 DAV Searching and Locating

March 1997

INTERNET-DRAFT

draft-reddy-dasl-protocol-00.txt

Mar, 1998
Expires Aug, 1998
Saveen Reddy, Microsoft
Del Jensen, Novell
Surendra Reddy, Oracle

Rick Henderson, Netscape

Jim Davis, Xerox

Alan Babich, Filenet

DAV Searching and Locating

Status of this Memo

This document is an Internet draft. Internet drafts are working documents of the Internet Engineering Task Force (IETF), its areas and its working groups. Note that other groups may also distribute working information as Internet drafts.

Internet Drafts are draft documents valid for a maximum of six months and can be updated, replaced or obsoleted by other documents at any time. It is inappropriate to use Internet drafts as reference material or to cite them as other than as "work in progress".

To learn the current status of any Internet draft please check the "lid-abstracts.txt" listing contained in the Internet drafts shadow directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East coast) or ftp.isi.edu (US West coast). Further information about the IETF can be found at URL: http://www.ietf.org/

Distribution of this document is unlimited. Please send comments to the Distributed Authoring and Versioning (WEBDAV) working group at <www-webdav-dasl @w3.org>, which may be joined by sending a message with subject "subscribe" to <www-webdav-dasl- @w3.org>.

Discussions of the WEBDAV working group are archived at <URL:http://www.w3.org/pub/WWW/Archives/Public/www-webdav-dasl>.

Abstract

This document specifies a set of methods, headers, and content-types composing DASL, an application of the HTTP/1.1 protocol to efficiently search for DAV resources based upon a set of client-supplied criteria.

Table of Contents

41
Introduction

1.1 Relationship to DAV
4
1.2 Terms
4
1.3 Notational Conventions
4
1.4 DASL in Operation
4
2
The SEARCH Method
5
2.1 Overview
5
2.2 Query Transport vs. Query Semantics and Query Grammar
5
2.3 The Request
5
2.3.1 The Request-URI as Search Arbiter
5
2.3.2 The Request Body
5
2.4 The Response
5
2.5 Response Extensions
5
2.6 Example
6
2.7 The searchrequest XML Elements
7
2.7.1 searchrequest XML Element
7
2.7.2 type XML Element
7
2.7.3 query XML Element
7
3
Search Grammar Discovery : OPTIONS
8
3.1 Overview
8
3.2 Request
8
3.3 Response
8
3.4 Example
8
4
The DASL Response Header
9
4.1 Overview
9
4.2 Syntax
9
4.3 Example
9
5
The DASL simplesearch grammar
10
5.1 Introduction
10
5.2 The Basic Query
10
5.3 Example
10
5.4 The select XML Element
11
5.4.1 Access to properties
11
5.5 The from XML element
11
5.6 The where XML Element
12
5.6.1 Overview
12
5.6.2 Syntax
12
5.7 The Comparison Operators
13
5.8 The Contains XML Element
13
5.8.1 Example
13
5.9 Example
13
5.10 Typing
14
5.11 Variants
14
5.12 Versioning
14
5.13 Security Considerations
14
5.14 Authentication
14
5.15 Internationalized Content
14
5.16 IANA Considerations
15
6
Change History
16
7
References
17
8
Author's Addresses
18
1
Introduction

This document is an early sketch of the DAV Searching and Locating (DASL) protocol. This document does not imply endorsement by the authors for the protocol described. This is a "strawman" for the purposes of discussion.

It will describe a set of methods, headers and content-types forming an application of HTTP/1.1 that allows clients to perform searching operations on the properties and content of DAV resources. DASL is a lightweight search protocol to transport queries and result sets and allows clients to make use of server-side search facilities, the motivation for which is described by [DASLREQ].

DASL includes the SEARCH method, the DASL response header for use with the OPTIONS method, the searchrequest XML entity, and the simplesearch query grammar.

1.1 Relationship to DAV

DASL relies on the resource and property model defined by [WEBDAV]. DASL does not alter this model, but rather allows clients to access DAV-modeled resources through server-side search.

1.2 Terms

This draft uses the terms defined in [RFC2068], [WEBDAV], and [DASLREQ].

1.3 Notational Conventions

The augmented BNF used by this document to describe protocol elements is exactly the same as the one described in Section 2.1 of [RFC2068]. Because this augmented BNF uses the basic production rules provided in Section 2.2 of [RFC2068], those rules apply to this document as well.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.4 DASL in Operation

As an application of HTTP/1.1, DASL follows the HTTP/1.1 request/response chain. A client invokes the SEARCH method and includes a text/xml entity containing a query. The server responds with a text/xml entity that contains the corresponding result set.

