as soon as possible. They find that out of 35 tested
CDN services and H2 web server implementations, only
9 actually properly support (re-)prioritization. They posit
that these problems arise for various reasons. Firstly, some
implementations simply have faulty H2 implementations or
servers do not adhere to the clients’ PRIORITY messages
(but fail to provide better scheduling). Secondly, implemen-
tation inefficiencies cause data to be mis-prioritized, even
if the dependency tree approach is valid3. Thirdly, they
identify various forms of ‘bufferbloat’ as the main culprit.
If deployments use too large buffers, the risk exists that
these buffers will be filled with low-priority data before

3blog.cloudflare.com/nginx-structural-enhancements-for-
http-2-performance
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the high-priority requests arrive. Especially in the case of
in-network or kernel-space buffers, it is difficult or impos-
sible to clear these buffers to re-fill them with high-priority
data when needed. (Patrick Meenan, 2018) suggests lim-
iting the application-level buffers size, and to use the BBR
congestion control mechanism as solutions. Finally, akin
to (Wijnants et al., 2018), they indicate that the browser’s
heuristics and their mapping to the H2 dependency mecha-
nism are not optimal, and propose a better scheme (Patrick
Meenan, 2019a), which we will refer to as bucket later.

Next to this H2 specific work, there are also contributions
looking at optimal browser heuristics and prioritization in
general. The WProf paper (Wang et al., 2013) looks at
resource dependencies and their impact on total page load
performance. They instrument the browser to determine
the ‘critical resource path’ for a page load and use that to
up-front determine optimal resource orders for subsequent
page loads. Similarly, Polaris (Netravali et al., 2016), Shan-
dian (Wang et al., 2016) and Vroom (Ruamviboonsuk et al.,
2017) collect very detailed loading information (down to
the level of the JS memory heap) and construct complex
resource transmission and computation scheduling schemes.
Polaris and Shandian claim speedups of 34% - 50% faster
page load times at the median, while Vroom even reports
a flat median 5s load time reduction. However, while their
approaches are perfect candidates for H2’s server-side prior-
itization, none of these implementations choose that option.
Instead they use custom, JS-based schedulers or H2 Server
Push. The latter is also the approach taken by Akamai4,
which gathers statistical information of web page loads that
pass through their edge servers. They determine which re-
sources are likely to be needed early in a page load and Push
them to the client without waiting for an explicit request.

At this time Cloudflare is the only commercial party
experimenting with advanced server-side H2 prioritization
at scale, for which they employ the bucket scheme from
(Patrick Meenan, 2019a). This scheme aligns more closely
with their server implementation and is preferred over
the web browser’s PRIORITY messages, which they
essentially ignore. They claim improvements of up to
50% for the original Edge browser. Prioritization can be
further tailored manually by Cloudflare customers through
the application of edge compute logic. Overall, we can
conclude that advanced server-side prioritization remains
relatively unproven in practice and many servers that
ignore the client’s PRIORITY messages do not employ
optimal custom scheduling logic.

3 HTTP/3 PRIORITIZATION

While the tenet of the QUIC working group has (so far)
mainly been to keep H3 as close to the semantics and
possibilities of H2 as possible, lately there have been
several discussions on whether to introduce major changes

4developer.akamai.com/ion/adaptive-acceleration

into the prioritization system. Firstly, the dependency tree
setup is quite complex and little of its full potential is being
used in the wild. Secondly, due to QUIC’s independent
streams, the system can not be ported over to H3 in a
trivial manner. The working group has long struggled
with this latter aspect and has only very recently taken
steps to solve some of the issues that arise from the QUIC
mapping. We will now first discuss which problems were
originally identified and which solutions where included in
draft version 205 of the H3 Internet-Draft document. Then
we look at how and why those solutions were changed
in upcoming draft version 21 in June 20196.

3.1 Before draft-21
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One of the major problems in bringing H2 prioritization
to H3 is in the concept of exclusive dependencies, which
can move other nodes in the tree (see Section 2, Figure
2). This approach relies heavily on the correct ordering
of PRIORITY messages. As they are sent on the resource
stream they are meant to provide priority information on,
this can lead to problems. Due to packet loss or jitter on
the network, in QUIC these PRIORITY messages sent
on different streams can now arrive out-of-order, leading
to non-deterministic dependency tree layouts, see Figure
4. The original ‘solution’ to this was simply to remove
exclusive dependencies from the protocol.
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However, the non-deterministic ordering of QUIC
streams leads to other problems. For example, let’s say A
and B are requested immediately after each other, with B
indicating A as its parent. If B arrives before A, the server
does not yet have A in its dependency tree. It then has two
options: either append B to the root of the tree (default
fallback), or create a ‘non-initialized’ node for A and hope
its PRIORITY message will arrive soon. However, even in
the second case, A would have to be added to the root, since
we don’t know its real parent yet. This leads to the problem
discussed in 2.2 and Figure 3, where these new streams
potentially compete for bandwidth with streams of much
higher importance, see Figure 5. The ‘solution’ for this
problem was to simply ignore it, as in this case A should
in fact be arriving pretty soon, and B’s mis-prioritization
should not be a problem for long. However, note that in
the case of a packet loss on a long-fat network (high band-
width, high latency) a retransmit of A’s PRIORITY message
could keep B mis-prioritized for over 1 Round-Trip-Time
(RTT) at best. If B is relatively small and the connection’s
congestion window is large, B could potentially be fully
transmitted or put into buffers before A’s retransmit arrives.

