
How to Design Applications That Can Run Connected or Disconnected in

a Seamless Manner

Ashok Malhotra (ashok.malhotra@oracle.com)

A desirable characteristic for applications, especially on devices with intermittent
connectivity, is the ability to run equally well in a connected or disconnected
state. This document analyzes best practices and makes architectural
recommendations on how to design such applications.

 This is an early draft and may have serious holes. There is also a great deal of

detail that needs to be added. Please comment.

Consider an application that is installed on your laptop. This is not essential but

makes the exposition simpler. The installed app contains what I call the Initial

JavaScript and possibly other things. When the application is started, the Initial

JavaScript first checks if the laptop is connected to the Web. It then looks at the

resources the application requires and checks if it has access to a minimum set of

resources. It may also have hints as to where to find these resources if

disconnected: AppCache, IndexedDB or perhaps a special format used, for

example, for calendars or a local SQL database. If the Initial JavaScript cannot find

the minimum set of resources it cannot continue but if it finds enough resources

it starts by invoking the Operational JavaScript which runs the app and must be

included among the required resources.

As the application runs and the user interacts with it, it makes changes to its

resources. If all the resources are available it may change them directly. If they

are not, it changes the resources available locally and stores a local record which

is used to update the Web resources when the laptop connects to the Web. This

synchronization is perhaps the most complex part of this story. A proposal for

how to do synchronization is described below.

Should locally Created Items be Identified by URIs?

If I create a new calendar appointment on my local calendar, the only one who

can access this appointment if my local calendar application. Why does it need to

have a URI? Also, if we give it a URI then what happens when the item is

synchronized with the global calendar. Does the URI remain the same or does it

change? There is potential for confusion in both cases. A simple solution could

be to identify the local item with a GUID and give it a URI when it is synchronized.

I checked with Raman, and although he said he was not sure, he seemed to feel

that locally created Gmail messages did not have URIs. They were assigned URIs

when they were synchronized with the global Gmail database. I am trying to get

in touch with Rich Miller, one of the editors of the Calendar API.

Synchronization

Consider a situation where the application requires three resources A, B and C. In

the case we want to discuss, it finds A locally and starts running but as the user

interacts with it, it eventually needs to make changes to all three resources A, B

and C.

For each change that the application makes it writes a Change Record in local

storage. Each change record has one part for each resource that associated with

the application. In this case, each Change Record has three parts corresponding

to resources A, B and C. Some of the Change Record parts may be empty.

Each Change Record part consists of instructions on how to update the resource it

applies to. These instructions may be JavaScript or PL/SQL or an XQuery script or

any other dialect that the application recognizes and can run.

It is necessary that the updates to the resources can be done in a transactional

manner and the changes be visible while the transaction is open[1]. If the

transaction aborts the changes disappear. When the application starts, it starts a

transaction for resource A (and, in general, for all resources it has access to). As it

proceeds, it writes Change Records and applies the parts for resource A (and, in

general, for all resources it has access to). Consider a calendar application

running locally. When the application starts, it starts a transaction for the local

calendar. If the user schedules an appointment, the application updates the local

calendar and writes a Change Record for the local calendar, the Web calendar and

perhaps a departmental calendar i.e. It writes a change record for all the

resources related to that application.

After some time, the user finishes with the application and closes it. The situation

now is that his local calendar has been updated but the transaction is still open

the changes are visible locally. There are change records for all three calendars in

local storage and somewhere there is an event that says these Change Records

need to be applied when the user connects.

When the user does connect and has access to all three resources, the open

transaction on resource A (and all other resources that the application had access

to) is rolled back. This is essential to ensure that all resources start in the same

state. Then, the Change Record parts for each resource are gathered together.

After this we have a pile of changes that need to be applied to resource A, a pile

of changes that need to be applied to Resource B and a pile of changes that need

to be applied to Resource C. Transactions are opened on all three resources and

the changes are applied. If all goes well we do a two-phase commit [2] of the

three resources. After this, all three resources are synchronized and are in a

consistent state.

If Synchronization Fails

It is possible for the two-phase commit to fail, for example, if one of the resources

loses connectivity. If this happens, the application needs to wait and retry. A

more likely cause of synchronization failure is that one of the updates fails for

semantic reasons. For example, the user may have scheduled an appointment on

a day and time when some other user scheduled a non-breakable meeting.

The application needs to detect such semantic conflicts and send messages to the

user informing her of the situation and guiding her towards possible resolutions.

In the worst case, if synchronization fails, all the transactions are aborted and all

the resources are in the same state as they were before the application was run.

This means that the user loses the work he has done.

Recommendations

Applications designed to run seamlessly in connected or disconnected mode must

list the resources they require. Some of the resources can be marked essential

and may have hints associated with them as to where to look for them in local

storage.

All of the resources participating in the online/offline application must be capable

of transactional updates. Moreover, the changes must be visible while the

transaction is open. Finally, all the resources must be capable of participating in a

two-phase commit protocol. See, for example the X/Open specification.

Explanation of Terms

[1] A transaction is a database capability that bundles several changes together

and ensures that either all the changes are applied/committed or that none of the

changes are committed. This ensures that the database will not be left in an

inconsistent state with only some of the changes (say, the debits) are applied and

some (say, the credits) not applied.

[2]Two-phase commit is a protocol that synchronizes transactions among multiple

distributed databases. It ensures that all transactions on all participating

databases are committed or none are committed. In effect, it is a meta-

transaction.

