The translation from Haskell to SWeLL

Take the following Haskell function:

test (a,b)

 | a > c = b

 | b > c = a

 where c = b - a	

Each item of the case statement is translated to a separate rule in SWeLL. The declarations after the where keyword are just facts in the SWeLL rule.

{this log:forAll :a,:b,:c.

:c math:diff :b, :a..

{:a math:greater :c.} log:implies {:b :test :a, :b}.

{:b math:greater :c} log:implies {:a :test :a, :b}}.

and the function is called with:

_:what :test "5", "4".

which would give two solutions:

"5" and "4".

The difference with Haskell is that Haskell gives only one solution: the case item are executed sequentially and the first match is returned.