In order to partially alleviate this problem in the case
of updates to the priority of existing nodes (an additional
PRIORITY message is sent), H3 uses a separate ‘control
stream’. As this is a single, conceptual stream, all messages
sent on it are fully-ordered, and the updates are applied in
the expected order. As such, in draft-20, normal H3 modus
operandi is to send the initial PRIORITY message as the
very first data on the resource stream itself, and subsequent
PRIORITY messages for that resource on the separate con-
trol stream. However, this does not completely eliminate
all edge cases. As a potentially better solution, the text also
allows implementations to send the initial PRIORITY mes-
sage on the control stream (see the leftmost part of Figure 6).
While this provides deterministic tree buildup, it again suf-
fers from the same problem as above: if the request stream’s
HTTP headers arrive before the initial PRIORITY message
is received on the control stream, the request stream is
(temporarily) added as direct child of the root node.

In an attempt to prevent these issues from happening in
practice, the concept of placeholder nodes was revisited. In
H2 these placeholder nodes were obtained in a roundabout
way by using ‘zombie’ streams (streams that are opened
but on which an HTTP request is never sent). However, this
suffered from the problem indicated in Figure 3, as servers
had no way of knowing that these were idle streams and
could potentially remove them from the tree prematurely.
As such, in H3 these nodes are explicitly made separate
entities in the tree. The idea is that the placeholders are
created up-front at the start of the connection to create a
harness for the prioritization setup, and are never removed.
As such, if resource nodes only depend on placeholders,
those parents will always be in the tree and these issues
do not occur. This does not fit well with purely sequential
dependency chains, but since exclusive dependencies were
already removed, this was not seen as a major issue, as

nodes can still be attached to other, non-placeholder nodes.
It is clear that the initial adoption of H2 prioritization into

H3 was not a trivial change, with exclusive dependencies
being dropped completely and placeholders added to help
alleviate some of the most glaring issues. However, there
remained plenty of edge cases and problems with this setup.

3.2 draft-21

Given the suboptimal state of prioritization in draft-20,
working group members had their choice of two main
directions to continue in: Either attempt to move the
design even closer to H2 (e.g., by re-introducing exclusive
priorities) or introduce more impactful changes to the
setup (e.g., moving away from the dependency tree setup).
While many proposals in the latter category were deemed
interesting, it was decided that the working group needed
more implementation experience and experimental results
showing that these simplified or alternative schemes could
work as well or better than the H2 status quo. This need
for additional data led to the creation of this work and we
discuss some of the alternative proposals in Section 3.3.

Consequently, for the time being, the working group
decided to bring H3’s prioritization system closer to the
original H2 setup. This was accomplished by two main
changes: Firstly, all PRIORITY messages are now required
to be sent on the control stream7, where before the Initial
PRIORITY messages could be sent on the resource stream
itself. As now all PRIORITY altering information is fully
ordered again, this allows for the re-introduction of exclu-
sive dependencies into the specification8. The downside
of this change however is that, as before, problems can
arise if PRIORITY messages on the control stream are lost:
unprioritized request streams are added directly to the root,
where they can unintentionally share bandwidth with higher-
priority streams. Where before with the Initial PRIORITY
message on the request stream this problem was less likely
(see Figure 5), its impact could now be larger if the control
stream suffers loss. As there are also several other types of
control messages being sent on the control stream, if one of
them becomes lost, this has the potential to introduce a form
of HOL-blocking for the unrelated PRIORITY messages9,
as data for the singular control stream is still strictly ordered.

The best solution to that issue was deemed to change the
default fallback behaviour. As previously mentioned, this
fallback is to add request streams that have no associated
priority information directly to the dependency tree’s root
with a weight of 16. This allows these unprioritized nodes
to potentially ‘steal’ bandwidth from top-level siblings.
Partly in thanks to the early results of this work, the concept
of an ‘orphan placeholder’ was introduced10 to help resolve
this issue. This special purpose placeholder replaces the

7github.com/quicwg/base-drafts/issues/2754
8github.com/quicwg/base-drafts/pull/2781
9github.com/quicwg/base-drafts/issues/2678

10github.com/quicwg/base-drafts/pull/2690

https://github.com/quicwg/base-drafts/issues/2754
https://github.com/quicwg/base-drafts/pull/2781
https://github.com/quicwg/base-drafts/issues/2678
https://github.com/quicwg/base-drafts/pull/2690
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dependency tree root as the default parent for unprioritized
nodes, but is not part of the normal dependency tree and
has special semantics. The text states that children of
the Orphan Placeholder can only be allotted bandwidth if
none of the streams in the main dependency tree can make
progress (or there are no more open prioritized streams
under the root). This means that unprioritized streams will
never get to send data as long as there is data available
for prioritized streams, thus preventing the unintentional
bandwidth ‘stealing’. This is illustrated in Figure 6.

