
STATISTICAL LANGUAGE MODELING

USING THE CMU-CAMBRIDGE TOOLKIT

Philip Clarkson { prc14@eng.cam.ac.uk
Cambridge University Engineering Department,
Trumpington Street, Cambridge, CB2 1PZ, UK.

Ronald Rosenfeld { roni@cmu.edu
School of Computer Science, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

ABSTRACT

The CMU Statistical Language Modeling toolkit was re-
leased in 1994 in order to facilitate the construction and
testing of bigram and trigram language models. It is
currently in use in over 40 academic, government and
industrial laboratories in over 12 countries. This paper
presents a new version of the toolkit. We outline the con-
ventional language modeling technology, as implemented
in the toolkit, and describe the extra e�ciency and func-
tionality that the new toolkit provides as compared to
previous software for this task. Finally, we give an exam-
ple of the use of the toolkit in constructing and testing a
simple language model.

1. INTRODUCTION

While language modeling continues to be a fruitful re-
search topic, the standard language modeling techniques
which are used in most large vocabulary recognition sys-
tems have changed little over the past few years [7].
Even when improvements have been made over the tra-
ditional models, they have normally come about by com-
bining a new model with a conventional trigram [2] model
[1, 10, 11, 12, 3].
The CMU Statistical Language Modeling (CMU-SLM)

toolkit [16] is a set of Unix software tools facilitating the
construction and testing of conventional bigram and tri-
gram language models. Version 1 was released in 1994,
and is currently in use in over 40 academic, government
and industrial laboratories in 12 countries.
Since the release of version 1, however, the ground has

shifted a little in language modeling. Larger corpora are
available than before, and more powerful computers are
available to process them. Interest has grown in mov-
ing beyond trigram language models towards 4-gram and
5-gram models. Furthermore, some of version 1's inef-
�ciencies which were tolerable when dealing with small
corpora became a real problem when dealing with several
hundreds of millions of words. Version 2 of the toolkit has
been developed in order to address these shortcomings.
This paper will give a brief outline of conventional lan-

guage modeling technology as implemented in version 1
of the toolkit. It will then describe some of the theoreti-
cal and implementational improvements which have been
made in version 2, and provide an example of the use of
the toolkit.

2. CONVENTIONAL LANGUAGE
MODELING THEORY

2.1. Smoothing

Conventional language models are based on the bigram or
trigram model. Because even the largest corpora available

will contain only a fraction of the possible trigrams it is
necessary to smooth the data in order to provide better
estimates of the more infrequent or unseen events1.
The maximum likelihood estimate for the probability

of an event E which occurred r times out of a possible
R is P (E) = r=R. In a sparse sample, however, the
maximum likelihood estimate is biased high for observed
events and biased low for unobserved ones. To correct
this bias, we redistribute some probability mass from the
observed events to the unseen ones, by discounting the
counts by a discount coe�cient dr. That is, the modi�ed
count r� is

r� = rdr (1)

and the revised probability estimate is P (E) = r�=R.
The remaining probability mass is assigned to unseen
events.
If a given N -gram (w1; w2; : : : ; wN) has not been ob-

served in the training data, P (wN j w1; w2; : : : ; wN�1)
can be estimated from the lower order model, namely
from P (wN j w2; : : : ; wN�1), in a process known as
backing-o� [8].
Frequently, backing-o� and discounting are combined

according to the scheme devised by Katz [8], which com-
bines Good-Turing discounting [5] with backing-o�. This
is the approach to data smoothing which was imple-
mented in version 1 of the toolkit.

2.2. Cuto�s

In order to reduce the size of a language model, infrequent
N -grams are often removed from the model. The counts
below which the N -grams are discarded are referred to as
cuto�s. Table 1 shows how the bigram and trigram cuto�s
a�ect the size and perplexity [2] of a trigram language
model.

2.3. Context Cues

Language data is viewed by the toolkit as a stream of
words interspersed with context cues. These are markers
which indicate events such as sentence, paragraph and
article boundaries. They provide useful information to
the language model (and therefore may a�ect prediction),
but they should not be predicted by the model itself.

2.4. Vocabulary Types

The toolkit supports three types of vocabulary, which
each handle out-of-vocabulary (OOV) words in di�erent
ways.
A closed vocabulary model does not make any provi-

sion for OOVs. Any such words which appear in either
the training or test data will cause an error. This type of
model might be used in a command/control environment

1In the context of a trigram language model, for example,

an \event" refers to an occurrance of a unigram, bigram or

trigram.

