
XML Parsing: A Threat to Database Performance
Matthias Nicola

IBM Silicon Valley Lab
555 Bailey Avenue

San Jose, CA 95123, USA
mnicola@us.ibm.com

Jasmi John
IBM Toronto Lab
8200 Warden Ave

Markham, ON L6G 1C7, Canada
jasmij@ca.ibm.com

ABSTRACT
XML parsing is generally known to have poor performance char-
acteristics relative to transactional database processing. Yet, its
potentially fatal impact on overall database performance is being
underestimated. We report real-word database applications where
XML parsing performance is a key obstacle to a successful XML
deployment. There is a considerable share of XML database appli-
cations which are prone to fail at an early and simple road block:
XML parsing. We analyze XML parsing performance and quan-
tify the extra overhead of DTD and schema validation. Compari-
son with relational database performance shows that the desired
response times and transaction rates over XML data can not be
achieved without major improvements in XML parsing technol-
ogy. Thus, we identify research topics which are most promising
for XML parser performance in database systems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems–transaction processing.

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
XML, Parser, Database, Performance, SAX, DOM, Validation.

1. INTRODUCTION
XML has become much more than just a data format for informa-
tion exchange. Enterprises are keeping large amounts of business
critical data permanently in XML format. Data centric as well as
document and content centric businesses in virtually every indus-
try are embracing XML for their data management and B2B needs
�[8]. E.g. the world’s leading financial companies have been work-
ing on over a dozen major XML vocabularies to standardize their
industry’s data processing �[9].

All major relational database vendors offer XML capabilities in
their products and numerous “native” XML database systems have
emerged �[2]. However, neither the XML-enabled relational sys-
tems nor the native XML databases provide the same high per-
formance characteristics as relational data processing. This is par-

tially because processing of XML requires parsing of XML
documents which is very CPU intensive.

The performance of many XML operations is often determined by
the performance of the XML parser. Examples are converting
XML into a relational format, evaluating XPath expressions, or
XSLT processing. Our experiences from working with companies,
which have introduced or are prototyping XML database applica-
tions, show that XML parsing recurs as a major bottleneck and is
often the single biggest performance concern seriously threatening
the overall success of the project. This observation is general to
using XML with databases, not particular to any one system.

2. XML PARSING IN DATABASES
There are two models of XML parsing, DOM and SAX. DOM
parsers construct the “Document Object Model” in main memory
which requires a considerable amount of CPU time and memory
(2 to 5 times the size of the XML document, hence unsuitable for
large documents). Lazy DOM parsers materialize only those parts
of the document tree which are actually accessed, but if most the
document is accessed lazy DOM is slower than regular DOM.
SAX parsers report parsing events (e.g. start and end of elements)
to the application through callbacks. They deliver an event stream
which the application processes in event handlers. The memory
consumption does not grow with the size of the document. In gen-
eral, applications requiring random access to the document nodes
use a DOM parser while for serial access a SAX parser is better.

XML parsing allows for optional validation of an XML document
against a DTD or XML schema. Schema validation not only
checks a document’s compliance with the schema but also deter-
mines type information for every node of the document (aka type
annotation). This is a critical observation because database sys-
tems and the Xquery language are sensitive to data types. Hence
most processing of documents in a data management context not
only requires parsing but also “validation”.

Depending on an XML database system’s implementation, there
are various operations which require XML parsing and possibly
validation. The first time a document gets parsed is usually upon
insert into the database. At this point, parsing can only be avoided
if the XML document is blindly dumped into the database storage
(e.g. varchar or CLOB), without indexing or extracting informa-
tion about it, severely restricting search capabilities. The initial
parse of an XML document may also include validation, subject to
the application’s requirements.

Updates to an XML document in a database may require reparsing
the entire document with or without validation, revalidation of the
entire document without parsing, partial (incremental) validation,
or none of the above. For example, if XML is mapped to a rela-
tional schema (“shredded”) then an update to the XML view is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’03, November 3–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011…$5.00

translated into SQL that are applied to the relational system with-
out need for XML parsing. The problem then is validation.