3.3 Alternatives for HTTP/3 priorities

As mentioned before, prior to H3 draft-21, there were
several proposals for H3 that aimed to introduce alternative
schemes to the one defined in H2. Several of these flowed
from the aforementioned insight that a Round-Robin (RR)
bandwidth distribution scheme is undesirable in most web
page loading use cases (Wijnants et al., 2018) and (Patrick
Meenan, 2019a). This is mainly because, as discussed in
Section 2.1, for many high-priority resources (e.g., JS, CSS,
fonts) it is imperative that they are downloaded in full as
soon as possible. As discussed in detail in Section 5 and as
can be seen at the top of Figure 8, RR bandwidth interleav-
ing leads to resource downloads being completed very late.
As such a more sequential scheduler, which for example
sends a single resource at a time, is a much better approach
for many important resources, while a RR scheme is more
apt for lower-priority resources that can be incrementally
used (e.g., progressive images). Since at the time, H3 did
not support exclusive prioritization anymore, this type of
sequential prioritization was more difficult to obtain, and
so many of the proposals focus on ways to make this easier
to accomplish. A second main issue was the potential
overhead of placeholder nodes. As they are created up-front
and cannot be removed while the connection remains alive,
an attacker who sets up a large amount of placeholders
could potentially execute a memory-based Denial of
Service attack on the server. As a response, servers can
limit the amount of placeholders a client is allowed to open.
The question then becomes: how many is enough11? Some
schemes might require large amounts of placeholders for
legitimate reasons. As such, various proposals attempt to
limit the amount of placeholders needed12 or eliminate the
need for them altogether. Thirdly, many feel H2’s scheme
is overly complex and, as this complexity is not being used
in practice (Section 2.3), would prefer to see schemes that
are simpler to implement and reason about. Finally, various
people feel that a combination of client and server-side
scheduling, where both parties contribute importance
information at the same time, might have some merits.
While in theory it is possible to mix both at the same time
in the dependency tree setup (e.g., relying mostly on the
client’s PRIORITY messages, but (manually) overriding

11github.com/quicwg/base-drafts/issues/2734
12github.com/quicwg/base-drafts/pull/2761
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Figure 7: Proposal for HTTP/3 prioritization
based on priority buckets, from (Patrick Meenan, 2019b)

them for select resources at the server), this is difficult in
practice. As clients are free to build their dependency tree
in very different ways, it is almost impossible for a server
implementation to automatically derive the semantics
employed by various clients. This makes it difficult to
determine the correct place in the tree for the (manually)
prioritized resource. As such, a new scheme should ideally
make it easier to combine client and server-side directives.

The first proposal, termed bucket by us, is one by Patrick
Meenan from Cloudflare (Patrick Meenan, 2019b). He pro-
poses to drop the dependency tree setup and replace it with a
simpler scheme of ‘priority buckets’, see Figure 7. Buckets
with a higher number are processed in full before buckets
with a lower number. Within the buckets, there are three
concurrency levels. Level three, called “Exclusive Sequen-
tial” pre-empts the other two and sends its contents sequen-
tially by stream ID (streams that are opened earlier are sent
first). Levels two (“Shared Sequential”) and one (“shared”)
are each given 50% of available bandwidth if level three is
empty. Within level two, streams are again handled sequen-
tially by lowest resource ID, while within level one, they
follow a fair Round-Robin scheduler. As can be seen in Fig-
ure 7, this allows a nice and fine-grained mapping to typical
web page assets loading needs. This scheme was deployed
for H2 as well on Cloudflare’s edge servers and they claim
impressive speedups (Patrick Meenan, 2019a). Overall,
this scheme is also easier to implement: all that is needed
is a single byte per resource stream to carry the priority
and concurrency numbers. Resources can easily be moved
around by updating these numbers, though it is not possible
to re-prioritize many resources at once. This scheme also
makes it easier to incorporate server-side directives for par-
ticular resources, as there is a clear ordering of importance
through the priority buckets. Promoting or demoting a
resource can be as easy as moving it to a different bucket.

A second proposal by Ian Swett from Google13 called
‘strict priorities’ attempts to integrate the semantics of
Patrick Meenan’s bucket proposal with the existing priority

13github.com/quicwg/base-drafts/pull/2700

https://github.com/quicwg/base-drafts/issues/2734
https://github.com/quicwg/base-drafts/pull/2761
http://github.com/quicwg/base-drafts/pull/2700
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tree setup. Nodes can now have both a priority value
and a weight, and siblings with a higher priority are sent
before others. By disallowing streams to depend on each
other (i.e., streams can only have placeholders as parents),
this proposal also side-steps many of the issues discussed
before, while allowing sequential sending without needing
exclusive dependencies. With this scheme, as with
the previous one, placeholders could also be bypassed
completely. While we could describe this proposal as
a “best of both worlds” endeavour, it is also relatively
complex, attempting to marry various disjoint concepts. It
was non-trivial for many working group members to work
out how even simple, existing H2 schemes could be ported
to this new scheme. Others suggested various simplified
derivatives of this scheme, dropping other aspects of H2’s
scheme to reduce complexity.

