Modeling XML Schema

Modeling Enumerations in XML

Enumerated types are useful programming features of strongly typed languages. An enumerated type is a type, which includes a list of possible values for variables of that type (example day-of-the-week has a list of (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)). XML supports enumerations.  It is defined as follows: The enumeration facet limits a simple type to a set of distinct values
.  The XML structure is as follows:

<simpleType name=”<EnumerationName>”>

    <restriction base=”<Datatype>”>

             <enumeration value="<Datatype Value”>"/>

     </restriction>

</simpleType>

Enumerations are not a feature of the Java language, but the concept can still be modeled. Modeling Enumerations in OSS through Java™ interfaces involves defining variables that are static and final. An example of how enumerations are being used is below:

public interface OrderState extends Serializable {

   static final String OPEN                        = "open";

   static final String NOT_RUNNING        = "open.not_running";

   static final String NOT_STARTED        = "open.not_running.not_started";

   static final String SUSPENDED            = "open.not_running.suspened";

   static final String RUNNING                 = "open.running";

   static final String CLOSED                   = "closed";

   static final String COMPLETED           = "closed.completed";

   static final String ABORTED                = "closed.aborted";

   static final String BYCLIENT                = "closed.aborted.byclient";

   static final String BYSERVER              = "closed.aborted.byserver";

}

OrderState would therefore be referenced in a Java program as:

If (orderValue.getState().equals(OrderState.RUNNING))

The mapping to XML is addressed by utilizing the restriction feature in XML. The restriction feature allows for the definition of type that is comprised of a subset of another type. The result is that a type (OrderState) is defined that is comprised of a subset of strings. The subset of strings is represented with the use of another XML feature called enumerations. The enumeration facet limits a simple type to a set of distinct values.  The above example would therefore map to the following XML syntax:

<simpleType name="OrderState">

   <restriction base="string">

     <enumeration value="open"/>

     <enumeration value="open.not_running"/>

     <enumeration value="open.not_running.not_started"/>

     <enumeration value="open.not_running.suspened"/>

     <enumeration value="open.running”/>

     <enumeration value="closed"/>

     <enumeration value="closed.completed"/>

     <enumeration value="closed.aborted"/>

     <enumeration value="closed.aborted.byclient"/>

     <enumeration value="closed.aborted.byserver"/>

   </restriction>

</simpleType>

This maps well into XML, however, when using enumerated types such as OrderState, there will be a desire to extend the list of values (i.e. add a state such as waiting_for_authorization). Simple types are the only types that can be restricted and are perfect for enumerations. However, unlike complexTypes, simpleTypes can not be extended to add these additional values.  The interface must be extensible to allow for extensions of the enumeration.  The use of substitution groups would be a solution to this problem.  Substitution groups allow elements to be substituted for other elements. For example, if another state is to be added to OrderState, then in the derived schema, a new simpleType would be defined as NewOrderState. NewOrderState would include all the base states from OrderState, plus any additional states. In order to use substitution groups, the elements in the base schema (which are declared of type OrderState for example) must be declared globally. To continue our example the base schema would be as follows:

In the Base schema we declare a global element State

<element name="State" type="sa:OrderState"/>

We would then reference OrderState in the complexTypes:

<complexType name="OrderValue" abstract="true">

  <sequence>

    <element ref="sa:State" nullable="true" minOccurs="0"/>

    <element name="OrderKey" type="sa:OrderKey" nullable="true" minOccurs="0"/>

    <element name="ServiceValue" type="sa:ServiceValue" nullable="true" minOccurs="0"/>

    <element name="ClientId" type="string" nullable="true" minOccurs="0"/>

    <element ref="sa:Priority" nullable="true" minOccurs="0"/>

    <element name="Description" type="string" nullable="true" minOccurs="0"/>

  </sequence>

</complexType>

Now in the derived schema we could define a new simpleType called NewOrderState.

<simpleType name="NewOrderState">

   <restriction base="string">

    <enumeration value="open"/>

     <enumeration value="open.not_running"/>

     <enumeration value="open.not_running.not_started"/>

     <enumeration value="open.not_running.suspened"/>

     <enumeration value="open.running”/>

     <enumeration value="closed"/>

     <enumeration value="closed.completed"/>

     <enumeration value="closed.aborted"/>

     <enumeration value="closed.aborted.byclient"/>

     <enumeration value="closed.aborted.byserver"/>

     <enumeration value="waiting_for_authorization"/>

   </restriction>

</simpleType>

To allow the replacement of OrderState (in the same position) with NewOrderState, the following line is added.  

<element name="NewState" type="sa:NewOrderState" substitutionGroup="sa:State"/>

In the XML instance document, you can now either reference the original state element or the new substituted NewState.

<sa:OrderValue xsi:type="Activate">

   <NewState>waiting_for_authorization </NewState>

   <sa:ServiceValue xsi:type="DSL">

      <Bandwidth>1000000</Bandwidth>

   </sa:ServiceValue>

   <sa:ClientId>1</sa:ClientId>

   <sa:Priority>4</sa:Priority>

   <sa:Description>New Customer</sa:Description>

   <AdditionalAttribute>Test</AdditionalAttribute>

</sa:OrderValue>
























































































































































































































































































