
In the Name of Allah the Most Beneficent the Most Merciful.

Intelligent Software Agents

Final year thesis

BS Final

By: Syed Sumair Moiz

To: Jamal Hussain

Table Of Contents
3Thesis Abstract

4Preamble

4Problems Regarding Information Demand

6Possible Solutions

10Intelligent Software Agent Theory

10Introduction

11Definition

12Strong Notion of Agent

13What makes an Agent Intelligent

14Applications

151.
Agent Based Applications

15Email Handlers

15Usenet News Filtering Agent

162.
Entire Agent Systems

16The Info Agent

20Three Layer Model

21Overview of the Three Layer Model

21Advantages of Three Layer Model

22Deficiencies in Three Layer Model

23Significance of Middle Layer

26Agents Communication, Collaboration and Interaction

26Languages And Technologies

261. KQML and KIF

292. RDF (Resource Description Framework)

Thesis Abstract

The intelligent Software agents are future of information supply demand. The information is of utmost importance from the earliest of the world till now. Scientist, architects, engineers and even cooks do not want to re invent the wheel again and again. But how? Information is clustering on the internet, and in peoples computers every now and then. We have search engines(Old Technology) querying each and every server of the world(Internet) to gather information to themselves healthy and richer. But what happened when I write “Chinese food recipes” on a search engine site it displays me every thing then I have to filter those thousands of sites to get the appropriate knowledge.

Filtering information is sometimes a mathematical game or some time a physiological. If we can ever able to built some machine (Software) that can work under some human who can work for humans. Intelligent software agents are one of such machines that are replacing or I should say enhancing the search engines.

Thesis also encompasses how to save information to retrieve fast and accurate. How agents can communicate with other agents to work collectively.

Preamble

Problems Regarding Information Demand

Meeting information demand has become easier on one hand, but has also become more complicated and difficult on the other. Because of the emergence of information sources such as the world-wide computer network called the Internet everyone - in principle - can have access to a sheer inexhaustible pool of information. Typically, one would expect that because of this satisfying information demand has become easier.
The sheer endlessness of the information available through the Internet, which at first glance looks like its major strength, is at the same time one of its major weaknesses. The amounts of information that are at your disposal are too vast: information that is being sought is (probably) available somewhere, but often only parts of it can be retrieved, or sometimes nothing can be found at all. To put it more figuratively: the number of needles that can be found has increased, but so has the size of the haystack they are hidden in. The inquirers for information are being confronted with information overkill.

The current, conventional search methods do not seem to be able to tackle these problems. These methods are based on the principle that it is known which information is available (and which one is not) and where exactly it can be found. To make this possible, large information systems such as databases are supplied with (large) indexes to provide the user with this information. With the aid of such an index one can, at all times, look up whether certain information can or cannot be found in the database, and - if available - where it can be found.

On the Internet this strategy fails completely, the reasons for this being:

The dynamic nature of the information on Internet: information that cannot be found today, may become available tomorrow. And the reverse happens too: information that was available, may suddenly disappear without further notice, for instance because an Internet service has stopped its activities, or because information has been moved to a different, unknown location

The information and information services on the Internet are very heterogeneous: information on the Internet is being offered in many different kinds of formats and in many different ways. This makes it very difficult to search for information automatically, because every information format and every type of information service requires a different approach.

Possible Solutions

There are several ways to deal with the problems that have just been described. Most of the current solutions are of a strong ad hoc nature. By means of programs that roam the Internet (with flashy names like spider, worm or searchbot) meta-information is being gathered about everything that is available on it. The gathered information, characterised by a number of keywords (references) and perhaps some supplementary information, is then put into a large database. Anyone who is searching for some kind of information on the Internet can then try to localise relevant information by giving one or more query terms (keywords) to such a search engine.

Although search engines are a valuable service at this moment, they also have several disadvantages (which will become even more apparent in the future). A totally different solution for the problem as described in previous section, is the use of so-called Intelligent Software Agents. An agent is (usually) a software program that supports a user with the accomplishment of some task or activity.

"In the future, it [agents] is going to be the only way to search the Internet, because no matter how much better the Internet may be organised, it can't keep pace with the growth in information..."