Cuto�s Size of
Bigram Trigram Model Perplexity

0 0 219 MB 114.0
1 1 80 MB 119.8
2 2 49 MB 124.0
5 5 26 MB 133.1
10 10 17 MB 143.4
20 20 11 MB 156.8
50 50 8 MB 180.7
100 100 6 MB 203.9

Table 1. The e�ect of cuto�s on the size and perplexity
of a trigram language model. Results generated using the
training and test sets from the 1996 H4 Broadcast News
evaluation.

where the vocabulary is restricted to the number of com-
mands that the system understands, and we can therefore
guarantee that no OOVs will occur in the training or test
data.
An open vocabulary model allows for OOVs to occur;

out of vocabulary words are all mapped to the same sym-
bol. Two types of open vocabulary model are imple-
mented in the toolkit. The �rst type treats the OOV
symbol the same way as any other word in the vocab-
ulary. The second type of open vocabulary model is to
cover situations where no OOVs occurred in the training
data, but we wish to allow for the situation where they
could occur in the test data. This situation could occur,
for example, if we have a limited amount of training data,
and are able to choose a vocabulary which provides 100%
coverage of the training set. In this case, an arbitrary
proportion of the probability mass is reserved for OOV
words.

3. ENHANCEMENTS IN VERSION 2

3.1. Multiple Discounting Methods

There are many ways in which one can de�ne the discount
coe�cient dr (equation (1)).

3.1.1. Good-Turing discounting

If we de�ne nr as the number of events which occur
r times, then the Good-Turing-based discounting scheme
which was implemented in version 1 de�nes

dr =

(r+1)nr+1
rnr

�
(k+1)nk+1

n1

1�
(k+1)nk+1

n1

(2)

for r < k (where typically k � 7) and dr = 1 for higher
counts [8], the belief being that events occurring more
than 7 times are well estimated by maximum likelihood.
This approach does have some disadvantages, how-

ever. For example, we require dr > 0 for all r, and
this puts some constraints on the relative values of
n1; n2; : : : ; nk+1. In general, these constraints will be sat-
is�ed by naturally occurring data but may not be if one
has doctored the data in some way (for example by boost-
ing the counts of some subset of the N -grams).
Good-Turing discounting remains the default in ver-

sion 2, but other discounting schemes have been imple-
mented which do not su�er from this problem, and which
sometimes produce superior results. These are presented
below.

3.1.2. Linear discounting

In linear discounting [13] a quantity proportional to
each count is subtracted from the count itself. That is,
we set dr = 1 � �. In this case we select � such that

linear discounting assigns the same probability to unseen
events as Good-Turing discounting:

dr = 1�
n1
R

(3)

where R is the number of words in the training data.

3.1.3. Absolute discounting

Absolute discounting involves subtracting a constant b
from each of the counts.

dr =
r � b

r
(4)

It can be shown [13] that setting b = n1

n1+2n2
is approxi-

mately optimal in terms of maximising the log likelihood
function using leaving-one-out.

3.1.4. Witten-Bell discounting

The discounting scheme which we refer to as Witten-
Bell discounting is that which is referred to as type C in
[17], and which was �rst applied to language modeling
by [14]. The discounting ratio is not dependent on the
event's count, but on t, the number of distinct events
which followed the particular context. So, for the bigram
"A B", t is the number of distinct bigrams of the form
"A *" in the model.

dr(t) =
R

R+ t
(5)

3.2. N-grams of Arbitrary Size

The new version of the toolkit is no longer limited to the
construction and testing of bigram and trigram models,
and supports N -gram models for any value of N .

3.3. Flexible Handling of Context Cues

In version 1 the symbols <s>, <p> and <art> were �xed
as context cues. Version 2 adopts the more
exible ap-
proach of allowing the user to specify any subset of the
vocabulary to be context cues.

3.4. E�cient Memory Usage

The data structures used to store the N -grams in ver-
sion 2 are more compact than those of version 1, with the
result that language model construction is a less mem-
ory intensive task. For example, for a trigram language
model, version 1 required 12 bytes per bigram and 4 bytes
per trigram. Version 2 requires only 8 bytes per bigram
and 4 bytes per trigram.

3.5. Interactive Language Model Evaluation

The tool used to evaluate the language models can now
be run interactively. The language model is read in, and
commands are read from the standard input. The lan-
guage model can therefore be tested in a much more e�-
cient fashion than in version 1, when the language model
had to be read in each time a new test was to be per-
formed on it.

3.6. Testing of ARPA Format Language Models

In version 1 it was only possible to perform tests on lan-
guage models which had been written in the toolkit's own
binary format. Version 2 allows the user to also evalu-
ate the performance of language models that are in the
standard ARPA format, that may have been supplied by
a third-party, and need not have been generated by the
toolkit.

