W3C XML Schema: Wildcards, Identity Constraints, and Updates

Prepared for W3C XML Schema WG by

Murali Mani

Aug 28, 2003

In this short note, we will try to examine W3C XML Schema, especially its wildcard and identity constraints, with respect to updates that may be performed on XML documents.

Keywords: Local tree grammar, single type tree grammar, restrained competition tree grammar.

Update assumption

We assume that updates can be performed as such: Any element or attribute (or a tree) that has not been validated may be inserted into a document in any position. We will focus only on insert; deletion also has similar issues. We will illustrate that W3C XML Schema might not perform as “desired” when we perform such updates.

Desirable characteristics of update

Our scenario assumes that we have a valid XML document, and an info-set that includes the information from the XML Schema validation process. In other words, we have the type information for the different elements, and attributes.

Our desirable characteristics for update include:

(a) The type information for an existing element or attribute in the document should remain the same.

(b) When we insert a new element, no additional constraints should be added on to existing elements in the document. This feature, I will say is important for various reasons, such as reasonable expectation, reasonable mathematical property, and also error messages for updates. I will claim it is quite important for database applications.

I will explain a bit more why I believe this feature is required by considering how object systems work: When an object is created, we assign a type to the object; the type of the object is not changed afterwards. We might expect the same w.r.to XML elements.

Identity Constraints in W3C XML Schema

W3C XML Schema allows an element declaration as such

Book (book (Author1, Author2*)

Author1 (author (pcdata), Author2 (author (pcdata)

Key for Author2 is pcdata

This is written in W3C XML Schema notation as:

<element name=`book’>

 <complexType>

 <sequence>

 <element name=`author’ type=`xs:string’/>

 <element name=`author’ type=`xs:string’ minOccurs=`0’ maxOccurs=`unbounded’/>

 <key name=`aKey’>

 <selector xpath=`.’/>

 <field xpath=`.’/>

 </key>

 </sequence>

 </complexType>

</element>

Consider the following XML document

<book>

 <author>Ullman</author>

 <author>Ullman</author>

</book>

The document is valid and the types have been assigned.

Suppose we want to now insert

<author>Hopcroft</author> into the document as the first child of book.

In short the new document is

<book>

 <author>Hopcroft</author>

 <author>Ullman</author>

 <author>Ullman</author>

</book>

Now this insert is not valid, and the error is not in the inserted element. The error is that we try to impose an additional constraint on an existing element, and it violates our requirement.

The remedy is: The key specification in W3C XML Schema is not very correct. The way to think of it is: If there are two element declarations with exactly the same name, and type, but with different identity constraint declarations, then they are actually two different types. This is violation of single type tree grammar. Sticking to single type tree grammar will ensure that our requirement is met.

Wildcards in W3C XML Schema

W3C XML Schema allows an element declaration such as

Book (book (any, Author1?)

This can be written in W3C XML Schema syntax as

<element name=`book’>

 <complexType>

 <any processContents=`X’/>

 <element name=`author’ type=`xs:string’ minOccurs=`0’ maxOccurs=`1’/>

 </complexType>

</element>

X can take values strict, lax, or skip. Let us see what happens when X is skip or lax.

Consider the document

<book>

 <author name=`Ullman’/>

</book>

This document is valid against the given schema. Now let us consider inserting an element <author>Hopcroft</author> as the first child of book. This insert is again not valid, because we are imposing an additional constraint on an element already in the document.

The remedy is: Any value for “processContents” for wildcards other than strict right now causes this problem. The reason is that W3C XML Schema’s treatment of wildcards makes it not stick to single type tree grammar. One way of enforcing single type tree grammar is: processContents can take any of 3 values. If it takes value lax, then any element whose tag can be a child as specified in non-wild card portion, must be valid against that element declaration. If it takes value skip, then any element that is matched against the wildcard, should have a tag that cannot occur as a child.

Conclusion
We believe that updates as I mentioned will be performed for DB applications. We also believe that the requirements mentioned will be expected behavior. The required behavior will be satisfied by local and single type tree grammars, whereas it will not be satisfied by restrained competition tree grammars.

There are two ways of handling this. One way is that we come up with application specific restrictions. However, I believe that the current flexibility is not necessary for W3C XML Schema. We therefore recommend W3C XML Schema satisfy the requirements, by possibly making suggestions suggested.

