OWL General Requirements

Jeff Heflin

Committee

- Jeff Heflin (co-chair)
- Deborah McGuinness (co-chair)
- Jeremy Carroll
- Dan Connolly
- Jos De Roo
- Pay Hayes
- Ned Smith
- Herman ter Horst

Format

- Name and number
- Supported tasks
 - What does requirement allow us to do?
- Justification
 - Why is this requirement needed?
- Possible approach
 - How can the language support the requirement?
- DAML support
 - To what extent does DAML+OIL support it?

What is a "Requirement?"

- Possible criteria
 - "if we don't meet it, we aren't done" Dan C.
 - must result in language primitives
 - must be implemented in all OWL systems?
 - appropriate for the "ontology layer" of the Semantic Web?
 - critical for some very important use cases?
 - **–** ...
- Some of these are debatable!

R1. Shared Ontologies

- Ontologies are publicly available and different data sources can commit to the same ontology for shared meaning.
- Possible Approach:
 - Syntax for defining ontologies
 - Syntax for committing to ontologies
 - Syntax for disambiguating terms from different ontologies

R2. Ontology Extension

- Ontologies can be extended by other ontologies in order to provide additional definitions
- Possible Approach:
 - Explicitrepresentation of extension

Multiple Schemas in RDF

R3. Ontology Evolution

- Ontologies can be changed over time and data sources can specify which version of the ontology they commit to
- Possible Approach:
 - Revisions are separate documents
 - Explicit links to prior versions
 - Explicit backwardscompatibility
 - Deprecation of terms

Revision in RDF

R4. Ontology Interoperability

- Different ontologies may model the same concepts in different ways
- Possible Approach:
 - primitives for mapping
 - consider some of (but not all) the following
 - subclass/superclass
 - inverses
 - equivalence
 - implication, arithmetic, aggregation, string manipulation, procedural attachments?

R5. Detect Inconsistency

- Different ontologies or data sources may be contradictory
- Possible Approach:
 - allow language to express inconsistency
 - theory supports efficient detection of inconsistency
 - provide mechanism for reporting inconsistencies

R6. Scalability

- Language can be used with large ontologies and large data sets
- Must balance with R10. Expressiveness
- Possible Approach:
 - restrict language for efficient reasoning
 - description logic
 - datalog

R7. Ease of Use

- Language should provide a low learning barrier and have clear concepts and meaning
- Possible Approach:
 - When possible, use concepts and idioms familiar to average software engineers
 - object-oriented?
 - relational databases?

R8. XML Syntax

- The language should have an XML serialization
- Open Issue:
 - Must the language also build on RDF/RDFS?
 - In favor of RDF
 - W3C standard
 - Existing software support
 - Against RDF
 - Does not have same acceptance as XML
 - Led to an awkward syntax for DAML+OIL

R9. Ontology-based Search

- Search that exploits the meaning of terms instead of just the syntax
- Possible Approach:
 - use background ontologies for:
 - query expansion
 - understanding of term relationships
 - identify parameters and value restrictions

R10. Expressiveness

- The language should be as expressive as possible, given a balance with R6.

 Scalability
- Should probably combine this with R6 for:
 - Balance of Expressiveness and Scalability

Other candidates (Goals?)

- C1. Explainability
- C2. Internationalization
- C3. Ontology querying
- C4. Tagging
- C5. Proof checking
- C6. Security
- C7. Trust
- C8. Data persistence