Thirdly, our own proposal14 called ‘zeroweight’ has an
aim to stay quite close to the default H2 setup. The main
change is that nodes can now have a weight between 0
and 255 (where before it was in the range 1-256). Nodes
with weight 0 and 255 exhibit special behaviour, akin to
Meenan’s sequential concurrency levels: siblings with
weight 255 are processed first, in full and sequentially
in the lowest stream ID order. Then, all siblings with
weight between 254 and 1 are processed in a weighted
Round-Robin fashion (assigned bandwidth relative to their
weights, see Section 2.2). Finally, if all other siblings
are processed, do zero-weighted nodes get bandwidth,
again sequentially in the lowest stream ID order. Note that
draft-21’s orphan placeholder could thus be implemented as
a zero-weighted placeholder under the root. The resulting
tree can be viewed in Figure 10. While this proposal
requires just a few semantic changes to the H2 system,
and is thus easy to integrate in existing implementations, it
does represent a potentially large placeholder overhead. To
get fully similar behaviour to the previous two proposals,
one would need three placeholders per priority bucket (i.e.,
nine for the example in Figure 7), as opposed to zero in
their proposals. However, a simpler practical setup in the
zero weighting scheme, such as the one presented in this
work and in Figure 10, requires no placeholders. Such a
simpler setup also makes it easier to integrate server-side
directives, as changing per-resource weights can now have
more impact and it is straightforward to promote or demote
a resource to a higher ‘tier’ (change weight to 255 or 0).

Various other setups were proposed, among which there
was one suggesting to go back to the prioritization scheme
of the SPDY protocol (SPDY, 2014). SPDY was the prede-
cessor of H2 and had just “eight levels of strict priorities”.
The SPDY specification did not provide details on how
resources should be allotted bandwidth, only that resources
of higher priority levels should be sent first. As Chrome’s
default H2 behaviour can be seen as a sequential version of
SPDY’s setup, for this work we have also created a Round-
Robin version of SPDY’s general concept, termed spdyrr.

These and other proposals are discussed in a recent joint
14github.com/quicwg/base-drafts/pull/2723

presentation on H3 priorities by Ian Swett and the authors
of this work (Swett and Marx, 2019).

It should be noted that none of these proposals introduce
radical new ideas. The basic concepts remain those of
sequential versus Round-Robin based resource transmis-
sions. All the discussed schemes in this work mainly differ
in how easy it is to implement them, how much runtime
overhead they induce, how well they support resource
re-prioritization and how fine-grainedly they allow resource
importance to be specified. Even so, even though the basic
concepts are the same, it is not immediately apparent that
all these options will provide similar or better performance
than H2’s status quo for the web page loading use case. In
fact, it is not even fully clear if the current H2 prioritization
schemes of the various browsers are optimal. The results
of (Wijnants et al., 2018) at least seem to indicate that
many browsers use clearly sub par prioritization schemes,
but also that it is non-trivial to improve upon those in a
generic way with high-level, client-side only heuristics.
Given this complex situation, the working group deemed
that working H3 implementations and evaluations of the
various schemes, both old and new, were required before
deciding on a way forward for H3. These implementations
and evaluations are the main contribution of this work.

4 EXPERIMENTAL SETUP

4.1 Prioritization schemes

For this work, we have implemented and evaluated 11 dif-
ferent prioritization schemes. Their main approaches are de-
scribed in Table 1 and Figure 8 shows to what kind of data
scheduling they lead in practice. For example, as expected
the Round-Robin rr clearly has a very spread out way of
scheduling data for the various streams. The firefox, p+,
s+ and spdyrr schemes are quite similar, but include subtle
differences. Looking at the results for bucket we see that
the HTML resource (and the font that is directly dependent
on it) are delayed considerably, which seems non-ideal. As
such, we propose our own variation, bucket HTML, which
gives the HTML resource a higher priority. For this test
page it dramatically shortens the HTML and font file’s
Time-To-Completion (TTC). Note that we did not imple-
ment Ian Swett’s proposal, as it should function identically
to bucket in our evaluation but would be far more involved
to implement. Figures 9 and 10 show dependency tree lay-
outs for two of the schemes; the rest can mostly be found
in (Wijnants et al., 2018) and (Swett and Marx, 2019).

4.2 Evaluation parameters

For easiest comparison with other work, we test the 11
prioritization schemes on the test corpus of (Wijnants et al.,
2018). This corpus consists of 42 real web pages from
the Alexa top 1000 and Moz top 500 lists. The corpus

https://github.com/quicwg/base-drafts/pull/2723
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represents a good mix of simple and more complex pages
(10-214 resources), as well as small and larger byte sizes
(29KB-7400KB). See the original paper for more details.
We also add two synthetic test pages: one of our own
design that tests all types of heuristics modern browses
apply, and the one used by (Davies and Meenan, 2018)
(Section 2.3, Figure 8). These two pages can be seen as
“stress-tests” and are designed to highlight prioritization
issues and behaviour. The full corpus is downloaded to
disk and all files are served from a single H3+QUIC server.

For this QUIC server, we choose the open source Type-
Script and NodeJS-based Quicker implementation (Robin

Table 1: Prioritization schemes. The top
seven are from actual browser H2 implementations and (Wijnants

et al., 2018). The bottom four are new proposals for H3.