Bob Johnson, analyst at Dataquest Inc.
Using agents when looking for information has certain advantages compared to current methods, such as using a search engine:

	Search Engine features
	Improvement(s) Intelligent Software Agents can offer:

	An information search is done, based on one or more keywords given by a user. This presupposes that the user is capable of formulating the right set of keywords to retrieve the wanted information. Querying with the wrong, too many, or too little keywords will cause many irrelevant information ('noise') to be retrieved or will not retrieve (very) relevant information as it does not contain these exact keywords.

	Agents are capable of searching information more intelligently, for instance because tools (such as a thesaurus) enable them to search on related terms as well, or even on concepts.
Agents will also use these tools to fine-tune, or even correct user queries (on the basis of a user model, or other user information).

	Information mapping is done by gathering (meta-)information about information and documents that are available on the Internet. This is a very time-consuming method that causes a lot of data traffic, it lacks efficiency (there are a lot of parties that use this method of gathering information, but they usually do not co-operate with others which means that they are reinventing the wheel many times), and it does not account very well for the dynamic nature of the Internet and the information that can be found on it.

	Individual user agents can create their own knowledge base about available information sources on the Internet, which is updated and expanded after every search. When information (i.e. documents) have moved to another location, agents will be able to find them, and update their knowledge base accordingly.
Furthermore, in the future agents will be able to communicate and co-operate with other agents (such as middle layer agents). This will enable them to perform tasks, such as information searches, quicker and more efficient, reducing network traffic. They will also be able to perform tasks (e.g. searches) directly at the source/service, leading to a further decrease of network traffic.

	The search for information is often limited to a few Internet services, such as the WWW. Finding information that is offered through other services (e.g. a 'Telnet-able' database), often means the user is left to his or her own devices.
	Agents can relief their human user of the need to worry about "clerical details", such as the way the various Internet service have to operated. Instead, he or she will only have to worry about the question what exactly is being sought (instead of worrying about where certain information may be found or how it should be obtained). The user's agent will worry about the rest.

	Search engines cannot always be reached: the server that a service resides on may be 'down', or it may be too busy on the Internet to get a connection. Regular users of the service will then have to switch to some other search engine, which probably requires a different way to be operated and may offer different services.

	As a user agent resides on a user's computer, it is always available to the user.
An agent can perform one or more tasks day and night, sometimes even in parallel. As looking for information on the Internet is such a time-consuming activity, having an agent do this job has many advantages, one of them being that an agent does not mind doing it continuously. A further advantage of agents is that they can detect and avoid peak-hours on the Internet.

	Search engines are domain-independent in the way they treat gathered information and in the way they enable users to search in it. Terms in gathered documents are lifted out of their context, and are stored as a mere list of individual keywords. A term like "information broker" is most likely stored as the two separate terms "information" and "broker" in the meta-information of the document that contains them. Someone searching for documents about an "information broker" will therefore also get documents where the words "information" and "broker" are used, but only as separate terms (e.g. as in "an introductory information text about stock brokers").

	Software agents will be able to search information based on contexts. They will deduce this context from user information (i.e. a built-up user model) or by using other services, such as a thesaurus service.

	The information on Internet is very dynamic: quite often search engines refer to information that has moved to another, unknown location, or has disappeared. Search engines do not learn from these searches, and they do not adjust themselves to their users.
Moreover, a user cannot receive information updates upon one or more topics, i.e. perform certain searches automatically at regular intervals.
Searching information this way, becomes a very time-consuming activity.

	User agents can adjust themselves to the preferences and wishes of individual users. Ideally this will lead to agents that will more and more adjust themselves to what a user wants and wishes, and what he or she is (usually) looking for, by learning from performed tasks (i.e. searches) and the way users react to the results of them.
Furthermore, agents are able to continuously scan the Internet for (newly available) information about topics a user is interested in.

Intelligent Software Agent Theory

Introduction

Intelligent software agents are a popular research object these days in such fields as psychology, sociology and computer science. Agents are most intensely studied in the discipline of Artificial Intelligence (AI). Strangely enough, it seems like the question what exactly an agent is, has only very recently been addressed seriously.

