
Usage Scenarios and Goals

 Motivating Development
of an

Ontology Definition Metamodel

This document is intended to establish a set of usage scenarios and goals to motivate development of the Ontology Definition Metamodel (ODM). The contents of the final version of this document will be incorporated in the ODM specification to provide context for its application and use.

Version 2.5

Co-submitters:

AT&T/Gentleware
Lewis Hart, Patrick Emery

DSTC

Bob Colomb, Kerry Raymond

IBM

Dan Chang, Yiming Ye

Sandpiper Software
Elisa Kendall, Mark Dutra

 Contents

41.
Introduction

41.1.
Perspectives

62.
Usage Scenarios

82.1.
Business Applications

82.1.1.
Run Time Interoperation

92.1.2.
Application Generation

102.1.3.
Ontology Lifecycle

102.2.
Analytic Applications

102.2.1.
Emergent Property Discovery

112.2.2.
Exchange of Complex Data Sets

112.3.
Engineering Applications

112.3.1.
Information Systems Development

122.3.2.
Ontology Analysis

133.
Implications for an ODM

144.
References

1. Introduction

This document provides motivation for the Ontology Definition Meta-model (ODM) by describing several usage scenarios and by proposing example applications for use in these scenarios. Many of the scenarios and applications are based on efforts currently underway in industry and academia. The scenarios descriptions are followed their implications for an ODM and guidelines for the development of an ODM.

The usage scenarios presented herein highlight characteristics of ontologies that represent important design considerations for knowledge-based applications. They also motivate some of the features and functions of the ODM and provide insight into when users can limit the expressivity of their ontologies to a description logics based approach, as well as when additional expressivity, for example from first order logic, might be needed. This set of examples is not intended to be exhaustive. Rather, the goal is to provide sufficiently broad coverage of the kinds of applications the ODM is intended to support that ODM users or developers of ODM compliant applications can make informed decisions when choosing what parts of the ODM to implement to meet their development requirements and goals.

1.1. Perspectives

In order to ensure a relatively complete representation of usage scenarios and their associated example applications, we evaluated the coverage by using a set of perspectives that characterize the domain. Table 1 provides an overview of these perspectives.

	Perspective
	One Extreme
	Other Extreme

	Level of Authoritativeness
	Least authoritative, broader ontologies, shallower
	Most authoritative, narrower, more deeply defined ontologies

	Source of Structure
	Passive (Transcendent) – structure originates outside the system
	Active (Immanent) – structure emerges from behavior

	Degree of Formality
	Informal, or primarily taxonomic
	Formal, having rigorously defined types, relations, and theories or axioms

	Model Dynamics
	Read-only, ontology models are static
	Volatile, resources are fluid and changing.

	Instance Dynamics
	Read-only, instance data is static
	Volatile, changes resource instances continuously

	Control / Degree of Manageability
	Externally focused, public
	Internally focused, private

	Application Changeability
	Static
	Dynamic

	Coupling
	Loosely-coupled
	Tightly-coupled

	Integration Focus
	Information integration
	Application integration

	Lifecycle Usage
	Design Time
	Run Time

Table 1. Perspectives of applications that use ontologies that are considered in this analysis.

We found that these perspectives could be divided into two general categories, those that are model centric and those that are application centric. The model centric perspectives characterize the ontologies themselves and are concerned with the structure, formalism and dynamics within the models, they are:

· Level of Authoritativeness – Least authoritative ontologies define a broad set of concepts, but to a limited level of detail while the most authoritative ontologies are likely to be the narrowest, defining limited numbers on concepts to a greater depth of detail. More authoritative ontologies will represent safer long term investments and thus are likely to be developed to a greater depth.

· Source of Structure – The source of an ontologies structure can be defined by external sources, that is transcendent or it can be defined by information internal to the data and using applications that is immanent.