Kim et al. �[6] distinguish partial and full validation as well as
deferred and immediate validation. “Deferred” means that valida-
tion is performed after updating the document, and the update is
rolled backed if validation fails. This is an optimistic approach.
“Immediate” means that validation is performed before executing
the update which is then processed only if valid. Kim et al. find
the cost of full validation grows super-linearly with document size
while partial validation is constant [6].

If XML is shredded into a relational schema, read operations, such
as XQueries or XPath expressions, are translated into SQL and do
not require XML parsing. Other implementations, e.g. main mem-
ory XPath processors, read and parse plain XML documents, often
using DOM. For these, the parsing overhead is often an order of
magnitude more expensive than XPath evaluation itself [7].

3. PARSER-BOUND XML APPLICATIONS
In this section we report real-word XML database usage situations
where parsing performance is a key obstacle. These are experi-
ences from dealing with companies who are currently using XML
in their databases and applications, or are intending to do so in the
near future. Some of them use database systems from multiple
vendors, so the experiences described below apply to using XML
and databases in general and not to any particular system.

3.1 A Life Science Company
This life science company receives and produces XML documents
between 10MB and 500MB in size regularly. These are currently
held in XML files in the file system. The company looks for an
ad-hoc way to import these documents into a relational database
but concludes that none of the major database systems is currently
able to digest such large documents with acceptable elapsed time.
The root cause is the CPU consumption of XML parsing.

This is a common case. Sometimes large XML documents can be
split into smaller pieces so that a DOM-based solution can be
used. However, splitting XML documents requires some sort of
parsing in itself and can usually only be done if the XML consists
of repeating blocks which are semantically independent. In simple
cases, file system tools such as “csplit” are sufficient. We know of
life science and other applications where this has been used. XML
cutting tools for more complex and automated splitting of XML
usually require SAX parsing or a cheaper version thereof.

3.2 XML Loader in IBM Red Brick®
Due to near 24x7 operations, high speed bulk loading is one of the
key requirements that we find in data warehousing. Version 6.2 of
IBM Red Brick Data Warehouse® XML supports XML load and
export. For XML load, one or more typically very large files are
parsed and mapped to relational rows. The XML4C SAX parser
was chosen due to the large document size. The SAX parser
streams the parsing events to the “rowmapper” component, which
builds relational input rows based on the mapping specification
provided in the load control file. These relational rows are then
pipelined from the rowmapper into the regular load logic.

On a 16-CPU SMP machine we loaded a single large flat file in
delimited field format (> 10 million rows) as well as the same data
in XML format (~3GB in 8 files). The XML load was ~26 times

slower than the equivalent flat file load (see Fig. 1). Over 99% of
this overhead was XML parsing. This did not include validation.
If indexes are built during the load, it slows down the flat file load
but not the XML load. Since parsing is the bottleneck, index
building can easily be done in the background.

XML Bulk Load: Elapsed time in Minutes

0

10

20

30

40

50

60

70

80

No Index with Indexes with Indexes, 8xParallel
XML Parsing

Delimited Format

XML

x 26 x 13

x 1.6

Fig. 1: Loading XML with serial vs. parallel XML parsing

Setting the max_xml_tasks parameter to 8 allows Red Brick to
parse up to 8 XML input files in parallel. The parallel rowmapper
processes write to a staging area, from which the relational part of
the loader can consume its input decreasing the delay from XML
parsing. This reduces the total XML bulk load time significantly.
This emphasizes that XML parsing can be highly parallelized if
the XML data comes in multiple documents. Still, this parallelism
only helps the overall throughput of the XML load but not the
parsing time of individual XML documents. Thus, database appli-
cations that require very short response times on a single docu-
ment do not benefit from parallel parsing in this manner.

