IETF96 INFO SECURE CONTENT DELEGATION (BLIND CACHE)

WHAT IT IS WHERE WE ARE (SPECS&IMPL) DISCUSSION

SECURE CONTENT DELEGATION

DRAFT-THOMSON-HTTP-SCD

SPLIT CONTENT AND METADATA AND HOST CONTENT ANYWHERE

Responses don't include real content

Content delivered using out of band content encoding

Plus integrity checks

Plus encryption

SLOWER MAYBE

GO SLOWER AND MAYBE, LATER, GO FASTER

POSSIBLE APPLICATIONS BIG STUFF

Applicable to distribution of content with large payloads

Video

Large downloads (no need for "official" mirrors)

Maybe down to large images on web pages

DRAFT-THOMSON-HTTP-BC SELF DELEGATION

BUT

10

... LATER SHARED CACHING!

11

HOMS

Client makes requests with two indicators:

"I accept out of band content encoding"

"I have a proxy handy"

Server decides what to do about that

New signal for out of band: "using a proxy is OK"

DRAFT-RESCHKE-HTTP-OOB OOB

OOB ENCODING

Metadata from the origin (primary) server, payload from a cache (secondary resource).

Somewhat equivalent to an HTTP redirect, but

- done on the content coding layer
- preserves the HTTP origin
- Payload allows additional data, such as additional URIs and extensions

Composes with other content codings, such as for encryption.

All we needed to do was add a new mechanism for content delegation, slap on a whole bunch of crypto, and make a bunch of extra requests, plus a smattering of new signalling

... does it make things faster? Maybe, maybe not

... is it all worthwhile? Quite possibly

DRAFT-ERIKSSON-HTTP-RESOURCE-MAP WHO NEEDS SERVERS?

THIS FIRST REQUEST

IS A REAL DRAG

17

http://www.flickr.com/photos/24340456@N03/3345977842/

https://en.wikipedia.org/wiki/Orange_(fruit)#/media/File:Orange-Whole-%26-Split.jpg

REMOVE CONTENT AND...

Lots of request-handling headers, or common values

Accept-Ranges: bytes

Age: 47451

Content-Type: image/jpeg

Strict-Transport-Security: max-age=31536000

Timing-Allow-Origin: *

Via: 1.1 varnish, 1.1 varnish, 1.1 varnish, 1.1 varnish

X-Cache: cp1049 hit(5), cp2005 hit(1), cp4007 hit(2), cp4005 frontend miss(0) X-Firefox-Spdy: 3.1

X-Timestamp: 1443711458.04701

X-Trans-Id: txe34b67c455304376aeb09-0056fbd60c

access-control-allow-origin: *

access-control-expose-headers: Age, Date, Content-Length, Content-Range, X-Content-Duration, X-Cache, X-Varnish

```
x-analytics: WMF-Last-Access=31-Mar-2016; https=1
```

x-client-ip: 192.0.2.75

```
x-object-meta-sha1base36: 1d91dx0894wjewukeyxu56os5uhx4ph
```

x-varnish: 3535512625 3458104777, 3419142795 3407795571, 3968671036 3922511061, 3667758745

Remainder of metadata is small, and could change infrequently

Last-Modified, Etag, Content-Disposition, and x-object-meta-sha1base36 for these images

Without content in every response, h2 server push for large swathes of a site might be possible

Test limits of hpack for very large numbers of resources

Maybe more practical with a custom format

...work in progress

RESOURCE MAP AN OOB RESPONSE OPTIMISATION

draft-eriksson-httpresource-map

OOB RESPONSE "ON-A-STICK"

HTTP RESOURCE MAP

Resource Map

/* Info to client about resources location on secondary servers and stuff to re-compose response from origin */

RUNNING CODE AND TEST BED SOME TEST RESULTS

TESTBED

Virtual machines running our prototype
Only link RTTs are emulated

• ON KPI

 User experience (page load time, networking time)

- On network and topology
 - 2nd ary servers are closer to client
 - Between client and BC
 - Low latency
 - High bandwidth
 - Between 2nd ary server(s) and Origin(s) and Client and Origin
 - Low bandwidth
 - High latency
 - 2nd ary server and client might have same access and network characteristic towards Origin

DIFFERENT DELAYS BETWEEN ORIGIN AND UA

	COMPARED TO END 2 END TLS			
	CACHE	CLIENT	ALL CONTENT	PAGE LOAD
	PRIMED?	CONFIGUR	VIA CACHE?	TIME
		ED?		EFFICIENCY
	RTT = 200 MS			
	YES	YES	NO	+27%
	YES	NO	NO	+11%
	YES	YES	YES	+38%
	RTT = 300 MS			
273	YES	YES	NO	+30%
	YES	NO	NO	+13%
	YES	YES	YES	+45%

- In this setup, the bigger the delay between the origin and the client the higher the gain.
- Performance can be improved more if index.html is cached

RESOURCE SEGMENTATION

RESOURCE SEGMENTATION

Video on Demand

Contains multiple Random Access Points

Integrity Mechanism work on whole resource

If segmenting with independent integrity verification

Random access improved

Segmentation also useful for:

Load Spreading

Simultaneous retrieval from multiple servers

Privacy Improvements