Name Description
rr
(Edge)

Fully fair Round-Robin. Each resource gets
equal bandwidth.

wrr
(Safari)

Weighted Round-Robin. Resources are
interleaved, but non-equally, based on weights.

fifo First-In, First-Out. Fully sequential, lower
stream IDs are sent in full first.

dfifo
(Chrome)

Dynamic FIFO. Sequential, but higher stream
IDs of higher priority can interrupt lower
stream IDs.

firefox Complex tree-based setup with multiple
weighted placeholders and wrr for placeholder
children. See Figure 9.

p+ Parallel+. Combination of dfifo for high-
priority with separate wrr for medium and
low-priority resources (Wijnants et al., 2018).

s+ Serial+. Combination of dfifo for high and
medium-priority with firefox for low-priority
resources (Wijnants et al., 2018).

spdyrr Five strict priority sequential buckets, each
performing wrr on their children. The
Round-Robin counterpart of dfifo.

bucket Patrick Meenan’s proposal, Figure 7.
bucket
HTML

Our variation on Patrick Meenan’s proposal,
with HTML having a higher priority (bucket
63 instead of 31 in Figure 7).

zeroweight Our proposal, Figure 10.

Marx, Tom De Decker, 2019). We have exhaustively tested
the implementation to make sure any inefficiencies stem-
ming from the underlying JavaScript engine did not lead to
performance issues. We choose Quicker because the high
level language makes it easy to add support for H3 and to
implement our various prioritization schemes. We test the
validity of our H3+QUIC implementation by achieving full
interoperability with seven other implementations, among
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which those of Facebook, Cloudflare and Microsoft.
On the client side, there is currently sadly no browser

available that supports H3. As such, we use the Quicker
command line client instead. However, we do closely em-
ulate the browser’s expected behaviour by using the open
source WProfX tool15, an easy to use implementation of the
concepts from the original WProf paper (Wang et al., 2013).
We host the test corpus on a local H2O optimized web-
server and load the pages via the Google Chrome-integrated
WProfX software. From this load, the tool can extract de-
tailed resource inter-dependencies (e.g., was an image refer-
enced in the HTML directly or from inside a CSS file) and
request timing information. Our H3 client then performs
a “smart play-back” of the WProfX recording, taking into
account resource dependencies (e.g., if the current prioriti-
zation scheme causes a CSS file to be delayed, the images
or fonts it references will also be delayed accordingly). The
tool also indicates which resources are on the “critical path”
and are thus most important to a fast page load.

None of the open source QUIC stacks (including
Quicker) currently has a performant congestion control
implementation that has been shown to perform on par
with best in class TCP implementations. As we want to
focus on the raw performance of the prioritization schemes
and the order in which data is put on the wire, we do not
want to run the risk of inefficient congestion controllers
skewing our results. We instead manually tune the QUIC
server to send out a single packet of 1400 bytes containing
response data of exactly one resource stream every 10ms
(i.e., simulating a steadily paced congestion controller).
Note that QUIC always needs to apply encryption on
a per packet basis, as opposed to TLS over TCP, which
typically encrypts in larger blocks (e.g., 16KB), producing
records spanning multiple packets, to reduce encryption
overhead. As such, our approach of per-packet granularity
for stream data is realistic for QUIC and is seen in several
QUIC implementations. Given these factors, our results
represent an “ideal” upper bound of how well prioritization
could perform in the absence of network congestion and
retransmits. This approach also leads to exceptionally
stable experimental conditions, with re-runs of individual
experiments leading to near-identical results.

While we abstract away from fine-grained congestion
control, we do simulate other behaviours. Firstly, we exper-
iment with the effect of small and larger application-level
send buffers, to determine if we see the same detrimental
“bufferbloat” effects as in (Patrick Meenan, 2018).
Secondly, to illustrate QUIC’s resilience to HOL-blocking,
we add a mode to Quicker that simulates TCP’s behaviour
(i.e., packets are only processed in-order, even if they
contain unrelated data). As we do not use congestion
control or retransmits, we instead employ network jitter
rather than packet loss to demonstrate how QUIC profits
from having independent streams (Section 5.1).

Due to our stable experimental setup we can not sim-
ply use, for example, the total web page download time

15wprofx.cs.stonybrook.edu

as our metric, as these values are all identical per tested
page across the different schemes. This can easily be seen
by understanding that each scheme still needs to send the
exact same amount of data; it just does so in a different
order. Instead, we will mainly look at so-called “Above The
Fold” (ATF) resources. As discussed in Section 2.1, these
resources are either on the browser’s critical render path or
contribute substantially to what the user sees first (e.g., large
hero images). We combine WProfX’s critical path calcula-
tions with a few manual additions to arrive at an appropriate
ATF resource set for each test page. This ATF set typically
contains the HTML, important JS and CSS, all fonts and
prominent ‘hero images’. Non-hero (e.g., background)
images that are rendered above the fold are consciously not
included in this set (e.g., see “background.png” in 8), as
they should have less of an impact on user experience. Fur-
thermore, to highlight the power that comes from combin-
ing client and server-side directives, our implementations
of both bucket and zeroweight use small parts of these ATF
resource lists to simulate explicit manual web developer
prioritization intervention. Concretely, the hero images are
given a higher server-side priority than what they would
normally receive from the client. For example, Figure 7
mentions a ‘visible image’ for the bucket scheme, while
in practice, browsers have no way of definitively knowing
which images will eventually be visible or not. Since the
other discussed schemes do not utilize this additional meta-
data, this will in part explain the seemingly best-in-class
performance of bucket and zeroweight in our results.