3.3 A Large Bank
This bank’s OLTP system serves ~20,000 users and executes on
average 17 million transactions a day. They are investigating a
novel application which involves the exchange of XML docu-
ments between the database and the application layer. Each docu-
ment needs to be parsed before insertion. Their tests with SAX
parsers left them far from the OLTP performance they require.
Therefore, they implemented their own special purpose parser,
optimized towards their particular type of XML. Still, XML pars-
ing time is more than 1 second per transaction which is ~80% of
the total response time. The requirement is 100ms or less.

The same bank runs, like most other banks, a variety of batch jobs
every night. Their current estimates indicate that any involvement
of XML data would make some (sequential) batch jobs exceed
their allotted time slot. Other batch jobs which can run massively
parallelized may benefit from parallel XML parsing similar to the
Red Brick’s XML bulk load described above.

3.4 A Different Banking System
In this system, the intended usage of XML includes several thou-
sand distinct XML schemas with potentially millions of XML
documents per schema. Most of the XML documents tend to be
very small (10K or less) but a single transaction may touch 30 or
more XML documents for read, insert and update. Thus, given the
demand for extremely short response times, the overhead of XML
parsing and schema validation is a major performance concern.

3.5 A Securities Transaction Processing Firm
This company is one of the world’s largest providers of IT systems
for processing brokerage transactions and securities data. Their
system is used for handling transactions for various financial in-
struments, such as equities and funds, as well as for managing
customer and firm accounts. One part of their system will receive
multiple streams (10 or more) of securities data. These streams
may or may not be in XML format but need to be converted into a
common XML format and stored and queried in a database. The
goal is to support up to 50,000 XML transactions per minute.
Initial tests have shown that XML parsing is a main hurdle for
achieving the desired performance on the target hardware.

4. XML PARSER PERFORMANCE
Given the experiences above, we analyze the performance of XML
SAX parsing. Parser performance depends on document character-
istics such as tag-to-data ratio, heavy vs. light use of attributes,
etc., but we do not strive to quantify these dependencies here. Our
goal is to relate the cost of IBM’s XML4C SAX parser �[3] to rela-
tional database performance. We use XML documents which are
representative of several real-world XML applications, including
financial data such as FPML �[9].

4.1 Path Length Analysis
We count the number of CPU instructions required to parse differ-
ent XML documents between 2K and 16K with the XML4C SAX
parser (written in C++, AIX 4.3.3). The instruction count is a met-
ric of the expected CPU time and allows us to assess the perform-
ance of individual parser components. We parsed each document
twice with a single parser instantiation, and collected the instruc-
tion count of only the second parse. This excludes the consider-
able parser instantiation and start-up cost. E.g. parser instantiation
can take 5 times as long as parsing a 100k document. A subset of
the results is shown in Table 1.

Table 1. Instruction count of XML4C (SAX)

Breaking down the instruction counts by subroutines revealed the
top 3 most expensive parser components. (1) Memory manage-
ment, (2) transcoding the input document encoding to UTF-16,
(3) attribute handling, especially attribute normalization. The key
issues with memory management are frequent allocation and deal-
location of objects, frequent copies of input data in memory, and
in-memory copies for transcoding. (see section �5). For 7 docu-
ments between 1k and 95k we also calculated the number of in-
structions per kilobyte of XML data parsed (Table 2).

Table 2. Instruction count per KB of XML

 Min Max Avg
XML4c5.1 110,898 231,283 174,364

So, SAX parsing ranges between 460,000 and 3.5 million instruc-
tions for documents of 16k and less, and the average parsing cost
per KB for documents <100k is approximately 175,000 instruc-
tions. For comparison, inserting a row into a relational table re-
quires about 30,000 to 200,000 instructions, depending on the row
length, data types and other factors. Also, typical OLTP transac-

tions in relational databases range from several hundred thousand
to several million instructions, depending on their complexity.