3.7. Forced Back-o�

The tool used for evaluating language models allows the
user to specify a set of forced back-o� parameters. There
may be items in the vocabulary (especially context cues
and the \unknown" symbol) from which we may want
to back-o� all the time. For example, if we see the word
string "A <s> B" (where <s> is a context cue indicating a
sentence boundary), then instead of predicting the prob-
ability of B based on the full context (P (B j A <s>)), we
may wish to disregard the information before the sen-
tence boundary. Therefore we might want to back-o� to
the bigram distribution P (B j <s>) (inclusive forced back-
o�) or even to the unigram distribution P (B) (exclusive
forced back-o�). Version 2 supports both types of forced
back-o� from arbitrary vocabulary items.

3.8. Linear Interpolation of Models

In order to facilitate the combination of language mod-
els, the toolkit also includes a program [15, Appendix B]
for calculating maximum likelihood weights for a set of
models by use of the expectation maximisation (EM) al-
gorithm [4]. The models are described by their output
on a common set of items, and it is these probability
streams which the program receives as input. These may
have been generated via models created by the toolkit, or
by other software. For example, one may have generated
cache-based probabilities [10], and these could be inter-
polated with probabilities from a trigram model created
by the toolkit.

3.9. More E�cient Pre-processing Tools

Many of the tools in version 1 were simple �lters which
would convert a data stream into a slightly di�erent for-
mat. The tools often relied heavily on Unix tools such as
sort and awk, with the result that a great deal of disk
I/O was incurred when very large �les were processed.
Version 2 sacri�ces a certain amount of the simplic-

ity and modularity of its predecessor in favour of a more
e�cient approach. The tools now work much better if
they can grab a large amount of RAM, and do the sort-
ing there, reading from and writing to disk as little as
possible.

4. EXAMPLE OF USAGE

This section will provide an example of the use of the
toolkit in de�ning a language model's vocabulary, gener-
ating a language model from a large corpora of training
text, and �nally evaluating this language model's perfor-
mance based on some held-out test text.

4.1. Creating a Vocabulary

A preliminary stage in constructing a language model is
to de�ne the model's vocabulary.
The tool text2wfreq outputs the number of occur-

rences of each word in the input text, and wfreq2vocab
turns this list into a vocabulary �le, in this case contain-
ing the most common 20,000 words.

cat training.text | text2wfreq | \
wfreq2vocab -top 20000 > training.vocab

A context cues �le should also be generated:

echo "<s>" > training.ccs

4.2. Constructing a Language Model

The �rst step is to turn the training text into a list of id
N -grams (N -grams with each word mapped to an integer
id, which will be zero for OOVs).

cat training.text | text2idngram -n 4 \
-vocab training.vocab -buffer 100 \
-temp /usr/tmp/ > training.id4gram

Text

wfreq2vocab

Vocab

Test text

Perplexity

Id N-gram

Language
Model

text2idngram

idngram2lm

evallm

text2wfreq

Figure 1. Use of the toolkit

The -n 4 option indicates that we are building a 4-
gram model, the -buffer option tells the program how
much RAM to grab (in MB), and the -temp option allows
us to specify where to store the temporary �les.
The second step is to convert the id N -gram stream

into a binary language model �le.

idngram2lm -idngram training.id4gram \
-vocab training.vocab -n 4 \
-binary training.4gram.binlm \
-cutoffs 1 1 5 -witten_bell \
-context training.ccs

Here we have speci�ed Witten-Bell discounting, and
cuto�s of 1 for bigrams and trigrams, and 5 for 4-grams.
At this stage we can also specify the vocabulary type,
and various other parameters. We could also write out
the language model in the standard ARPA format.

4.3. Evaluating the Language Model

The evallm tool is used for interactive evaluation of the
language model.

evallm -binary training.4gram.binlm
evallm : perplexity -text test.text
Computing perplexity of the language model
with respect to the text test.text

Perplexity = 176.99, Entropy = 7.47 bits
Computation based on 9596233 words.
Number of 4-grams hit = 2413343
Number of 3-grams hit = 3866964
Number of 2-grams hit = 2674322
Number of 1-grams hit = 641604
464893 OOVs (4.62%) and 576763 context cues
were removed from the calculation.

5. FUTURE DEVELOPMENT

Future development of the toolkit may include the follow-
ing:

1. Support for class-based N -grams [6]. Currently
classes can be supported implicitly by mapping the
training set into a given set of classes fCig, and
building a standard model in the class vocabu-
lary. This results in a model of the form P (CN j
C1; : : : ; CN�1), which can be combined with some
estimate of P (wi j Ci). But other variants of class

N -grams, such as P (wN j C1; : : : ; CN�1), are not
currently supported. The most general model will al-
low each word position to have its own distinct class
vocabulary.