· Degree of Formality – refers to the level of formality from a knowledge representation perspective, ranging from highly informal or taxonomic in nature, where the ontologies may be tree-like, involving inheritance relations, to semantic networks, which may include complex lattice relations but no formal axiom expressions, to ontologies containing both lattice relations and highly formal axioms that explicitly define concepts.

· Model Dynamics – Some ontologies will tend to be stable, while others are likely to be modified dynamically by the agents or applications that use them. These changes are made at the M1 or model level at run time from the MOF/UML perspective.

· Instance Dynamics–refers to the degree that information resources or knowledge bases that use the ontology change as a result of some action the application takes as it is running. These changes occur at the M0 or object instance level from the MOF/UML perspective.

Application centric perspectives are concerned with how application use and manipulate the ontologies, they are:

· Control / Degree of Manageability – refers to the scope of control of the application using one or more ontologies, and also of control over changes made in the ontologies or knowledge bases. The ontology evolution control may span organizations or operate inside a private firewall or VPN, For public ontologies there may be little to no control from an ontology evolution perspective.

· Application Changeability – The ontologies may be applied statically, as they might be if used for database schema mapping, with periodic updates to support evolution in the schemas, or are they may be applied dynamically, as in an application that composes web services at run time.

· Coupling – refers to the degree that the information resources or applications using the ontologies are coupled.

· Integration Focus – refers to the degree that support information is focused on interoperability alone, information and application interoperability, or application interoperability without regard to content.

· Lifecycle Usage – refers to the phase of a project life cycle which the ontologies are used. This ranges from early design and analysis phases to being an active part of the application at run time.

2. Usage Scenarios

As might be expected, some of these perspectives tend to correlate across different applications, forming application areas with similar characteristics. Our analysis, summarized in Table 2, has identified three major clusters of application types that share some set of perspective values:

· Business Applications are characterized by having transcendent source of structure, a high degree of formality and external control relative to nearly all users.

· Analytic Applications are characterized by highly changeable and flexible ontologies, using large collections of mostly read-only instance data.

· Engineering Applications are characterized by again having transcendent source of structure, but as opposed to business applications their users control them primarily internally and they are considered more authoritative.

This analysis can be compared with a similar analysis performed by the W3C Web Ontology Working Group [1]. We believe that the six use cases and eight goals considered in [1] provide additional, and in some cases overlapping, examples, usage scenarios and objectives for the ODM.

	Use Case Clusters
	Characteristic Perspective Values
	
	
	
	
	
	
	

	
	
	Model Centric
	
	
	
	
	Application Centric
	
	
	

	
	Description
	Authoritativeness
	Structure
	Formality
	Model Dynamics
	Instance Dynamics
	Control
	Change-ability
	Coupling
	Focus
	Life Cycle

	2.1
	Business Applications
	
	From Outside
	Formal
	
	
	External
	
	
	
	

	2.1.1
	 Run-time Interoperation
	Least/Broad
	From Outside
	Formal
	Read-Only
	Volatile
	External
	Static
	Tight
	Information
	Real Time

	2.1.2
	Application Generation
	Most/Deep
	From Outside
	Formal
	Read-Only
	Read-Only
	External
	Static
	Loose
	???
	All

	2.1.3
	Ontology Lifecycle
	Middle/Broad& Deep
	From Outside
	Semi-Formal / Formal
	Read-Only
	Read-Only
	External
	Static
	Tight
	???
	Real Time

	2.2
	Analytic Applications
	
	
	
	Volatile
	Read-Only
	
	Dynamic
	Flexible
	
	

	2.2.1
	Emergent Property Discovery
	Broad & Deep
	From Inside
	Informal
	Volatile
	Read-Only
	Internal & External
	Dynamic
	Flexible
	Information
	Real Time

	2.2.2
	Exchange of Complex Data Sets
	Broad & Deep
	From Inside
	Informal
	Volatile
	Read-Only/ Volatile
	Internal & External
	Dynamic
	Flexible
	Information
	Real Time