Comparing these numbers shows that XML parsing can easily
double or triple the instruction count of a database transaction. For
businesses like the financial companies described in sections �3.3
through �3.5, this is very disconcerting. Imagine the application in
section �3.4 parsing 30 documents of only 2k within one transac-
tion. This increases the transaction cost by 13.8 million instruc-
tions, the equivalent of about 30 to 40 simple OLTP transactions.
This cost is even higher with DTD or schema validation.

4.2 DTD and XML Schema Validation Cost
We quantify the validation cost with simple timing tests, parsing 3
XML documents of 10KB, 100KB, and 1MB (using XML4C
SAX). Each document was parsed with and without DTD and
schema validation 1,500 times, without grammar caching. Al-
though validation cost depends on the schema complexity, we
only exemplify the dramatic overhead of XML validation against
moderately complex DTD and schema definitions (see Table 3).

Table 3. Parsing time with & without validation (1,500 times).
 10KB 100KB 1MB
Without validation 11.19 sec 41.91 sec 410.69 sec
With DTD validat. 22.64 sec 59.23 sec 494.97 sec

Validat. Overhead 102.32% 41.33% 20.52%
With XML schema 50.73 sec 107.6 sec 784.17 sec

Valid. Overhead 353.35% 156.84% 90.94%

The validation overhead relative to the total parsing time depends
on the size of the document. It is relatively higher for small docu-
ments due to the fix cost to read and parse the DTD or schema
itself. Some parsers, including XML4C, allow to pre-parse and
cache DTD or schema grammars for subsequent validations. The
performance gain is big if a large number of small documents is
validated against the same schema or DTD. But, schema caching
is less effective for applications that deal with a large number of
different schemas, such as the banking system in section �3.4.

Figure 3 shows a breakdown of the total parsing time and empha-
sizes that schema validation can easily double, triple or quadruple
the parsing cost. In section �4.1 we estimated that SAX parsing
without validation increases the CPU cost of a database transac-
tion by a factor of 2x to 3x. Adding schema validation raises this
factor to a range of 4x to 12x. This is a serious threat to database
performance since not only transaction response times but also
throughput is heavily dependent on the CPU consumption.

10K
100K

1M

0%

20%

40%

60%

80%

100%

P
er

ce
nt

 C
P

U
 T

im
e

Schema Validation Plain XML Parsing

XML Document Size

��� ��� ���

Fig. 2: Breakdown of total parsing time

 Doc1: 2K Doc2: 4K Doc3: 10K Doc4: 16K
XML4c5.0 515,705 778,738 1,269,157 3,816,107
XML4c5.1 462,566 660,927 1,108,980 3,512,110

5. FURTHER WORK
Given the severe conflict between XML parsing/validation cost
and transaction processing performance requirements, significant
progress in research and development is needed. In this section we
identify current and further research topics for improving XML
parsing in general and specifically in database systems.

Tighter integration of database system and XML parser. Fre-
quently, SAX parsers make in-memory copies of data fragments
and pass them to the event handlers. Often, the event handlers
then copy the data yet another time, i.e. into the database’s own
data structures and memory management. If the database had di-
rect access to the parser’s buffers, or vice versa, a lot of memory
copies would be avoided. Preliminary tests with Xerces and an
XPath processor as “the database” �[5] have shown that tighter
memory integration may yield a performance gain of ~3x.

Separate ‘validation’ from ‘type annotation’. Type annotation
of XML document nodes happens during schema validation. We
suggest to let applications choose whether validation, type annota-
tion, or both should be performed. For example, if the database
receives XML from a trusted source then it may not need to check
compliance with a schema but may still want to obtain type infor-
mation for optimal Xquery support.

Better support for incremental parsing/validation. Considering
the cost of validation, reparsing or revalidating a full document as
part of a small update is often unacceptable overhead. More work
is needed to investigate efficient mechanisms for partial and in-
cremental validation of updates �[6].

Provide more flexible transcoding options. Related to �[5] and
�[1], preliminary tests with an XPath processor over Xerces-SAX
achieved a 2x speedup by feeding UTF-16 to the parser and by-
passing the transcoding routines. We suggest research into optimi-
zation of transcoding algorithms and encoding specific parser
libraries that avoid transcoding altogether. E.g. a parser that is
entirely UTF-8 based can have significant performance benefits.