However, to report these results, we also cannot directly
use, for example, the mean TTC for these ATF resources
as our metric. For example, receiving most of the ATF
files very early and then receiving just a single one late
is generally considered better for user experience than
receiving all together at an intermediate point, though both
situations would give a similar mean TTC. To get a better
idea of the progress over time, we use the ByteIndex (BI)
web performance metric (Bocchi et al., 2016). This metric
estimates (visual) loading progress over time by looking
at the TTCs of (visually impactful, e.g., ATF) resources.
At a fixed time interval of 100ms we look at which of the
resources under consideration have been fully downloaded.
The BI is then defined as taking the integral of the area
above the curve we get by plotting this download progress,
see Figure 11. Consequently as with normal web page
load times, lower BI values are better.

Practically, we instrument Quicker to log the full H3
page loads in the proposed qlog standard logging format16

for QUIC and H3. We then write custom tools to extract
the needed BI values from these logs, as well as new
visualizations to display and verify our results (Figures
8, 12 and 13). As such, our tools and visualizations are
re-usable by other implementations that output the qlog
schema. To encourage this and further analysis of our
work, all our source code, test results, raw logs, tools and
interactive versions of the visualizations are available at

16github.com/quiclog/internet-drafts

http://wprofx.cs.stonybrook.edu
https://github.com/quiclog/internet-drafts
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Figure 11: ByteIndex (BI) for bucket and
rr schemes. Bucket is clearly faster for ATF resources. Looking

at these schemes in Figure 8, it is immediately clear why.

Table 2: Mean speedup ratios compared to rr per
other prioritization scheme from Figure 12. Higher mean values
are better. #PH = number of placeholders used in this scheme.

Name #PH Mean
All

Mean
ATF

Mean
1000K

wrr 0 1.05 1.49 1.28
fifo 0 1.27 1.93 1.57

dfifo 5 1.27 2.30 1.72
firefox 6 1.07 1.22 1.25

p+ 3 1.17 2.20 1.64
s+ 8 1.14 1.45 1.56

spdyrr 5 1.14 1.96 1.57
bucket 0 1.20 2.13 1.82
bucket
HTML

0 1.20 2.49 1.83

zeroweight 0 1.15 2.8 1.9

https://h3.edm.uhasselt.be.

5 RESULTS

Our main results are presented in Figure 12 and Table
2. Like (Wijnants et al., 2018), when processing the results
we quickly saw that the rr scheme is by far the worst
performing of all tested setups, with almost no data points
performing worse. As such, we take rr as the baseline
and present the other measurements in terms of a relative
speedup to that baseline result. As such, a speedup of
x2 for scheme Y means that, for a baseline rr BI of 1500,
Y achieves a BI of 750. Symmetrically, a slowdown of
/3 indicates that Y had a BI of 4500. We have tested
the schemes with application-level send buffers of 14KB
(about 10 packets and similar to the default minimum
H2 frame size of 16KB (RFC7540, 2015), 280KB and
1000KB, but found that these had relatively small effects
until the buffer grows substantially large. As such, we
focus on results for send buffers of 1000KB here.

A few things are immediately clear from Figure 12: a)
Almost all data points are indeed faster than rr. b) With the
exception of a few bad performers (i.e., firefox, wrr, s+), all
schemes are able to provide impressive gains of x3.5 to x5+

speedup factors for individual web pages. c) Medium sized
pages seem to profit less from prioritization overall, with
smaller and larger pages showing larger relative advance-
ments (Note that for a small web page, which normally
loads in 2s, a speedup of 500ms can have as much or more
of an impact on user experience as a speedup of 5s for a
large page that loads in 20s17). d) Of the well-performing
schemes, there is not a clear, single winner or a scheme that
consistently improves heavily upon rr for -all- tested pages.
e) The impact of the 1000KB send buffer is visible, but less
impressively so than perhaps indicated by previous work
from (Patrick Meenan, 2018), who quoted slowdowns of
/2 compared to small/non-existent send buffers.

When looking at the mean ratios in Table 2, we see
similar trends. We have highlighted some of the the highest
and lowest values for each column. Taking into account
all page assets, even though the speedups are all modest,
it is clear that fifo is a far better default choice than rr.
Looking at ATF resources only, it is remarkable how badly
some schemes implemented by browsers perform (i.e.,
firefox and Safari’s wrr), while Chrome’s dfifo is almost
optimal, after bucket HTML and zeroweight. Though all
schemes suffer from larger send buffers, bucket HTML
and zeroweight again come out on top. As mentioned
before, this good performance of these latter two schemes
can be partially attributed to giving hero images a higher
server-side priority, highlighting that indeed, there might
be merit in combining client and server-side directives.

While the reduced observed impact of larger send
buffers might seem unexpected, it has a simple explanation
in two parts. Firstly, larger send buffers mainly impact
the ability of the scheme to re-prioritize its scheduler in
response to late discovered but important resources. In
our data set however, we seem to have few web pages that
contain such highly important late discoveries. Indeed, the
test page showing the most remarkable slowdown from
the larger send buffers was that of Patrick Meenan himself
(dropping from x9 speedup without send buffer to x3 with
1000K). Secondly, as the size of the send buffer grows,
the resulting behaviour more and more becomes that of
fifo, as requested resources can be put into the buffer in
their entirety immediately. This is clearly visible in Figure
8. As we have seen, fifo performs well overall, so even
larger send buffers will also keep performing relatively
well. It is our opinion that the results seen by Davies and
Meenan for faulty prioritizations in the wild might be less
due to ‘bufferbloat’ and more due to misconfigured or
badly implemented H2 server, or that the observed impact
is enlarged due to their choice of highly tuned test page.