	2.3
	Engineering Application
	Broad & Deep
	From Outside
	
	
	
	Internal
	
	
	
	

	2.3.1
	 Information System Development
	Broad & Deep
	From Outside
	Semi-Formal / Formal
	Read-Only
	Volatile
	Internal
	Changeable
	Tight
	Information
	Design Time

	2.3.2
	Ontology Analysis
	Broad & Deep
	From Outside
	Semi-Formal / Formal
	Volatile
	Volatile
	Internal
	Changeable
	Flexible
	???
	Design Time

Table – 2 Usage scenario perspective values

2.1. Business Applications

2.1.1. Run Time Interoperation

Externally focused information interoperability applications are typically characterized by strong de-coupling of the components realizing the applications. They are focused specifically on information rather than application integration (and here we include some semantic web service applications, which may involve composition of vocabularies, services and processes but not necessarily APIs or database schemas). Because the community using them must agree upon the ontologies in advance, their application tends to be static in nature rather than dynamic.

Perspectives that drive characterization of these scenarios include:

· The level of authoritativeness of the ontologies and information resources.

· The amount of control that community members have on the ontology and knowledge base evolution

· Whether or not there is a design time component to ontology development and usage

· Whether or not the knowledge bases and information resources that implement the ontologies are modified at run time (since the source of structure remains relatively unchanged in these cases, or the ontologies are only changed in a highly controlled, limited manner).

These applications may require mediation middleware that leverages the ontologies and knowledge bases that implement them, potentially on either side of the firewall – in next generation web services and electronic commerce architectures as well as in other cross-organizational applications, for example:

a) For semantically grounded information interoperability, supporting highly distributed, intra- and inter-organizational environments with dynamic participation of potential community members, (as when multiple emergency services organizations come together to address a specific crisis), with diverse and often conflicting organizational goals.

b) For semantically grounded discovery and composition of information and computing resources, including Web services (applicable in business process integration and grid computing).

c) In electronic commerce exchange applications based on stateful protocols such as EDI or Z39.50, where there are multiple players taking roles performing acts by sending and receiving messages whose content refers to a common world.

In these cases, we envision a number of agents and/or applications interoperating with one another using fully specified ontologies. Support for query interoperation across multiple, heterogeneous databases is considered a part of this scenario.

While the requirements for ontologies to support these kinds of applications are extensive, key features include: (1) the ability to represent situational concepts, such as player/actor – role – action – object – state, (2) the necessity for multiple representations and/or views of the same concepts and relations, and (3) separation of concerns, such as separating the vocabularies and semantics relevant to particular interfaces, protocols, processes, and services from the semantics of the domain.

2.1.2. Application Generation

A common worldview, universe of discourse, or domain is described by a set of ontologies, providing the context or situational environment required for use by some set of agents, services, and/or applications. These applications might be internally focused in very large organizations, such as within a specific hospital with multiple, loosely coupled clinics, but are more likely multi- or cross-organizational applications. Characteristics include:

· Authoritative environments, with tighter coupling between resources and applications than in cases that are less authoritative or involve broader domains, though likely on the “looser side” of the overall continuum.

· Ontologies shared among organizations are highly controlled from a standards perspective, but may be specialized by the individual organizations that use them within agreed parameters.

· The knowledge bases implementing the ontologies are likely to be dynamically modified, augmented at run time by new metadata, gathered or inferred by the applications using them.

· The ontologies themselves are likely to be deeper and narrower, with a high degree of formality in their definition, focused on the specific domain of interest or concepts and perspectives related to those domains.

For example:

a) Dynamic regulatory compliance and policy administration applications for security, logistics, manufacturing, financial services, or other industries.

b) Applications that support sharing clinical observation, test results, medical imagery, prescription and non-prescription drug information (with resolution support for interaction), relevant insurance coverage information, and so forth across clinical environments, enabling true continuity of patient care.