"It is in our best interests, as pioneers of this technology, to stratify the technology in such a way that it is readily marketable to consumers. If we utterly confuse consumers about what agent technology is (as is the case today) then we'll have a hard time fully developing the market potential."

J. Williams on the Software Agents Mailing List
Because of the fact that currently the term "agent" is no very well defined, it has become difficult for users to make a good estimation of what the possibilities of the agent technology are. At this moment, there is every appearance that there are more definitions than there are working examples of systems that could be called agent-based.

"In order to survive for the agent, there must be something that really distinguishes agents from other programs, otherwise agents will fail. Researchers, the public and companies will no longer accept things that are called agent and the market for agents will be very small or even not exist."

Wijnand van de Calseyde on the Software Agents Mailing List

Definition

There have been many different definitions of the term "agent" proposed with respect to the concept of software agents. Several of these will be briefly presented. The Software Agents Mailing List FAQ defines an agent shortly:

"An entity authorized to act on another's behalf."

That is a software agent is a piece of software which acts to accomplish tasks on behalf of its user and in a way where the user usually only needs to give high-level instructions, leaving the agent to deal with the specific task.

Another definition issued at the mailing list is somewhat more ambitious:

"A piece of software which performs a given task using information gleaned from its environment to act in a suitable manner so as to complete the task successfully. The software should be able to adapt itself based on changes occurring in its environment, so that a change in circumstances will still yield the intended result."

Strong Notion of Agent

The researchers generally mean an agent to be a computer system that, in addition to having the properties as they were previously identified, is either conceptualised or implemented using concepts that are more usually applied to humans. For example, it is quite common in AI to characterise an agent using mentalistic notions, such as knowledge, belief, intention, and obligation.

Another way of giving agents human-like attributes is to represent them visually by using techniques such as a cartoon-like graphical icon or an animated face. Research into this matter has shown that, although agents are pieces of software code, people like to deal with them as if they were dealing with other people (regardless of the type of agent interface that is being used).

Agents that fit the stronger notion of agent usually have one or more of the following characteristics:

Mobility: the ability of an agent to move around an electronic network.

Autonomy:This is perhaps one of the most commonly approved attributes. Agents operate without direct intervention of the user or others, they have an internal state and they have a non-trivial control of their own actions.

Benevolence: is the assumption that agents do not have conflicting goals, and that every agent will therefore always try to do what is asked of it.

Rationality: is (crudely) the assumption that an agent will act in order to achieve its goals and will not act in such a way as to prevent its goals being achieved - at least insofar as its beliefs permit.

Adaptivity: an agent should be able to adjust itself to the habits, working methods and preferences of its user.

Collaboration: an agent should not unthinkingly accept (and execute) instructions, but should take into account that the human user makes mistakes (e.g. give an order that contains conflicting goals), omits important information and/or provides ambiguous information. For instance, an agent should check things by asking questions to the user, or use a built-up user model to solve problems like these. An agent should even be allowed to refuse to execute certain tasks, because (for instance) they would put an unacceptable high load on the network resources or because it would cause damage to other users.

· Goal Orienrtedness: An agent accepts high-level requests from the user, but the decision of how to accomplish such a task is left to the agent.

Although no single agent possesses all these abilities, there are several prototype agents that posses quite a lot of them. See examples in later sections.

What makes an Agent Intelligent

What exactly makes an agent "intelligent" is something that is hard to define. It has been the subject of many discussions in the field of Artificial Intelligence, and a clear answer has yet to be found.
Yet, a workable definition of what makes an agent intelligent is given in “The Role of Intelligent Agents in the Information Infrastructure” by Gilbert, Aparicio, et al.. at IBM, United States, 1995.

"Intelligence is the degree of reasoning and learned behaviour: the agent's ability to accept the user's statement of goals and carry out the task delegated to it.
At a minimum, there can be some statement of preferences, perhaps in the form of rules, with an inference engine or some other reasoning mechanism to act on these preferences.
Higher levels of intelligence include a user model or some other form of understanding and reasoning about what a user wants done, and planning the means to achieve this goal.
Further out on the intelligence scale are systems that learn and adapt to their environment, both in terms of the user's objectives, and in terms of the resources available to the agent. Such a system might, like a human assistant, discover new relationships, connections, or concepts independently from the human user, and exploit these in anticipating and satisfying user needs."