Research into parsing with intra-document parallelism. Life
sciences and content management require database support for
very large XML documents (MBs to GBs per doc). Work is re-
quired to learn how best to fork & merge concurrent parsing tasks.

Research and API development for pull parsers. The idea of
XML pull parsing, as opposed to SAX, is to let the application
request (“pull”) the next event instead of being forced to consume
a stream of events. E.g. at a specific node the application may
decide to move to the next sibling, allowing the parser to use
whatever highly-optimized code it has to quickly get there and
“skip” the current node’s sub tree. The potential performance
gains are remarkable but a standard API is still in development.

Optimized parser design and deployment for repeated parsing.
Databases often have to parse many XML documents at a time on
an ongoing basis, e.g. bulk inserts, or financial OLTP workloads.
Techniques like grammar caching and maintaining a pool of live
parser instances improve the performance of repeated parsing.
More work is required to further optimize for repeated parsing.

Optimized XML parsing primitives for specific CPU architec-
tures. Fundamental but costly parsing routines could be optimized
for each target CPU. For example, transcoding or searching for
special characters could likely be sped up. Also, hardware assisted
parsing engines should be an active research topic.

Optimize parsing across database and application server. Often
the database receives XML documents from an application server.

If the application server parses and perhaps validates the XML
documents, then these documents should be given to the database
in a parsed format, including the Post-Schema-Validation Infoset
(PSVI). Optimized parsing for the database and application server
as a whole is required to ensure high end-to-end performance.

Binary XML. Binary XML formats encode parsed XML docu-
ments to reduce the transmission and storage size. Bin-XML en-
codes the PSVI including all type information �[1]. The encoded
documents can be accessed through decoders with DOM and SAX
APIs up to 60 times faster than a SAX parser with non-encoded
XML. There is great potential for binary XML to reduce storage
and processing costs, but the integration with databases operations
like updates or XQuery evaluation needs further work.

6. SUMMARY
We reported real-world experiences of using XML with databases
where XML parsing was the main performance bottleneck. This
motivated an analysis of the cost of SAX parsing and DTD &
XML schema validation. We find that parsing even small XML
documents without validation can increase the CPU cost of a rela-
tional database transaction by 2 to 3 times or more. Parsing with
schema validation and without grammar caching can increase
transaction cost by 10 times or more. This is a serious problem for
high performance transaction oriented database applications which
intend to use XML. Therefore we identified and encouraged spe-
cific research topics for XML parsing in databases.

7. REFERENCES
[1] Barton, C., Charles, P., Goyal, D., Raghavachari, M., Josi-

fovski, V., and Fontoura, M.,: Streaming XPath Processing
with Forward and Backward Axes. ICDE 2003

[2] Bourret, R.: XML Database Products.
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[3] Expway: Bin-XMLTM for encoding XML documents.
http://www.expway.com/graph/Bin-
XMLTechnical%20White%20Paper-jan03.pdf , 2003

[4] IBM XML for C++,
http://www.alphaworks.ibm.com/tech/xml4c

[5] Josifovski, V., Fontoura, M., and Barta, A.: Enabling rela-
tional engines to query XML streams. IBM Internal publ.,
2002

[6] Kim, S., Lee, M., and Lee, K.: Immediate and Partial Vali-
dation Mechanism for the Conflict Resolution of Update Op-
erations in XML Databases. Advances in Web-Age Informa-
tion Management (WAIM), 2002: 387-396

[7] Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J.,
Shekita, E. J., and Zhang C.: Storing and querying ordered
XML using a relational database system. SIGMOD Confer-
ence 2002: 204-215

[8] XML Applications and Initiatives,
http://xml.coverpages.org/xmlApplications.htm

[9] XML on Wall Street, http://lighthouse-partners.com/xml

