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”Let it be assumed that the states by virtue of which the soul pos-
sesses truth by way of affirmation or denial are five in number, i.e.
art, scientific knowledge, practical wisdom, philosophic wisdom, in-
tuitive reason; we do not include judgement and opinion because in
these we may be mistaken. “ [Ari, idea 3 paragraph 1]

1 Introduction

The aim of this work is to develop arguments for the decision on the set of
primitives, which should be available for the lower conformance layer (OW LZit¢)
of the proposed Web Ontology language (OWL).

Several arguments were brought forward for having such a lower conformance
layer. First, it is expected that a simpler language is easier to learn. Second, it
is expected that a reduced set of language features is easier to implement.

Several proposals for the set of primitives in the language were made. How-
ever the motivation given for a particular set of primitives have been rather
vague. Since OWL is a novel language we cannot draw on broad practice and
motivate a particular set of primitives by common usage.

It is also difficult to evaluate how much effort has to be invested to learn a
particular set of primitives. Usually learning is a highly individual process and
depends on many other factors such as the previous knowledge of an individual.
However, we may assume that the effort is proportional to number of language
primitives. This argument would speak for a very small number of primitives.
However, the language should be sufficiently more expressive than RDF Schema,
whose lack of expressivity gave reason to develop OW L initially.

We therefore argue that the only sensible argument for the set of primitives
is the effort required to implement the language. Additionally many vendors



may intend to reuse existing tools for data (and knowledge) representation to
lower the cost of an implementation.

This document therefore investigates how a subset of OWL could be imple-
mented on top of available rule-based systems in particular recursion-enabled
relational databases. We take an incremental approach and start with a lan-
guage whose primitives correspond to the primitives available in RDF Schema
for domain modelling. This language OW L& is then incrementally extended
with further features. We will have a look at the resulting interaction of the
particular set of primitives.

This proposal is structured as follows. First, we introduce the basic for-
malism and notation employed for describing rule bases. Then we state the
fundamental assumptions which direct our construction of OWL Lite. In the
next section, the basic representation of RDF data in rule-based systems is pre-
sented. Building on that we start with an incremental construction of OW LE#e,
We conclude by recapitulating the feature set that can be safely implemented
on recursion-enabled databases and in logic programming systems.

2 Basics

The basics required for the further understanding of this document are briefly
recapitulated in this section for those readers not fluent in database theory.

2.1 SQL and relational algebra

SQL has emerged as the preeminent query language for commercial relational
DBMS’s. Since there are numerous dialects of SQL we restrict our attention to
the subset of the query language that can be formally specified. Early works
in database theory proposed several relational algebrae and calculi for this pur-
pose. Codd’s seminal paper ”Relational completeness of database sublanguages“
proofed the equivalence of these approaches and coined the term of relational
completeness. SQL-92 is relationally complete in the sense that it can express
all queries expressive in the relational calculus and algebra.

2.2 Datalog

Another, alternative formal specification for queries is datalog programs which
have close relations to logic programming environments. This offers the benefit
that it is immediately clear how the results developed in this document can be
applied in logic programming environments such as Prolog. The main difference
between logic-programming (LP) environments and datalog is, that LP permits
function symbols, and Datalog does not '. Datalog additionally requires that
variables available in rule heads must appear in rule bodies.

Logic Programs have a direct translation to predicate logic. All variables
are universally qualified by default.

Lwith the exception of constants, which are functions of arity 0



2.3 Datalog in a nutshell

Our presentation follows the lecture slides of [Cho01].2 The basic elements of
the language are predicates and terms. Terms can be either constant symbols
such as names (so-called atomic values) and numbers (integer, float ...) or
logical variable symbols. Usually variables and constants are distinguished by
syntactic convention. In the following all variables will start with an upper-case
letter. Each logical variable is a placeholder for another value, which can be
instantied by substituting it by another term. However, it cannot be assigned
directly.