Applications

The current applications of agents are of a rather experimental and ad hoc nature. Besides universities and research centres a considerable number of companies, like IBM and Microsoft, are doing research in the area of agents. To make sure their research projects will receive further financing, many researchers & developers of such companies (but this is also applicable on other parties, even non-commercial ones) are nowadays focusing on rather basic agent applications, as these lead to demonstrable results within a definite time.

We can categorise Application of intelligent agents as:

Agent based Applications

Entire agent systems

1. Agent Based Applications

Email Handlers

The idea is to have an agent, which learns to prioritize, forward, delete, sort and archive mail messages on behalf of the user. One of the first areas of the true agents evolved from handling of electronic mail. The agent would learn (adapt) by constantly monitoring the behaviour of the user. When an event occurs the agent responds to it in a way that has been memorized, if the event is new the agent might try to predict the likely action of the user. An example of an event might be an incoming email from a certain person, the agent would possibly generate an automatic reply and archive the email to a certain folder. The agent would learn more by asking input for courses of action taken. An example of such email-agent is Maxims in Macintosh environment.

Usenet News Filtering Agent

Like the rest of the Internet, the Usenet news have grown beyond manual controls. The vast news feed has attracted attention in agent developers also. Newt is an experimental Usenet news-filtering agent, which uses content-based filtering. Newt finds articles that are similar to an existing and constantly developing user profile, after that the top scoring articles are presented to the user. Newt learns more from user preferences by asking feedback from presented articles; the user can also present examples from articles that the agent did not retrieve. Newt tries to tackle the problem of serendipity by adding together keyword fields from different articles (crossover) and by mutating existing keyword fields to slightly different new ones (mutation).

2. Entire Agent Systems

The Info Agent

In D'Aloisi and Giannini present a system that supports users in retrieving data in distributed and heterogeneous archives and repositories. The architecture is based on the metaphor of software agents and incorporates techniques from other research fields such as distributed architectures, relevance feedback and active interfaces.
When designing and developing the information agents for their system, the aim was to make the system suitable for different types of users with regard to local and external searches for information and data.
One single agent, called the Info Agent, is used as the interface between the system and the user. The Info Agent, in its turn, uses a so called Interface Agent for handling the communication with the user. This agent is like a personal assistant who is responsible for handling user needs, and for the connection of the user with the agent(s) that will help him solve his problem. The number of types of agents the Interface Agent has to deal with, depends on the aims of the system. As a result of the distributed and agent-based architecture of the system the whole structure of it can be easily changed or updated by adjusting the Interface Agent only.

The Interface Agent is able to reason about the user's requests and to understand what type of need he is expressing: it singles out which of the two other agents in the system is able to solve the current problem and sends to it its interpretation of the query (using KQML - the Knowledge Query and Manipulation Language). These other two agents are the Internal Services Agent and the External Retrieval Agent.

[image: image1.png]
Figure 1 - The structure of the Info Agent system
The Internal Services Agent knows the structure of the archives available in a given organisation: it is in charge of retrieving scientific and administrative data, performing some classes of actions (such as finding available printers) and supporting the user in compiling internal forms.
The External Retrieval Agent is in charge of retrieving documents on the network. It can work in two modalities: retrieval (or query) mode and surfing mode. In the first case, it searches for a specific document following a query asked by the user: this service is activated by a direct user request. In the second case, the agent navigates the network searching for documents that, in its opinion, could interest the user. The search is driven by a user's profile built and maintained by the Interface Agent.

Refinement of this profile takes place according to how the user manages the data that the agent finds for and/or proposes him. Using the user's profile, the Interface Agent charges specialised agents to navigate through the network hunting for information that could be of some interest for the user. In this way, the user can be alerted when new data that can concern his interest area(s) appear.
Currently, both the External Retrieval Agent as well as the Internal Services Agent utilise the same software tool to perform their search: it is a public-domain software called Harvest, which is "an integrated set of tools to gather, extract, organise, search, cache and replicate relevant information across the Internet". Nevertheless it is also possible to provide the system with other search methods or systems to be used alone or along with Harvest: that is an advantage due to the modular and distributed architecture of the whole framework. The number of agents co-ordinated by the Interface Agent is also a part of the system that can quite easily be changed.