It is an objective of DASL to minimize the complexity of clients so as to facilitate widespread deployment of applications capable of utilizing the DASL search mechanisms.

2 The SEARCH Method

2.1 Overview

The client invokes the SEARCH method to initiate a server-side search. The text/xml body of the request defines the query. A successful response is a text/xml entity matching the [WEBDAV] PROPFIND response.

2.2 Query Transport vs. Query Semantics and Query Grammar

The SEARCH method provides a framework for the transmission of a search request. It does not define the grammar or semantics of any query that is transmitted. That is, the SEARCH method is a transport mechanism for the query. Different query grammars can be transmitted, each defining its own search semantics.

2.3 The Request

The client invokes the SEARCH method on the resource named by the Request-URI.

2.3.1 The Request-URI as Search Arbiter

The Request-URI identifies a resource that acts as an arbiter for the search. This resource is the one performing the search but not necessarily the resource that is being searched. That is, there is no implicit relationship between the Request-URI and the search scope.

Query grammars MUST explicitly define the relationship between the search scope and the request-URI. Query grammars may, for example, make the request-URI correspond exactly to the search scope.

2.3.2 The Request Body

The client MUST include a text/xml request body containing the searchrequest XML element.

The searchrequest XML element identifies the query grammar being used and defines the criteria, the result record, and any other attributes for the search.

2.4 The Response

If successful, the server MUST respond with a 217 Multistatus response matching that of PROPFIND. Each resource listed in the Multistatus response MUST meet the criteria defined by the corresponding search request.

2.5 Response Extensions

Query grammars MUST define how the response matches the PROPFIND response. Responses are free to include more information than PROPFIND responses so long as the extra information does not invalidate the PROPFIND response.

2.6 Example

This example demonstrates a simple query and its response. The query requests a recursive search of the entire server. No criteria are given in the query, so every resource specified in the scope matches the criteria. In this example, only a single resource exists on the server. The response uses the same format as the PROPFIND result.

>> Request

SEARCH / HTTP/1.1

Host: ryu.com

Content-Type: text/xml

Connection: Close

Content-Length: xxxxx

<?xml version="1.0"?>

<?xml:namespace name="DAV:" as="D"?>

<D:searchrequest>

<D:type>

<D:href>

DAV:simplesearch

</D:href>

</D:type>

<D:query> … </D:query>

</D:searchrequest>

>> Response

HTTP/1.1 207 Multi-Status

Content-Type: text/xml

Content-Length: xxxxx

<?xml version="1.0"?>

<?xml:namespace name="DAV:" as="D"?>

<?xml:namespace name="FOO:" as="R"?>

<D:multistatus>

<D:response>

<D:href>http://ryu.com/whales.txt</D:href>

<D:propstat>

<D:prop>

<R:bigbox>

<R:BoxType>Box type A</R:BoxType>

</R:bigbox>

<R:author>

<R:Name>J.J. Dingleheimerschmidt</R:Name>

</R:author>

<D:resourcetype/>

<D:getcontentlength>259</D:getcontentlength>

<D:getcontenttype>text/plain<D:getcontenttype>

</D:prop>

<D:status>HTTP/1.1 200 OK</D:status>

</D:propstat>

<D:propstat>

</D:multistatus>

2.7 The searchrequest XML Elements

The namespace for all DASL XML elements is "DAV:"

2.7.1 searchrequest XML Element

Name:
searchrequest

Namespace:
DAV:

Purpose:
Encapsulates the entire search request

<!ELEMENT searchrequest (type query) >

2.7.2 type XML Element

Name:
type

Namespace:
DAV:

Purpose:
Provides a URI which identifies the query grammar

Value:
href ; see section 11.3 of [WebDAV]

<!ELEMENT type (href) >
<!ELEMENT href (#PCDATA) >

2.7.3 query XML Element

Name:
query

Namespace:
DAV:

Purpose:
A string of the grammar identified by the type XML element which defines the criterion and attributes for the search.

Parent:
searchrequest

<!ELEMENT query (ANY) >

3 Search Grammar Discovery : OPTIONS

3.1 Overview

The OPTIONS method allows the client to discover if a resource supports the SEARCH method and to determine the list of search grammars supported for that resource.

3.2 Request

The client issues the OPTIONS method against a resource named by the Request-URI. This is a normal invocation of OPTIONS defined in [RFC2068].

3.3 Response

If a resource supports the SEARCH method, then the server MUST list SEARCH in the OPTIONS response as defined by [RFC2068].

DASL servers MUST include the DASL header in the OPTIONS response. This header identifies the search grammars supported by that resource.

3.4 Example

This example shows that the server supports search on the /somefolder resource with the following query grammars: http://foo.bar.com/syntax1 and http://akuma.com/syntax2.