Datalog programs are composed of goals, queries and implications (also
called clauses). Goals are syntactically represented by a predicate:

P(Tla 7Tn)

This states that predicate P is true of terms 77 and all other T;. Queries are
syntactically represented as a set of goals:

E17 E27 ey En

This retrieves all ;. Clauses are syntactically written like implications in Pro-
log:
EO : —El, ,En

This means, that Fy must be true, if all E; are also true. Ej is also called the
head of the clause, while the remaining E; are called the body of the clause. The
body of the clause may be empty. Then the clause is called a fact. The clause
is also referred to as a rule if the body is nonempty. We speak of recursive rules
if a predicate appears in both the head and the body of a rule.

2.4 Variants of Datalog

In research several variants of Datalog have been proposed. For example, a
variant without recursion and extended with negation is nr — datalog™, which
is equivalent to calculus and algebra. nr — datalog™ programs can easily be
simulated using SQL-92 (see [Ull] for a formal proof). Intuitively, this result
follows from the following substitutions:

e Each Datalog-rule can be simulated using the select-from-where construct
of SQL.

e Multiple rules defining the same predicate can be simulated using union.

e Negation in rule bodies can be simulated using not in

2 A more detailed description of Datalog is also available in an online book [Vor97], however
it uses a different terminology.



The latest standard of SQL, SQL:1999, also allows recursive queries. Here,
use of negation is limited, since the use negation is restricted to stratified
databases|[KHA89]. Informally this means that, if the definition of a predicate P
depends on knowing the complement of a predicate @), then the definition of @
must not depend on P. In particular, P cannot depend on its own complement.
Hence, there is no recursion through negation, so the number of applications of
negation is bounded. SQL:1999 can simulate stratifiable Datalog programs.

3 Assumptions

3.1 Let’s stay monotonic

The semantics of negation in stratified Datalog is not compatible with the se-
mantics of negation in Description Logics. In stratified Datalog negation builds
on the close world assumption. This is centered on a boolean logic, where only
the states true and false exist.

OWL relies on the open world assumption, here the additional state of un-
known is available. Therefore negation cannot be computed using the com-
plement (so-called negation as failure) as it is done in stratified Datalog. Al-
ternative, more compatible semantics for negation in Datalog exist, namely
well-founded semantics, that also relies on such a three-valued logics. However,
this is not semantics available in SQL:1999 compliant databases. Well-founded
semantics only regards the minimal model when computing negation, whereas
Description Logics regard all possible models. Hence, they are also incompati-
ble.

Therefore, SQL:1999 capable databases cannot reason over any OWL primi-
tives which involve the computation of complements. As a consequence we rely
on Datalog without negation for the construction of OW L¥*%¢, Hence, only
monotonic reasoning is used for the OW L¥%¢ conformance layer.

3.2 Uniqueness of Names

Datalog takes the unique names assumption. This is not done in OWL. Without
further steps the entailments provided by OWL would therefore be different. We
take further steps and rely on the fact that we can only get what is entailed via
queries. The steps involve the generation of implicit facts via rules and offering
three binary predicates equivalentTo, subClassOf and subPropertyOf to entail
equivalence and the subsumptions.

3.3 Implementation Process

We employ a very simple assumption, namely that we implement the semantics
of OW LY#¢ by compilation. Hence, the syntax is parsed and an appropriate
(rule-based) knowledge base is compiled. In this compilation process several
rule patterns are instantiated. A set of rule pattern captures the semantics of
the individual OWL statetements. For example, each subClassOf statement is



translated to a rule that captures the semantics of the particular subClassOf
statement.

4 Representation of RDF in rule-based systems

OWL ontologies are syntactically represented in RDF. This would allow a very
simple form of representation, which maps each RDF statement to one logical
ternary predicate statement(subject, predicate, object). Subject, predicate are
RDF resources and the object is either a resource or a literal. This a vertical
form of representation which is often chosen for representing sparse data with a
large number of attributes such as found in many e-Commerce or digital library
scenarios [ASX01].

The usage of one single ternary relation for storage of directed labeled-graphs
such as RDF seems to be the most simple solution. On the other hand each
resource-value pair could be stored in a separate binary relation on a per prop-
erty basis. The evaluation of [ASX01] suggests that this representation also
slightly outperforms the naive ternary representation.