To dig a bit deeper into some of the outliers, we discuss
two case studies. The first is outlined in black on Figure
12. This web page suffers a slowdown of about /3 for three
separate schemes, yet sees major improvements of x4 in
others. This specific page has relatively few resources with
highly specific roles. Most importantly, it features a single,
page-spanning hero image that is relatively small in byte

17wpostats.com

https://h3.edm.uhasselt.be
https://wpostats.com
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Figure 12: ByteIndex (BI) speedup and slowdown ratios for 10 prioritization schemes compared
to the baseline rr scheme. Each datapoint represents a single web page, split out by total page byte size. Higher y values are better.

size. Next to this, it includes several very large JS files
which, even though included in the HTML <head>, are
marked as “defer”. This means they will only execute once
the full page has finished downloading. As such, the hero
image is marked as an ATF resource, but the JS files are
not. As the image is discovered after the JS files, it is stuck
behind them in fifo. For firefox (and similarly s+), the
image is in the “FOLLOWERS” category (see Figure 9),
while the JS files are in “UNBLOCKED”. While the group
of the image receives about twice the bandwidth as the
JS (via the parent “LEADERS” placeholder), the image
is competing with a critical CSS in the leaders, thus being
delayed. For the speedups, the schemes either know there
is a hero image (bucket (HTML) and zeroweight), allow
the smaller hero image to make fast progress via a (semi)
Round-Robin scheme or, in the case of dfifo, accurately
assign low priority to the JS files.

The second case study is outlined in blue on Figure 12.
This web page interestingly has a few instances where the
1000k send buffer outperforms the normal ATF case. This
is because this page’s HTML file is comparatively very
large (167KB). As explained before, a large send buffer
exhibits fifo-alike behaviour. Thus, for schemes where
normally the large HTML would be competing with other
resources (e.g., pmeenan and firefox), it now gets to fill the
send buffers in its entirety, completing much faster. Where
in the previous case study Round-Robin-alike schemes
lead to smaller resources completing faster, here the large
HTML file is instead smeared out over a longer period
of time due to interleaving with the other (ATF) resources,
leading to relatively low gains for RR-alike schemes.

Finally, looking at Table 2, we can see that the schemes
using the most placeholders are partially also those
that showed sub par performance in various conditions.
Contrarily, the two best performing schemes both use
zero placeholders. With regards to overall implementation
complexity, bucket (HTML) is the only scheme we actually
implemented completely separately and this was indeed
far easier than the complex implementation of the flexible

dependency tree and its processing logic. However, later
adding new schemes such as zeroweighting or spdyrr to the
flexible setup was also relatively easy and straightforward.

5.1 QUIC’s HOL-blocking resilience

As mentioned in 4, we also try to determine the practical
impact of QUIC’s absence of HOL-blocking. We induce
the HOL-blocking by introducing jitter for semi-random
packets. In our setup, about one packet in four is delayed
until 1-3 other packets have been sent. For normal QUIC
(jitter only), the 1-3 later packets can just be processed and
passed on to H3 upon arrival. To determine how much this
matters in practice, we implement a HOL-blocking mode
in the Quicker client. In this mode, the 1-3 later packets
are instead kept in a buffer until the delayed packet arrives,
simulating normal TCP behaviour. Partial results for both
approaches can be seen in Figure 13.

In opposition to Figure 8 we can now clearly see empty
areas where no packets arrived. Packets that arrive together,
or that are HOL-blocked and then delivered to the H3
layer together, are drawn stacked vertically. Comparing
the two rr setups, we can clearly see the beneficial impact
of QUIC’s independent streams: rr jitter only has far fewer
stacked packets (maximum of two as two packets arrive
around the same time) than rr HOL-blocking, as packets
containing independent stream data can be processed
directly. In opposition, rr HOL-blocking shows various
instances of data from (critical) resources being blocked
behind packets of other (non-critical) streams, leading to
frequent stacks of four packets.

However, when expecting to see similar HOL-blocking
resilience for the fifo scheme, one is quickly disappointed
as both scenarios look almost identical. The reason
for this is simple: while QUIC removes inter-stream
HOL-blocking, data within a single stream of course still
needs to be delivered in-order. As for the fifo scheme
there is always only a single stream in progress at a time,
this stream will always HOL-block itself, undoing one of
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Figure 13: Scheduling behaviour under jitter and HOL-blocking conditions for the same test page as Figure 8. Packets that
are stacked vertically are passed from QUIC to HTTP/3 at the same time. The color legend and other semantics are the same as Figure 8.

QUIC’s main promised improvements.
Note finally that our H3 implementation does employ

dynamic header compression using the QPACK specifica-
tion18. While QPACK can in itself lead to HOL-blocking
between streams, even in the normal modus operandi (as
decoding some compressed headers can depend on the
receipt of previously encoded headers), we believe this
effect is negligible in our reported results.