In a nutshell the Interface Agent has the following crucial system tasks:

· Assisting the user in performing requests and compiling his profile.
The user does not need to be aware of what is available on the network, how this information is structured and organised, where the repositories are localised, or what retrieval services are at disposal. This is the responsibility of the Interface Agent.

· Deducing the user's information needs by both communicating with him and observing his "behaviour".
The agent observes the user's behaviour and the current state of the world to deduce what actions are to be performed and how to modify the current user's profile.

· Translating the requests of the user and selecting the agent(s) able to solve his problem(s).
This allows the user to completely ignore the structure of the system he is interacting with. Moreover he can also ignore how the system works. The user interacts with a personalised interface that knows how to satisfy his requests without bothering him with all sorts of details.

· Presenting and storing the retrieved data.
This avoids the user to know the different formats (such as WordPerfect, Postscript or LaTeX format) and how to manage a document to have a printable or showable version. The Info Agent deals with each retrieved document according to its format and transforms it into a form the user can utilise (e.g. convert a LaTeX document into WordPerfect format).

The Info Agent resembles, in a number of ways, the Softbot. One of the differences between these two agents is that the Info Agent focuses mainly on the user, whereas the Softbot focuses mainly on the requests of the user. Another difference is that the Info Agent searches in both structured as well as unstructured information (documents), whereas the Softbot "limits" itself to structured information only.

Three Layer Model

Software agents that we have discussed in the previous section are mainly two layered i.e. the user agent directly communicates with system agent (i.e. supplies information) to retrieve information. The system agents have to be designed in such a way that the user agents can communicate with them and the information suppliers agents are not independent in their designing as well as user agents.

A good and revised version of agent’s architecture is the Three layer model.

The three layers are:

The demand side (of information), i.e. the information searcher or user; here, agents' tasks are to find out exactly what users are looking for, what they want, if they have any preferences with regard to the information needed, etcetera.

The supply side (of information), i.e. the individual information sources and suppliers; here, an agent's tasks are to make an exact inventory of (the kinds of) services and information that are being offered by its supplier, to keep track of newly added information, etcetera.

Intermediaries; here agents mediate between agents (of the other two layers), i.e. act as (information) intermediaries between (human or electronic) users and suppliers.

[image: image2.png]
Overview of the Three Layer Model

Advantages of Three Layer Model

The three layer model has several (major) plus points:

Each of the three layers only has to concern itself with doing what it is best at.

The model itself (but the same goes for the agents that are used in it) does not enforce a specific type of software or hardware.

By using this model the need for users disappears to learn the way in which the individual Internet services have to be operated.

It is easy to create new information structures or to modify existing ones without endangering the open (flexible) nature of the whole system.

To implement the three layer model no interim period is needed to do so, nor does the fact that it needs to be backward-compatible with the current (two layer) structure of the Internet have any negative influences on it.

Deficiencies in Three Layer Model

Significance of Middle Layer

The main functions of the middle layer are:

· Dynamically matching user demand and provider's supply in the best possible way.
Suppliers and users (i.e. their agents) can continuously issue and retract information needs and capabilities. Information does not become stale and the flow of information is flexible and dynamic. This is particularly useful in situations where sources and information change rapidly, such as in areas like commerce, product development and crisis management.

· Unifying and possibly processing suppliers' responses to queries to produce an appropriate result.
The content of user requests and supplier 'advertisements' may not align perfectly. So, satisfying a user's request may involve aggregating, joining or abstracting the information to produce an appropriate result. However, it should be noted that normally intermediary agents should not be processing queries, unless this is explicitly requested in a query.
Processing could also take place when the result of a query consists of a large number of items. Sending all these items over the network to a user (agent), would lead to undesirable waste of bandwidth, as it is very unlikely that a user (agent) would want to receive that many items. The intermediary agent might then ask the user (agent) to make refinements or add some constraints to the initial query.