>> Request

OPTIONS /somefolder HTTP/1.1

Connection: Close

Host: ryu.com

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH

DASL: <http://foo.bar.com/syntax1> <http://akuma.com/syntax2>

4 The DASL Response Header

4.1 Overview

The DASL response header indicates server support for query grammars in the OPTIONS method. The value of this header is a list of URLs. Each URL indicates support for a query grammar.

4.2 Syntax

DASLHeader = "DASL" ":" URL-List

URL-List = 1#Coded-URL ; defined in section 8.5 of [WEBDAV]

4.3 Example

DASL: <http://foo.bar.com/syntax1> <http://akuma.com/syntax2>

5 The DASL simplesearch grammar

5.1 Introduction

The simplesearch grammar is a query language that allows clients to express search requests that are generally useful for WEBDAV scenarios. DASL-extended servers MUST accept this grammar.

The following URI identifies the simplesearch grammar. It is to be used in the Type XML Element.

DAV:simplesearch

5.2 The Basic Query

The simplesearch query grammar is an XML-based syntax that has several components, each an XML element, that defines the query.

The select XML element defines the result record. That is, it specifies the properties that will appear in the search result.

The from XML element defines the scope of the query.

The where XML element defines the criteria for a resource to contribute to the search result.

5.3 Example

This query will recursively retrieve the content length values for all resources located under the server's "/container1/" URI namespace whose length exceeds 10000.

<d:searchrequest>

<d:select>

<d:props>

<d:getcontentlength/>

</d:props>

</d:select>

<d:from>

<d:scopelist>

<d:scope>

<d:uri>/container1/</d:uri>

<d:depth>infinite</d:depth>

</d:scope>

</d:scopelist>

</d:from>

<d:where>

<d:expr>

<d:term>

<d:gt>

<d:value>

<d:prop><d:getcontentlength/></d:prop>

</d:value>

<d:value>

<d:literal>10000</d:literal>

</d:value>

</d:gt>

</d:term>

</d:expr>

</d:where>

</d:searchrequest>

5.4 The select XML Element

Name:

select

Namespace:
DAV:

Purpose:
Defines the result record.

<!ELEMENT select
(allprops | props) >

<!ELEMENT props

(ANY+) >

<!ELEMENT allprops >

If the allprops element is present, then all properties defined on matching resources to which the user has access should be listed in the result record.

If the prop element is present, then it will name all properties to include in the result record. Each property named by the props element must be referenced in the Multistatus response for the search method.

The rules governing the status codes for each property match those of the PROPFIND method defined in [WEBDAV].

5.4.1 Access to properties

The select element clause allows any property defined by DAV to be included in the result set.

5.5 The from XML element

Name:

from, scopelist, scope, depth, uri

Namespace:
DAV:

Purpose:
Defines the search scope.

<!ELEMENT from (scopelist) >

<!ELEMENT scopelist (scope+) >

<!ELEMENT scope (depth? , uri) >

<!ELEMENT depth >

<!ELEMENT uri >

The from element defines the scope of the search.

The scopelist element contains a list of scopes to search.

The scope element defines the collection to search through the uri element and the depth of the search through the depth element. The values for depth are "1" or "infinite".

5.6 The where XML Element

5.6.1 Overview

The where element defines the search criteria, an expression that is evaluated against the each resource contained in the search scope. A resource is only included in the result set if the expression evaluates to true.

Clients should be prepared for restrictions on what can be reasonably searched. For example, servers may not be able to provide searches on live-properties whose values are determined dynamically. Additionally, servers may not be able to perform searches that involve arithmetic comparisons. When such restrictions affect a search, servers SHOULD provide the proper status codes in the multistatus response.

The WHERE clause supports the typical joining of search terms through the "AND" and "OR" operators. Each search term defines a condition or criterion for a resource property.

5.6.2 Syntax

Name:

where, expr, and, or, not

Namespace:
DAV:

Purpose:
Defines the search criteria.

<!ELEMENT where
(expr) >

<!ELEMENT expr

(term | and | or | not) >

<!ELEMENT and

(expr+) >

<!ELEMENT or

(expr+) >

<!ELEMENT not

(expr) >

<!ELEMENT term

(lt | lte | eq | neq
| gt | gte | contains) >

<!ELEMENT lt

(value , value) >

<!ELEMENT lte

(value , value) >

<!ELEMENT eq

(value , value) >

<!ELEMENT neq

(value , value) >

<!ELEMENT gt

(value , value) >

<!ELEMENT gte

(value , value) >

<!ELEMENT contains
(prop? , phrase) >

<!ELEMENT value

(prop, literal) >

<!ELEMENT prop

ANY >

<!ELEMENT literal
(#PCDATA) >

<!ELEMENT phrase (#PCDATA)>

5.7 The Comparison Operators

The lt, lte, eq, neq, gt, and gte elements allow comparisons between values.