2. Porting to run under Microsoft Windows 95, to make
the toolkit accessible to a larger community of users.

3. In [9] a smoothing strategy is described in which
backing-o� distributions which have been optimized
for the back-o� model are used to give an improve-
ment over conventional methods. This technique will
be implemented in a future version of the toolkit.

4. More
exible backing-o�. The idea behind backing-
o� is merely that if one language model is unable to
provide a reliable estimate for an event's probability,
then we should use a more general language model.
This need not take the form of merely backing-o�
from an N -gram to an (N � 1)-gram. One might in-
stead want to back-o� from a speci�c task-dependent
language model to a language model trained on more
general text, or from a word-based N -gram model to
a class-based N -gram model.

6. CONCLUSION

This paper has presented a new toolkit for the construc-
tion and testing of statistical language models. The
toolkit represents a signi�cant improvement over existing
publicly available software in terms of functionality and
computational e�ciency. The paper has also described
many techniques which are standard in current language
modeling theory, and which are implemented within the
toolkit.
More details about the toolkit, including details of how

to download the latest version can be found at

http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html

ACKNOWLEDGEMENTS

Philip Clarkson is supported by an EPSRC advanced stu-
dentship.

REFERENCES

[1] L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L.
Mercer. A Tree-Based Statistical Language Model
for Natural Language Speech Recognition. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 37(7), 1989.

[2] L.R. Bahl, F. Jelinek, and R.L. Mercer. A Maximum
Likelihood Approach to Continuous Speech Recog-
nition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 5(2), 1983.

[3] P.R. Clarkson and A.J. Robinson. Language Model
Adaptation using Mixtures and and Exponentially
Decaying Cache. In Proceedings IEEE ICASSP,
1997.

[4] A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-
imum Likelihood from Incomplete Data Using the
EM Algorithm. Journal of the Royal Society of
Statistics, 39(1):1{38, 1977.

[5] I.J. Good. The Population Frequencies of Species
and the Estimation of Population Parameters.
Biometrika, 40, 1953.

[6] F. Jelinek. Self-Organized Language Models for
Speech Recognition. In A. Waibel and K.-F Lee, edi-
tors, Readings in Speech Recognition, pages 450{506.
Morgan Kaufman Publishers, 1990.

[7] F. Jelinek. Up From Trigrams! The Struggle for Im-
proved Language Models. In Proceedings Eurospeech,
1991.

[8] S.M. Katz. Estimation of Probabilities from Sparse
Data for the Language Model Component of a
Speech Recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35(3):400{401, 1987.

[9] R. Kneser and H. Ney. Improved Backing-O� for
M-gram Language Modeling. In Proceedings IEEE
ICASSP, 1995.

[10] R. Kuhn and R. De Mori. A Cache-Based Natu-
ral Language Model for Speech Reproduction. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 12(6):570{583, 1990.

[11] R. Kuhn and R. De Mori. Corrections to `A Cache-
Based Natural Language Model for Speech Repro-
duction'. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14:691{692, 1992.

[12] R. Lau, R. Rosenfeld, and S. Roukos. Trigger-Based
Language Models: A Maximum Entropy Approach.
In Proceedings IEEE ICASSP, 1993.

[13] H. Ney, U. Essen, and R. Kneser. On Structuring
Probabilistic Dependencies in Stochastic Language
Modelling. Computer Speech and Language, 8(1):1{
38, 1994.

[14] P. Placeway, R. Schwartz, P. Fung, and L. Nguyen.
The Estimation of Powerful Language Models from
Small and Large Corpora. In Proceedings IEEE
ICASSP, 1993.

[15] R. Rosenfeld. Adaptive Statistical Language Model-
ing: A Maximum Entropy Approach. PhD thesis,
School of Computer Science, Carnegie Mellon Uni-
versity, April 1994. Published as Technical Report
CMU-CS-94-138.

[16] R. Rosenfeld. The CMU Statistical Language Mod-
eling Toolkit, and its use in the 1994 ARPA CSR
Evaluation. In ARPA Spoken Language Technology
Workshop, Austin, TX, January 1995.

[17] I.T. Witten and T.C. Bell. The Zero-Frequency
Problem: Estimating the Probabilities of Novel
Events in Adaptive Text Compression. IEEE Trans-
actions on Information Theory, 37(4):1085{1094,
July 1991.