· Current Awareness, i.e. actively notify users of information changes.
Users will be able to request (agents in) the middle layer to notify them regularly, or maybe even instantly, when new information about certain topics has become available or when a supplier has sent an advertisement stating he offers information or services matching certain keywords or topics.
There is quite some controversy about the question whether or not a supplier should be able to receive a similar service as well, i.e. suppliers could request to be notified when users have stated queries, or have asked to receive notifications, which match information or services that are provided by this particular supplier. Although there may be users who find this convenient, as they can get in touch with suppliers who can offer the information they are looking for, there are many other users which would not be very pleased with this invasion on their privacy. Therefore, a lot of thought should be given to this dilemma and a lot of things will need to be settled, before such a service should be offered to suppliers as well.

· Bring users and suppliers together.
This activity is more or less an extension of the first function. It means that a user may ask an intermediary agent to recommend/name a supplier that is likely to satisfy some request without giving a specific query. The actual queries then take place directly between the supplier and the user.
Or a user might ask an intermediary agent to forward a request to a capable supplier with the stipulation that subsequent replies are to be sent directly to the user himself.

Agents Communication, Collaboration and Interaction

No matter what attributes and views are considered necessary for agenthood, there still exists a common need for agent interaction and interoperation. Some views of agenthood even go so far as to suggest that entities are not agents if they are not able to communicate properly with an agent communication language.

For software agents to interact and interoperate effectively three distinct components are required:

A common language.

A common understanding of the knowledge exchanged.

An ability to exchange whatever is included in the two previous requirements.

Languages And Technologies

1. KQML and KIF

The foundation of the Knowledge-Sharing Effort-consortium (KSE), sponsored by Advanced Research Projects Agency (ARPA) among others. KSE is an initiative to develop technical infrastructure to support knowledge sharing among systems. The KSE is organized around three working groups, which address complementary problems:

The Interlingua Group, which is developing a common language for expressing the content of a knowledge-base, as a result it has published Knowledge Interchange Format (KIF)

The Shared, Reusable Knowledge Bases Group, which is concerned with facilitating consensus on the content of sharable knowledge bases

The External Interfaces Group, which is interested in run-time interaction between knowledge-based systems, as a result it has published Knowledge Query and Manipulation Language

The purpose of KIF is to act as a common language of applications in expressing knowledge, and to act as a common interchange format so that translations to and from KIF are possible. KIF resembles first order predicate logic, but it has some extensions to it. With KIF one can express simple data, like n-tuples of a database or more complicated information including the basic arithmetic and logical operators. In addition to these KIF can be used for the encoding of knowledge about knowledge (for example to assert interest in receiving certain relations) and it can also be used to write scripts for the agents to follow.

Sharing content requires more than a formalism (KIF) and a communication language (KQML). That something is a common ontology, which refers to an explicit specification of the ontological commitments of a set of programs. Ontologies define a set of classes, functions and object constants for some domain of discourse and includes an axiomatization to constrain the interpretation. Domains of discourse could for example be medicine or biology. This way the sentences of the resulting language (KIF+vocabulary and theory from the ontologies) can be interpreted unambiguously an independent of context.

The KQML is a message format and a message-handling protocol to support run-time knowledge sharing among agents.

The KQML is divided into three layers:
1. The content layer.
2. The message layer.
3. The communication layer.

The content layer handles the content of the message in the programs own representation language (KIF or whatever). The message layer encodes messages that an application wants to transmit to another. The message layer determines the interactions one can have with other KQML-speaking entities; including the specification of the protocol to be used deliver the message, the performative that the sender attaches to the content, the description of the content language, the specification of the assumed ontology, and possibly some description of the content.

 An example of a KQML message is shown below:

(ask-one

:sender joe

:content (PRICE IBM ?price)

:receiver stock-server

:reply-with ibm-stock

:language LPROLOG

:ontology NYSE-TICKS)

The syntax of the language is not significant, because the language is relatively simple. The initial element is the performative (ask-one in this case), which is the action the sender requests to the receiver. The performatives allow the sender to make assertions, queries, and commands, which for example ask, tell, deny, delete, or commit protocol oriented tasks. Following the performative are its arguments in keyword/value pairs.