If two values cannot be compared, then the result of a comparison operator is Unknown.

5.8 The Contains XML Element

The contains operator allows content-based matching for text resource and allows for additional matching of properties that store string values.

The contains operator attempts to find a single word or phrase in a resource's text content or property. This is done without regard to case. The search is sensitive to the order of words in a phrase.

If a property name is included in the contains element, then the matching is done for that property only. If no property is specified, then the matching is done for the text content of the entire resource.

5.8.1 Example

Targets text resources that contain the phrase "telecommunications industry".

<term>

<contains>

<value>

<literal>telecommunications industry</literal>

</value>

</contains>

</term>

5.9 Example

Targets documents where the foo:author property contains the word "Smith".

<term>

<contains>

<prop>

<foo:author/>

</prop>

<value>

<literal>Smith</literal>

</value>

</contains>

</term>

5.10 Typing

When property values are typed, then those types should influence any comparisons performed in the WHERE clause.

Servers SHOULD indicate when the query failed because of typing.

When a type for a property is unknown, the server SHOULD treat the property as plain text. For example properties with arbitrary XML values to be searched as plain-text strings.

5.11 Variants

If a server supports resource variants, then the server SHOULD expose those variants through the simplesearch queries.

Variants in terms of the query are resources that share the same URI but differ with respect to DAV-properties. For example, the /index.html resource may be available in the content type of "text/plain" or "text/html." Searches that match both resources should include those variants in the response. It is up to the client to define the proper result record, if variants of this sort are to be found.

If a server received a query whose criteria match multiple variants of a single resource, then the server SHOULD return records for those variants in the result set.

5.12 Versioning

TBD.

5.13 Security Considerations

This section is provided to detail issues concerning security implications of which DASL applications need to be aware. All of the security consideration of HTTP/1.1 also apply to DASL. In addition, this section will include security risks inherent in searching and retrieval of resource properties and content.

5.14 Authentication

Authentication mechanisms defined in WEBDAV will also apply to DASL.

5.15 Internationalized Content

All string values in the query are assumed to be in the character set used by the containing XML document. If the XML document uses a character set not understood by the server, then the server MUST respond with 400 (Bad Request).

5.16 IANA Considerations

This document uses the namespace defined by [WEBDAV] for XML elements. All other IANA considerations mentioned in [WEBDAV] also applicable to DASL.

6 Change History

· Feb, 14

· Initial Draft

Feb, 28

· Referring to DASL as an extension to HTTP/1.1 rather than DAV

· Added new sections "Notational Conventions", "Protocol Model", "Security Considerations"

· Changed section 3 to "Elements of Protocol"

· Added some stuff to introduction

· Added "result set" terminology

· Added "IANA Considerations".

· Mar, 9

· Moved sub-headings of "Elements of Protocol" to first level and removed "Elements of Protocol" Heading.

· Added an sentence in introduction explaining that this is a "sketch" of a protocol.

· Mar, 11

· Accepted all changes from Jim Davis. Added use of HREF element and fixed the DTD, other corrections.

7 References

[DASLREQ] S. Reddy, J.Slein, "Requirements for DAV Searching and Locating", February 1998, internet-draft, work-in-progress, draft-reddy-dasl-requirements-01.txt

[RFC2068] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, U.C. Irvine, DEC, MIT/LCS, January 1997.

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels." RFC 2119, BCP 14. Harvard University. March, 1997.

[WEBDAV] Y. Goland, E.J. Whitehead, A. Faizi, S.R. Carter, D.Jenson, "Extensions for Distributed Authoring on the World Wide Web", October, 1997, internet-draft, work-in-progress,

draft-ietf-webdav-protocol-06.

8 Author's Addresses

Saveen Reddy

Microsoft

One Microsoft Way

Redmond WA, 9085-6933

Email: saveenr@microsoft.com

Del Jensen

Novell

1555 N. Technology Way

M/S ORM F111

Orem, UT 84097-2399

Email: dcjensen@novell.com

Surendra Reddy

Oracle Corporation

600 Oracle Parkway, M/S 6op3,

Redwoodshores, CA 94065

Email: skreddy@us.oracle.com

Phone:(650) 506 5441

Rick Henderson

Netscape

Email: rickh@netscape.com

Jim Davis

Xerox

Email: jdavis@parc.xerox.com

Alan Babich

Filenet

Email: ababich@filenet.com

Expires Aug, 1998

INTERNET DRAFT Requirements for DAV Searching and Locating
20
INTERNET DRAFT DAV Searching and Locating
4