Representing data

RDF statements are written as binary predicates. Here the predicate of the
statement is the name of the Datalog predicate. Hence, if (a,b) instance of
property P we write the fact

P(a,b).

In our approach this representation is extended with additional unary rela-
tions which are used to store the class-individual relationship, where a separate
predicate is created for each class. Hence, additionally to writing type(a, c).
facts to say that a is an instance of ¢, we write the fact

C(a).

We assume for unnamed RDF individuals, that the required symbols are created
on the fly. A system could use several means for (re)identifying such anonymous
individuals, e.g. a naming scheme.

Representing the ontology

We cannot ask queries about the ontology level in Datalog, since this would
involve talking about predicates, when using the above-mentioned representa-
tion. Hence, we employ a dual representation, i.e. additional constants are
created for each property and class as well as facts that say that the constants
are of their respective kind. This is similar to the catalogue components of
relational databases, which store information about the available relations and
their attributes.
Hence, we have a fact
Class(c).



which states, that c is a class and a fact
Property(p).

which states, that p is a property. Please note, that artificial identifiers have
to be created for all unnamed classes, i.e. when using property restrictions.
We will have to talk about individuals later, hence we will need a metaclass
individual in our internal representation of OWL. This metaclass is populated
via the following rule:

Individual(X) : —type(X, C), Class(C).

The population of the Individual predicate is purely intentional, since there is
no such syntactic primitive in OWL.

5 Construction of OW LLite
5.1 OWLE" - RDF Schema

Here, we focus only on the domain modelling capabilites of RDF Schema. Hence
we do not care about the metamodelling capabilites of RDF Schema. Therefore,
if someone subclasses the RDF Schema property subclassof, the semantics of this
statement is not known to the system, e.g. it will not know that this is also a
transitive property.

The domain modelling part of RDF Schema provides have four primitives,
namely

e subclassof: For each (C rdfs:subclassof D) statement the following rule
pattern is instantiated

e subpropertyof: For each (M rdfs:subpropertyof N) statement the following
rule pattern is instantiated

N(X,Y): -M(X,Y).
e domain: (P rdfs:domain C) is translated to rules of the following form
C(X): —P(X,Y).
e range: (P rdfs:range C) is translated to rules of the following form
CY): —P(X,Y).

Additionally the transitivity of the subClassOf and subPropertyOf predicates
must be represented once via the following pair of rules.

subClassOf(X, Z) : —subClassOf(X,Y), subClassOf(Y, Z).
subPropertyO f(X, Z) : —subPropertyO f(X,Y), subPropertyO f(Y, Z).



5.2 OW L - Toulouse proposal

The so-called Toulouse proposal was a joint proposal by several members of
the WebOnt working group. The name is drawn on the meeting location of
those people, namely the 2002 conference on Knowledge Representation, which
was located in the French town of Toulouse. In addition to the RDF Schema
primitives described above it provides means for stating :

e the (in)equality of individuals
e additional property characteristics

e functionality of properties

5.2.1 Equality

Equality for classes and properties is already provided via cyclic subclas-
sof and subpropertyof definitions. Additionally OW L{#*¢ provides additional
syntactic shortcuts for stating this kind of equivalence. The semantics of those
primitives are translated as using the following rule patterns:

o sameClassAs: For each (C owl:sameClassAs D) the following rule pattern
is instantiated:

e samePropertyAs: For each (M owl:samePropertyAs N) the following rule
pattern is instantiated:

N(X,Y): —M(X,Y).
M(X,Y): —N(X,Y).

We can infer the equivalence of classes and properties easily using the following
four rules:

sameClassAs(X,Y) : —subClassOf(X,Y), subClassOf (Y, X).
sameClass(X, X ) : —Class(X).
samePropertyAs(X,Y) : —subPropertyOf(X,Y), subPropertyOf(Y, X).
samePropertyAs(X, X) : —Property(X).



