
The Priority Header Field
Kazuho Oku

Lucas Pardue

● How priorities are driven today
● Proposal for the Priority header field

https://tools.ietf.org/html/draft-kazuho-httpbis-priority-02

Agenda

https://tools.ietf.org/html/draft-kazuho-httpbis-priority-02

How should we prioritize?

● rough consensus on the best generic ordering
○ serve render-blocking JS, CSS
○ serve HTML
○ serve images
○ serve async scripts

● ideal ordering depends on the website
○ https://lists.w3.org/Archives/Public/ietf-http-wg/

2019JulSep/0008.html

https://lists.w3.org/Archives/Public/ietf-http-wg/2019JulSep/0008.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2019JulSep/0008.html

Client-driven prioritization - Firefox (H2)

source: https://datatracker.ietf.org/meeting/105/materials/slides-105-httpbis-sessa-http3-priorities-01

https://datatracker.ietf.org/meeting/105/materials/slides-105-httpbis-sessa-http3-priorities-01

Client-driven prioritization - Chrome (H2)

source: https://datatracker.ietf.org/meeting/105/materials/slides-105-httpbis-sessa-http3-priorities-01

https://datatracker.ietf.org/meeting/105/materials/slides-105-httpbis-sessa-http3-priorities-01

Client-driven prioritization - Others (H2)

● suboptimal

Client-driven prioritization - the problem

● H2 scheme works well only when both clients and
servers implement it correctly
○ lack of (or disinterest to) support on the

server-side
○ some clients do not implement it in an optimal way

Server-driven prioritization - Fastly

● content-type-based prioritization as a backup
○ for browsers that do not provide good signal

● when the client does not use a placeholder
○ serve CSS, JS before other content-types

● the issues:
○ responses for <script async> provided too early

■ need more hints than just the content-type
○ the detection rule is fragilebroken

Server-driven prioritization - Cloudflare

● by default, similar approach and issues as Fastly
○ build internal prioritization model from client hints

● give chance to improve performance via tweaks
○ "cf-priority: 30/0"
○ opportunity to extend tweaking capability

● but clients use different weights (and dependencies)
○ difficult to tweak things in a way that provides

consistency without encountering complexity

Server-driven prioritization

● the desire to standardize a response header, that
○ helps us tweak client-provided priorities
○ or works as a backup against a client not providing

correct signal

Our proposal: Priority header field

time

ur
ge

nc
y

GET /index.html
Priority: urgency=0, progressive=?1

GET /style.css
Priority: urgency=-1

GET /image.jpg
Priority: urgency=3, progressive=?1

GET /analytics.js
Priority: urgency=4

Design principles

● create a minimal spec based on how we prioritize now
○ helps us to agree on something early
○ minimizes the risk of performance becoming

inferior to H2
○ server-sent signal to improve (or cover the lack of)

the hints from client
● provide extensibility for the future

8 semantic urgency levels
Name Urgency Examples

prerequisite -1 CSS, JS in <HEAD>

default 0 HTML, fonts

supplementary

1 (server-only)

2 hero images

3 images

4 async JS

5 (server-only)

background 6 prefetch, file download

wi
gg

le
 r

oo
m

 f
or

 c
lie

nt
s

"progressive" flag

● a boolean indicating if the client anticipates it can
provide some meaningful output as the chunks of the
response arrives
○ images => true, CSS, JS => false

Client-server collaboration

● so that server can "fine-tune" the priorities
● server-provided parameters override those provided

by the client
● example: serving async JS before images

GET /critical.js
Priority: urgency=4

GET /critical.js
Priority: urgency=4

200 OK
Priority: urgency=1

H2 terminator origin server

Why semantic urgency levels?

● without meanings attached to each urgency level,
servers cannot tell the urgency level to which the
response should be promoted / demoted

Why use a header field, instead of a frame?

● the signal has to be carried by a header between the H2
terminator and the origin
○ because some hops between the two might be H1
○ server-provided signal should be cacheable

● means that the terminator has to have the code that
handles the priority "response" header

● then, why not always use a header?
○ bonus: can be set by Service Worker, etc.

Reprioritization

● needs to be done in a HTTP-version-specific manner
● we could transmit a frame that contains the value of

the priority header field

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---+
|R| Stream ID (31) |
+---+
| Priority Field Value (*) ...
+---+

Acknowledgements

● header-based prioritization predates to
http://tools.ietf.org/agenda/83/slides/slides-83-http
bis-5.pdf

● sending the tuple of urgency and concurrency was first
proposed in
https://github.com/pmeenan/http3-prioritization-prop
osal

http://tools.ietf.org/agenda/83/slides/slides-83-httpbis-5.pdf
http://tools.ietf.org/agenda/83/slides/slides-83-httpbis-5.pdf
https://github.com/pmeenan/http3-prioritization-proposal
https://github.com/pmeenan/http3-prioritization-proposal

Proposal: summary

● 8 semantic urgency levels
● "progressive" parameter
● client-server collaboration
● room for future extension
● use header fields throughout