KQML supports a variety of interprocess information exchange protocols. The simplest case is a normal client-server form of interaction. Another case is when the servers reply isn't a complete answer, but a handle which allows the client to ask for the components of the reply one at the time, that is a synchronous communication between agents. Finally, there is the case where the client subscribes to a server's output and an indefinite number of asynchronous replies arrive at regular intervals.

KQML supports a wide variety of different agent architectures. There is a small number of performatives, which are used by the agents to describe the information requirements and capabilities. These performatives used with agents called communication facilitators make possible multiple different architectures of agent interaction and interoperation. A facilitator is a special agent, which performs various communication services. For example a facilitator might maintain a registry of sevice names, forward messages to named services, route messages based on content, and provide service mediation and translation. If an agent A would like to know the truth of sentence X, an agent B would have X in its knowledge-base. If A is aware of B and knows it is appropriate to send a query about X to B, there is no need for a facilitator: A send query to B and receives response. If, however, A is not aware of available agents, or which agent have X in their knowledge-bases, or how to contact those other agents, there are a variety of approaches available with the help of facilitators. Facilitator might hold the knowledge of X received from B earlier and return this information by request to A, or the facilitator might ask B to send response to A upon the request from A, or the facilitator might return a reference to B upon the request from A. The course of action depends on the performative used by A; notice that there are more schemes than the ones mentioned.

KQML has been used in a variety of applications ranging from hardware and software systems to military transportation logistics and to cooperative information access planning and retrieval. Most of these applications have been of experimental or prototypical nature. Even though there are other communication languages and there is no certainty of whether KIF, KQML and ontology combination will become widely accepted, they succeed in partitioning the original problem to three levels, which appears to be a reasonable approach.

3. RDF (Resource Description Framework)

RDF is very simple. It is no more than a way to express and process a series of simple assertions. For example: This article is authored by Mufti Taqi Usmani.

This is called a statement in RDF and has three structural parts: a subject ("this article"), a predicate ("is authored by"), and an object ("Mufti Taqi Usman"). This is a familiar breakdown of such assertions, whether in the field of formal logic or grammar. Indeed, RDF is nothing more than an application of long study in such fields aimed at describing resources, which consist of any item accessible through the Web.

In RDF, resources are represented by Uniform Resource Identifiers (URIs), of which URLs are a subset. The subject of RDF statements must actually be a resource, so the

above English statement could be turned into an RDF statement illustrated in Figure 1.

Simple RDF Model

Listing 1: XML serialization of the RDF model in figure 1

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://schemas.rdf.albalagh.net/rdf/">

 <rdf:Description about="http://albalagh.net/zakatproblems">

 <authored-by>

 <rdf:Description ID="http://MuftiTaqiUsmani.com">

 <name>Mufti Taqi Usmani</name>

 <nationality>Pakistani</nationality>

 </rdf:Description>

 </authored-by>

 </rdf:Description>
</rdf:RDF>

3. DAML (DARPA Agent Markup Language)

People have been researching RDF for use as a resource language for semantic web. But RDF is not better than meta-tags at each web page. Researchers thinks that since it’s an application of a XML it can easily defined every thing on the web. But RDF is not that rich to accommodate every thing. So some researchers at DARPA () invented a new application of XML and an enhanced version of RDF to define all ontologies is DAML, some companies developed some APIs to query these DAML and this technology is now accepting. Some descriptions of DAML is given in the next two or three sections of my thesis.

Following difference chart between KQML,RDF and DAML that will explain the DAML more elaborately.

A paper has been published related to this work and can be found at [http://www.isi.edu/expect/web/semanticweb/paper.pdf] A few changes have been made to the table shown below.

	Dimension
	KQML
	RDF (Schema)
	DAML
	Notes

	Contexts
	KQML is an application of PROLOG.

It can query the KIF (Knowledge interchange format) that is very much similar to prolog Knowledge Base.

	RDF uses XML Namespaces.

RDF Syntax Namespace
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

RDF Schema Namespace
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"

Note: In RDF, the namespace URI reference also identifies the location of the RDF schema

	DAML also uses XML Namespaces.

It uses RDF & RDF Schema elements by referring to
their respective Namespaces.

The latest DAML Namespace
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

In DAML, we have to Import ontologies to be able to use the classes defined in the ontology.
	