Equivalence of individuals is provided via the samelndividual As primi-
tive. The following set of rules captures the semantics of the predicate:

e Algebraic properties: since it is an equivalence relation

— symmetry:

samelndividual As(X,Y) : —samelndividual As(Y, X).
— transitivity:

samelndividual As(X, Z) : —samelIndividual As(X,Y),

samelndividual As(Y, Z).
— reflexivity:
samelndividual As(X, X) : —Individual(X).

e (Class and Property Membership: Equivalent individuals are also part of
the respective extensions.

— Class membership:
C(X): =C(Y), samelndividual As(X,Y).
— Property membership:
P(X,Z): —P(X,Y), samelndividual As(Y, Z).
PY,Z): —P(X, Z), samelndividual As(X,Y).

EquivalentTo is an additional syntactic shortcut is provided to state that
something is equivalent, namely equivalentTo. Its semantics can be captured as
follows:

equivalentTo(X,Y) : —sameClassAs(X,Y).
equivalentTo(X,Y) : —samePropertyAs(X,Y).
equivalentTo(X,Y) : —samelndividual As(X,Y).
sameClassAs(X,Y) : —equivalentTo(X,Y), Class(X),Class(Y').
samePropertyAs(X,Y) : —equivalentTo(X,Y), Property(X), Property(Y).
samelndividual As(X,Y) : —equivalentTo(X,Y), Individual(X), Individual (V).

The use of equivalentTo is restricted in the language, it is not possible to
cross the partition in the language between classes, properties and individuals.

inconsistent(X,Y) : —Class(X), Property(Y'), equivalentTo(X,Y).

inconsistent(X,Y) : —Individual(X), Property(Y), equivalentTo(X,Y).
inconsistent(X,Y) : —Individual(X), Class(Y), equivalentTo(X,Y).



Inequality of individuals The differentIndividualFrom primitive can be used
to denote that two individuals are not the same. This is required, since OW LE¢t¢
may infer that some individuals may be the same. Hence, an inconsistency
arises, if we find out that both facts are stated. This is captured via the follow-
ing rule:

inconsistent(X,Y) : —samelndividual As(X,Y), dif ferentIndividual From(X,Y)

11! To be discussed !!! Please note that we can only ask whether two indi-
viduals are equivalent or not. The answer 'unknown’, which must be returned,
whenever we neither have a fact, that says that the individuals are equivalent
nor have a fact, that says that the individuals are different, would have to be
supported using some further rule. However this rule would require negation.

5.2.2 Property Characteristics

OW L¥#e Allows to state further property characteristics. Syntactically the
properties that are subject of those additional characteristics are represented
as subclasses of ObjectProperties. ObjectProperties are in turn subclasses of
rdf:Property. These statements are part of the metalanguage of OW LL#%¢ and
treated represented like rdf:Property via binary predicates in the database and
unary predicates to capture the Property membership.

However, further rule patterns are instantiated for each property P:

e TransitiveProperty:

P(X,Z):-P(X,Y),P(Y,2)

e SymmetricProperty:
P(X,Y):—-P(Y,X)
5.2.3 InverseProperties

OW L¥#te allows to specify that the values of two ObjectProperties are inverse
to each other. Hence the semantics of all (P owl:iinverseOf R) statements has
to be captured via the instantiation of the following rule patterns :

P(X,Y): —R(Y, X)

R(X,Y):—P(Y,X)

5.2.4 FunctionalProperty

Functional properties are properties that are stated to have a unique value. If
a property is a FunctionalProperty, then it has no more than one value. It may
have no values. Another way of saying this is that the property’s minimum
cardinality is zero and its maximum cardinality is 1.



This can be represented in Datalog as follows:
samelndividual As(X,Y) : —P(A, X), P(A)Y)

Hence, it is entailed that X and Y must be equivalent instances. If there is a
statement, which declares them to be different from each other, the knowledge
base is in an inconsistent state.

5.3 OWLL#* - Current OWL Lite proposal

5.3.1 InverseFunctional

A property of type InverseFunctioanlProperty?® is a subclass of ObjectProperty.
If a property is of this type, then the inverse of the property is functional. Thus
the inverse of the property has at most one value.

