
OWL General Requirements

Jeff Heflin



Committee

• Jeff Heflin (co-chair)
• Deborah McGuinness (co-chair)
• Jeremy Carroll
• Dan Connolly
• Jos De Roo
• Pay Hayes
• Ned Smith
• Herman ter Horst



Format

• Name and number
• Supported tasks

– What does requirement allow us to do?
• Justification

– Why is this requirement needed?
• Possible approach

– How can the language support the requirement?
• DAML support

– To what extent does DAML+OIL support it?



What is a “Requirement?”

• Possible criteria
– “if we don’t meet it, we aren’t done” – Dan C.
– must result in language primitives
– must be implemented in all OWL systems?
– appropriate for the “ontology layer” of the Semantic 

Web?
– critical for some very important use cases?
– …

• Some of these are debatable!



R1. Shared Ontologies

• Ontologies are publicly available and 
different data sources can commit to the 
same ontology for shared meaning.

• Possible Approach:
– Syntax for defining ontologies
– Syntax for committing to ontologies
– Syntax for disambiguating terms from different 

ontologies



R2. Ontology Extension

• Ontologies can be 
extended by other 
ontologies in order to 
provide additional 
definitions

• Possible Approach:
– Explicit 

representation of 
extension

Dolphin

FishMammal

Flipper

subClassOf subClassOf

type

good-schema bad-schema

orig-schema

my-doc

Multiple Schemas in RDF



R3. Ontology Evolution
• Ontologies can be 

changed over time and 
data sources can specify 
which version of the 
ontology they commit to

• Possible Approach:
– Revisions are separate 

documents
– Explicit links to prior 

versions
– Explicit backwards-

compatibility
– Deprecation of terms

Dolphin

DolphinFish

Mammal subClassOf

subClassOf

subClassOf?

schema-v1

schema-v2

Revision in RDF



R4. Ontology Interoperability

• Different ontologies may model the same concepts 
in different ways

• Possible Approach:
– primitives for mapping
– consider some of (but not all) the following

• subclass/superclass
• inverses
• equivalence
• implication, arithmetic, aggregation, string manipulation, 

procedural attachments?



R5. Detect Inconsistency

• Different ontologies or data sources may be 
contradictory

• Possible Approach:
– allow language to express inconsistency
– theory supports efficient detection of 

inconsistency
– provide mechanism for reporting 

inconsistencies



R6. Scalability

• Language can be used with large ontologies 
and large data sets

• Must balance with R10. Expressiveness
• Possible Approach:

– restrict language for efficient reasoning
• description logic
• datalog



R7. Ease of Use

• Language should provide a low learning 
barrier and have clear concepts and 
meaning

• Possible Approach:
– When possible, use concepts and idioms 

familiar to average software engineers
• object-oriented?
• relational databases?



R8. XML Syntax

• The language should have an XML serialization
• Open Issue:

– Must the language also build on RDF/RDFS?
• In favor of RDF

– W3C standard
– Existing software support

• Against RDF
– Does not have same acceptance as XML
– Led to an awkward syntax for DAML+OIL



R9. Ontology-based Search

• Search that exploits the meaning of terms 
instead of just the syntax

• Possible Approach:
– use background ontologies for:

• query expansion
• understanding of term relationships
• identify parameters and value restrictions



R10. Expressiveness

• The language should be as expressive as 
possible, given a balance with R6. 
Scalability

• Should probably combine this with R6 for:
– Balance of Expressiveness and Scalability



Other candidates (Goals?)

• C1. Explainability
• C2. Internationalization
• C3. Ontology querying
• C4. Tagging
• C5. Proof checking
• C6. Security
• C7. Trust
• C8. Data persistence