	Object Classes & Properties
	NO Applicable in KQML and KIF.
	Resource is the top level class.
(http://www.w3.org/2001/01/rdf-schema#Resource)

Cycles in class hierarchy were not allowed till a little while ago. Latest revisions to the RDF spec allow this.
	DAML also has Classes & Properties.
Classes can also be a subClassOf an anonymous class created due to a 'Restriction' on the set of all 'Things'.

Two kinds of Properties are defined:
ObjectProperties (Relate an object to another object - the value of the property is also an object)
&
DatatypeProperties (Relate an object to a primitive data type - the value of the property is a primitive data type)

Cycles in the class hierarchy are allowed.
	

	Inheritance
	
	A class can be a subClassOf other classes (multiple inheritance is allowed)

Properties can also be subPropertyOf other properties.

	Same as in RDF.
	

	Property / Element Range
	
	Can only be specified globally
<rdfs:range....>

Multiple range statements imply conjunction (i.e. all of them should be satisfied)

	Can be specified globally (<rdfs:range...>)
as well as locally
 <daml:Restriction>
 <daml:onProperty...><daml:toClass....>
 </daml:Restriction>

Multiple range statements imply conjunction (i.e. all of them should be satisfied)

	Range specifies the kinds of values (elements / classes / datatypes) the property can have.

	Property / Element Domain
	
	Can only be specified globally
<rdfs:domain....>

Multiple domain statements imply conjunction (i.e. all of them should be satisfied)

	Can be specified globally (<rdfs:domain...>).

Multiple domain statements imply conjuction (i.e. all of them should be satisfied)

	Domain specifies which elements / classes can have the particular property.

	Property / Element Cardinality
	
	Not defined in the core RDF Schema. By default there are no cardinality restrictions on properties.

However, new constraints like these can be specified by making them a subClassOf the 'ConstraintProperty' Class.

	Can be specified locally
minCardinality, maxCardinality, cardinality

Can also be specified globally although only as a UniqueProperty (single valued i.e. having cardinality of 1).

	The cardinality of a property specifies the number of occurences of the property/element for a certain class/element.

	Basic Datatypes
	
	The core RDF Schema only includes 'Literals' which is the set of all strings.

	Allows the use of XMLSchema Datatypes by just referring to the XMLSchema URI.

	

	Enumeration of Property Values
	
	Not possible.
	Enumeration of property types is possible with the <oneOf rdf:ParseType="daml:collection"...> tag
It is also possible to simply point to an enumerated data type declared using XMLSchema.
	An Enumeration restricts the value space of a property to a certain set of values.

	Ordered Data Set
	
	Data Set ordered with the <rdf:Seq...> tag

	Can use the <daml:list> tag
	

	Bounded Lists
	
	Not possible to specify.
	Possible with the <daml:collection> tag
	

	Transitive Properties
	
	Cannot be stated.
	Possible with the <daml:TransitiveProperty> tag

	

	Negation
	
	Not present.
	Possible with the <daml:complementOf..> tag

	Negation implies the absence of some element (ex. no Car is a person)

	Disjunctive / Disjoint Classes
	
	Can use a Bag to Indicate unordered collections (or unions of properties).

However, we cannot have a class as a union of 2 classes.
	A Class can be a union of 2 other Classes. Possible with the <unionOf...> tag.
We can represent disjoint unions with the <disjointUnionOf...> tag.
	

DAML Application

(The Motor Market)

From now on my thesis will focus on DAML. In this section I will be explaining to you a DAML Application with agents communication and collaboration with each other.

Building Scenario

The Application was an enhancement of a B2B project “The Motor Market “ (MM) encompasses all sorts of auto-vehicles in it stores. The site also holds auctions for different vehicles continuously.

The system follows the three layer model.

1. Suppliers Agents.

2. Middle layer agents.

3. User Agents.

Middle layer agents.

The MM is actually contains some hidden agents only visible to user agents and as well as supplier agents.

These agents distribute the information on following bases.

1. Regional

2. Cost of

The Semantic web (information) at different vehicles stores follows the following DAML ontology.

http://albalagh.net/zakatproblems

Authored By

Mufti Taqi Usmani

PAGE
36