6 DISCUSSION & CONCLUSION

Looking back on some of the questions the QUIC working
group had about changing H3’s prioritization system in
Section 3.3, we believe we can now answer most of them.

Firstly, it is indeed a good goal make sequential
behaviour easier to accomplish. As was shown time and
time again in our results in Section 5, more sequential
schemes generally outperform more Round-Robin-alike
schemes. As such, we encourage the working group
to adopt fifo as the default fallback behaviour beneath
draft-21’s orphan placeholder, instead of the current rr.

Secondly, we immediately need to nuance our previous
point in the case of networks with high packet loss or
jitter. There the Round-Robin-alike schemes might actually
outperform the more sequential schemes when there are
many parallel resources in transit, as they will be able
to fully benefit from QUIC’s removal of transport layer
HOL-blocking (Section 5.1). More experiments on actual
lossy networks with functioning congestion control are
needed however, to confirm this hypothesis.

Thirdly, it is perfectly possible to switch to a simplified
prioritization framework while still fully supporting the
web browsing use case and without losing performance.
Schemes such as bucket HTML and zeroweight are easy to
implement performantly, do not require placeholders and
seem to provide good baseline performance for most sites.

Yet, we have a problem with the “most” in the previous
sentence. As our results and case studies have also clearly
shown, no single scheme performs well for all types of
web pages. This is a conclusion we and related work keep
repeating: it is almost impossible to come up with a perfect
general purpose scheme. This is why some systems (e.g.,

18quicwg.org/base-drafts/draft-ietf-quic-qpack.html

(Netravali et al., 2016)) aim to automatically determine
the exact optimal scheme for an individual web page and
why efforts such as ‘Priority Hints’19 give developers
options to manually indicate resource priorities. However,
we feel both these complex automated systems and manual
intervention approaches require a lot of effort and do not
scale well for use in for example smaller companies. In
summary, we want to get better performance for individual
web pages than default heuristics can provide, but are
unwilling to pay high automation or manual labor costs.

So, Fourthly, we propose a different way forward. We
suggest that all H3 clients should ideally implement and
support several more than one prioritization scheme at the
same time. Developers can then use a low-overhead, easily
automated ‘optimal scheme finder’ test to find the scheme
that performs best for their specific page. They simply need
to load their page a few times per scheme using any com-
pliant H3 client. The optimal scheme(s) can then be stored
server-side and communicated to new clients during their
H3 connection setup. While the chosen scheduler might
be less optimal than what a more advanced system such as
Polaris could provide, it should perform better than general
purpose heuristics, treading an attractive middle ground.
Additionally, this approach is still complementary to man-
ual interventions such as priority hints. It is also possible to
incorporate any knowledge of the network connection into
the scheme-list sent to the client (e.g., some CDNs know
the type of network the user is on and can guesstimate
parameters such as loss and latency up-front). The ideal
combination with a good default client-side scheme (such
as bucket HTML) ensures that even web servers that do not
specify a preferred scheme fall back to decent behaviour.
This option would require the working group to provide
guidance as to which schemes clients should support and
how to best tweak heuristics to them, something for which
this work can be used as a first guidance.

Finally, note that if we indeed want clients to support a
wide array of schemes, this will probably only be possible
using a flexible underlying system, such as the dependency
tree setup. The high flexibility is probably well worth the
added complexity in the long run. Additionally, as most H2
implementations already support this more flexible base
framework, our proposed approach of multiple schemes per

19github.com/WICG/priority-hints

https://quicwg.org/base-drafts/draft-ietf-quic-qpack.html
https://github.com/WICG/priority-hints
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client could be recommended and implemented for existing
H2 stacks as well. Note that this proposal does limit the
options for the combination of client and server-side priori-
tization. As discussed in Section 3.3, in such a flexible sys-
tem it is difficult to infer the client’s semantics, especially
if the client is now choosing between multiple schemes.
However, we feel that this is an inherent problem of how
we communicate priority information from the client to the
server at the moment. To make proper client and server-
side combinations possible, the client would need to send
additional metadata (e.g., indicating if a resource is critical,
render/parser-blocking, can be processed incrementally, etc.
(Section 2.1)), rather than/next to building a dependency
tree directly. As this is a heavy departure from H2, it is
unlikely that such a new approach would make it into H3,
but it is worth further investigation. For now, we remark
that server-side directives can also be communicated to
the client, allowing it to apply them properly at client-side
while building the tree, as opposed to the server changing
the tree. This is the route taken by the aforementioned
Priority Hints proposal, and fits nicely with our proposal
of having the server send the client its preferred scheme.

As our general conclusion, we recommend to the QUIC
working group to remain with the existing H2 dependency
tree system and to possibly even extend it with new capabil-
ities, such as proposed in Ian Swett’s ‘strict priorities’ pro-
posal (Section 3.3). The provided flexibility is, in our opin-
ion, well worth the additional implementation complexity.

Future work can assess QUIC’s actual HOL-blocking
resilience on lossy networks, look at the dynamics of cross-
connection or multipath prioritization, discuss new forms of
PRIORITY metadata from client to server and implement a
proof-of-concept of the proposed ‘optimal scheme finder’.
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