The ontologies used by the applications may be fully specified where they interoperate with external organizations and components, but not necessarily fully specified where the interaction is internal. Conceptual knowledge representing priorities and precedence operations, time and temporal relevance, rich manufacturing processes, and other complex notions may be required, depending on the domain and application requirements.

2.1.3. Ontology Lifecycle

In this scenario we are concerned with activity, which has as its principle objectives conceptual knowledge analysis, capture, representation, and maintenance. UML archives should be able to support rich models suitable for use in knowledge-based applications, intelligent agents, and semantic web services. Examples include:

a) Maintenance, storage and acrchiving of ontologies for legeal, administrative and historical pruposes,

b) Test suite generation, and

c) Audits and controllability analysis.

Ontological information will be included in a standard MOF repository for management, storage and archiving. This may be to satisfy legal or operations requirements to maintain version histories.

These types of applications require that Knowledge Engineers interact with Subject Matter Experts to collect knowledge to be captured. UML models provide a visual representation of ontologies facilitating interaction. The existence of meta-data standards, such as XMI and ODM, will support the development of tools specifically for Quality Assurance Engineers and Repository Librarians.

Full life-cycle support will be needed to provide managed and controlled progression from analysis, through design, implementation, test and deployment, continuing on through the supported systems maintenance period. Part of the lifecycle of ontologies must include collaboration with development teams and their tools, specifically in this case configuration and requirements management tools. Ideally, any ontology management tool will also be ontology aware. It will provide an inherent quality assurance capability by providing consistency checking and validation. IT will also provide mappings and similarity analysis support to integrate multiple internal and external ontologies into a federated web.

2.2. Analytic Applications

2.2.1. Emergent Property Discovery

By this we mean applications that analyze, observe, learn from and evolve as a result of, or manage other applications and environments. The ontologies required to support such applications include ontologies that express properties of these external applications or the resources they use. The environments may or may not be authoritative; the ontologies they use may be specific to the application or may be standard or utility ontologies used by a broader community. The knowledge bases that implement the ontologies are likely to be dynamically augmented with metadata gathered as a part of the work performed by these applications. External information resources and applications are accessed in a read-only mode.

a) Semantically grounded knowledge discovery and analysis (e.g., financial, market research, intelligence operations)

b) Semantics assisted search of data stored in databases or content stored on the Web (e.g., using domain ontologies to assist database search, using linguistic ontologies to assist Web content search)

c) Semantically assisted systems, network, and / or applications management.

d) Conflict discovery and prediction in information resources for self-service and manned support operations (e.g., technology call center operations, clinical response centers, drug interaction)

What these have in common is that the ontology is typically not directly expressed in the data of interest, but represents theories about the processes generating the data or emergent properties of the data. Requirements include representation of the objects in the ontology as rules, predicates, queries or patterns in the underlying primary data.

2.2.2. Exchange of Complex Data Sets

Applications in this class are primarily interested in the exchange of complex (multi-media) data in scientific, engineering or other cooperative work. The ontologies are typically used to describe the often complex multimedia containers for data, but typically not the contents or interpretation of the data, which is often either at issue or proprietary to particular players. (The OMG standards development process is an example of this kind of application.)

Here the ontology functions more like a rich type system. It would often be combined with ontologies of other kinds (for example an ontology of radiological images might be linked to SNOMED for medical records and insurance reimbursement purposes).

Requirements include representation of complex objects (aggregations of parts), and multiple inheritance where each semantic dimension or facet can have complex structure.

2.3. Engineering Applications

The requirements for ontology development environments need to consider both externally and internally focused applications, as externally focused but authoritative environments may require collaborative ontology development.

2.3.1. Information Systems Development

The kinds of applications considered here are those that use ontologies and knowledge bases to support enterprise systems design and interoperation. They may include:

a) Applications developed using a Model-Driven Architecture (MDA) methodology and tooling, where an application actually composes various components and/or creates software to implement a world that is described by one or more component ontologies.

b) Semantic integration of heterogeneous data sources and applications (involving diverse types of data schema formats and structures, applicable in information integration, data warehousing and enterprise application integration).

c) Application development for knowledge based systems, in general.