This can be represented in Datalog by the following rule pattern:

samelndividual As(X,Y) : —P(X,A), P(Y, A)

Hence, it is entailed that X and Y are equal. If there is a statement, which
declares them to be different from each other, the knowledge base is inconsistent.

5.3.2 Cardinality Constraints

OW L% provides further means to restrict the cardinality of properties. The
values are restricted to the values 0 and 1. The owl:minCardinality construct is

used to denote the minimum cardinality of a property. The owl:maxCardinality
construct is used to denote the maximum cardinality of a property. The owl:cardinality
construct is a convenience constructor for setting both owl:minCardinalty and
owl:maxCardinality to the same value.

Cardinality 0,1 : Saying that a property has minimumCardinalty of 0 and
maximum Cardinality of 1 is saying that a property is functional. It is therefore
translated to the instatiation of the rule pattern stated there.

Cardinality 0,0 : This means that a property may not be instantiated. Hence
an inconsistency follows from having any property value on P:

inconsistent(X,Y) : —P(X,Y).

Minimum Cardinality 1 : This is not possible to say due to the explicit
universal quantification of all variables.

In predicate logic the minimum cardinality of one would be specified by use
of the existential quantifier:

VXY : P(X,Y)

Hence, this information cannot be captured by Datalog.

3This type of property was previously called unambiguous property and IsTheOnlyOne
property.

10



5.3.3 Local range restrictions

A property on a particular class may have a local range restriction associated
with it.

allValuesFrom : This means that if an individual instance of the class is
related by the property to a second individual, then the second individual can
be inferred to be an instance of the local range restriction class.

May C be the local range restriction on property P for class D. This can be
captured via rules of the following form

CY):-P(X,Y),D(X).
someValuesFrom : This means that a particular class may have a restriction
on a property that at least one value for that property is of a certain type. This

is existential by nature and can therefore not be captured by Datalog. It can
be captured in first-order logic as follows.

VX3V : O(Y) — P(X,Y) A D(X)

5.4 OWLLite - Full Owl
5.4.1 hasValue

Has Value allows to define a class via a certain property value. It can be
supported easily. Let v the value of property P, which constitutes the class C,
then the following rule pattern can capture this semantics:

C(X):—P(X,v).
P(X,v): —C(X).

5.4.2 Full cardinality

Cannot be supported, since even restricted cardinality cannot be supported.
Non-binary values cannot be captured at all, since we are not able to count in
general Datalog.

5.4.3 Set construction of classes

This is problematic with respect to equivalence and the absence of disjunction in
the head for the case of disjunction. However, conjunction ( D = C1MCsM...NC,
) could be supported easily via the following pattern:

D(X) : —=Cy(X), Co(X), ..., Cp(X).

C1(X) : —D(X).
Co(X) : —D(X)
Cp(X) : —D(X).

11



5.4.4 Construction of classes by enumeration

This is problematic, since we cannot disallow using predicates in rules.

6 Conclusion

Following the previous discussion the OWL Lite proposal should be changed
to OW LL#e and may be augmented safely with the InverseFunctional property
as well as universal local range restrictions (allValuesFrom) from OW L&t
Additionally we can easily support conjunction of classes and the hasValue
property restriction.

Datalog can support the following features in an OW LY%*¢ conformance
layer:

1. Primitive classes
. rdfs:subClassOf
. rdfs:subpropertyof

. rdfs:domain

2

3

4

5. rdfs:range
6. rdf:Property

7. (un)named individuals

8. owl:sameClassAs

9. owl:samePropertyAs

10. owl:samelndividualAs

11. owl:equivalentTo

12. owl:differentIndividualAs

13. owl:ObjectProperty

14. owl:inverseOf

15. owl:TransitiveProperty

16. owl:SymmetricProperty

17. owl:FunctionalProperty

18. owl:InverseFunctionalProperty
19. owl:allValuesFrom

20. owl:hasValue

21. owl:intersectionOf

12
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