In the case of model-based applications, extent-descriptive predicates are needed to provide enough meta-information to exercise design options in the generated software (e.g., describing class size, probability of realization of optional classes). An example paradigm might reflect how an SQL query optimizer uses system catalog information to generate a query plan to satisfy the specification provided by an SQL query. Similar sorts of predicates are needed to represent quality-type meta-attributes in semantic web type applications (comprehensiveness, authoritativeness, currency).

2.3.2. Ontology Analysis

Applications in this class are intended for use by an information systems development team, for utilization in the development and exploitation of ontologies that make implicit design artifacts explicit, such as ontologies representing process or service vocabularies relevant to some set of components. Examples include:

a) Tools for ontology analysis, visualization, and interface generation.

b) Reverse engineering and design recovery applications.

 The ontologies are used throughout the enterprise system development life cycle process to augment and enhance the target system as well as to support validation and maintenance. Such ontologies should be complementary to and augment other UML modeling artifacts developed as part of the enterprise software development process. Knowledge engineering requirements may include some ontology development for traditional domain, process, or service ontologies, but may also include:

· Generation of standard ontology descriptions (e.g., OWL) from UML models.

· Generation of UML models from standard ontology descriptions (e.g., OWL).

· Integration of standard ontology descriptions (e.g., OWL) with UML models.

Key requirements for ontology development environments supporting such activities include:

· Collaborative development

· Concurrent access and ontology sharing capabilities, including configuration management and version control of ontologies in conjunction with other software models and artifacts at the atomic level within a given ontology, including deprecated and deleted ontology elements

· Forward and reverse engineering of ontologies throughout all phases of the software development lifecycle

· Ease of use, with as much transparency with respect to the knowledge engineering details as possible from the user perspective

· Interoperation with other tools in the software development environment; integrated development environments

· Localization support

· Cross-language support (ontology languages as opposed to natural or software languages, such as generation of ontologies in the XML/RDF(S)/OWL family of description logics languages, or in the Knowledge Interchange Format (KIF) where first or higher order logics are required)

· Support for ontology analysis, including deductive closure; ontology comparison, merging, alignment and transformation

· Support for import/reverse engineering of RDBMS schemas, XML schemas and other semi-structured resources as a basis for ontology development

3. Implications for an ODM

The diversity of the usage scenarios illustrates the wide applicability of ontologies within the domain of information systems. Any ODM must be able to address a broad range of ontological representations, not only those that are currently known, for example OWL and KIF, but to the extent possible those that may emerge in the future. Consideration of these diverse scenarios has lead to a number of general requirements for any ODM:

1. Support ontologies expressed in existing description logic, (e.g. OWL/DL) and higher order logic languages (e.g. OWL Full and KIF).

2. Provide a basis for information systems process descriptions to support interoperability, including such concepts as player, role, action, and object.

3. Support physical world models, including time, space, bulk or mass nouns like ‘water’, and things that do not have identifiable instances.

4. Support object models that have multiple facets of representations, conceptual versus representational classes.

5. Provide a basis for stateful representations, such as finite state automaton to support an autonomous agent’s world representation.

6. Model-based architectures require extent-descriptive predicates to provide a description of a resource in an ontology, then generating a specific instantiation of that resource.

7. Efficient mechanisms will be needed to represent large numbers of similar classes or instances.

8. Structures and tools to assemble and disassemble complex sets of scientific and multi-media data.

9. Ontology tools needs to support modules and version control.

These implied requirements, on their face could require considerably complexity in the ODM, however it is desired that a relatively simple approach be identified.

4. References

[1] OWL Web Ontology Language Usage scenarios and Requirements, W3C Candidate Recommendation, 18 August 2003, http://www.w3.org/TR/webont-req/

Page 1
12/2/2003

