
the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

1 of 12 18/08/2003 16:39

micro tutorial: what you need to
know about the bidi algorithm
and inline markup

definitions - visual vs logical - how the algorithm works -

where help is needed - the bidi override -

numbers are special

nearby: ishida home - ishida writings - script tutorial -

w3c i18n - unicode

alternate: PDF version

This tutorial first describes some of the basic

principles underlying how the Unicode bidirectional

algorithm works. Then it looks at some of the more

common scenarios where the bidi algorithm requires

help through the addition of markup or control codes.

Although we try to take a markup independent view

here, most of the examples will use XHTML, since it is

widely recognisable. For advice relative to a specific

markup language see the sidebar.

definitions

Bidirectional text is commonplace right-to-left scripts

such as Arabic, Hebrew, Syriac, and Thaana.

Numerous different languages are written with these

scripts.

Any embedded text from a left-to-right script and all

numbers run left-to-right within the general right-to-left

flow. Of course, the English text on this page also

contains bidirectional text where it includes Arabic and

Hebrew examples.

The following example illustrates these switches in

directionality.

got bidi
support?

, הבינאום

W3C ا������

If the above two
lines show
more than font
differences
your browser
won't display
the Arabic and
Hebrew
examples
correctly. Read
the PDF
version instead.

useful links

faqs

guidelines

unicode stuff

unicode & xml

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

2 of 12 18/08/2003 16:39

Example

We will use the term bidi to mean 'bidirectional'. We

will also use RTL for 'right-to-left' and LTR for

'left-to-right'.

visual vs. logical order

The bidi algorithm works on logically ordered text. If

you use visual ordering there is no point reading

further (except that it could make your life a whole lot

easier).

Visual ordering of text was a common way of

representing Hebrew in old user agents that didn't

support the Unicode bidi algorithm. It still persists to a

degree today, out of habit. Characters making up the

text were stored in the source code in the same order

you would expect to see them displayed.

For example, take some Hebrew text with mixed

directionality.

W3C, פעילות הבינאום

If you looked at the characters in memory, one by one,

you would see the following for visually ordered text.

Hebrew text would have to be typed backwards.

W3C, פעילות הבינאו�

Visual ordering isn't really appropriate for Arabic, since

the Arabic letters are all joined up and this behaviour

is not likely to work correctly when the characters are

ordered visually.

The biggest issue with visual ordering of flowing text is

that it requires the author to disable any line wrapping

and to explicitly right-align text in paragraphs and table

cells. It also requires the order of table columns to be

manually reversed when translating to another

language. Here is an example written in XHTML:

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

3 of 12 18/08/2003 16:39

<p style="text-align:right">

,INRIA-מחליפה את שירותי הארחה באירופה מ W3C

W3C-השינוי מאפשר ל .ERCIM-הממוקמת בצרפת, ל< br/>

</ br>להעמיק את קשרי המחקר ברחבי אירופה, תו� שמירה

</ br>על הקשר ההיסטורי החזק ע� INRIA, אחד ממייסדי

ERCIM. השינוי יתבצע ב 1 לינואר 2003.

</p>

The result is very fragile code that is difficult to

maintain. For example, if you wanted to add a few

words on the second line of this paragraph, you would

have to move text from the end of that line to the line

that followed it, and repeat that process for every

remaining line in the paragraph.

Logical ordering is a much better approach. In this

approach text is stored in memory in the order in

which it would normally be typed (and usually

pronounced). Thus for the example above the

characters in memory would be stored as follows:

�ואניבה תוליעפ , W3C

The Unicode bidirectional algorithm would then

produce the correct visual display shown at the

beginning of this section.

how the bidi algorithm works

Here we introduce some important basic concepts. If it

seems boring, stick with it because without

understanding this stuff properly you'll get lost when

you need to write marked up bidi text.

directional context

The result of the bidirectional algorithm will depend on

the overall directional context of the paragraph, block

or page in which it is applied.

In XHTML that context would normally be expressed

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

4 of 12 18/08/2003 16:39

by adding nothing to the html tag, in which case the

default directionality is LTR, or adding dir="rtl" to the

html tag, in which case all the elements in the

document will inherit a context of RTL. The context

may be changed later by using the dir attribute on the

relevant block element.

The reason this is important will become clear in a

moment. First we must explore some additional

concepts.

directional typing of characters

Each character in Unicode has an associated

directional property. Most letters are strongly typed

as LTR. Letters from bidirectional scripts are strongly

typed as RTL.

Spaces and punctuation do not have LTR and RLT

forms in Unicode, but may be used in either type of

script. They are therefore classed as neutral.

We already know that a sequence of Latin characters

is rendered (ie. displayed) one after the other from left

to right (we can see that on this page). On the other

hand, the bidi algorithm will render a sequence of

strongly typed RTL characters one after the other from

right to left.

When text with different directionality is mixed inline,

the bidi algorithm renders each sequence of

characters with the same directionality as a separate

directional run. So in the following example there are

three directional runs:

bahrain �
� kuwait

Directional runs are ordered according to the overall

context. In the example above, that has an overall

context of LTR, you would read 'bahrain', then '��� '

(RTL), then 'kuwait'. Note that you don't need any

markup or styling to make this happen.

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

5 of 12 18/08/2003 16:39

neutral characters

This is where things begin to get interesting. When the

bidi algorithm encounters characters with neutral

directional properties (such as spaces and

punctuation) it works out how to handle them by

looking at the surrounding characters.

A neutral character between two strongly typed RTL

characters will be treated as a RTL character itself,

and will have the effect of extending the directional

run. This is why the three arabic words in this LTR

phrase are read from right to left. (The first Arabic

word you read is ح���� then ��	�
� then �	�
(.ا

The title is ح ������ ا�������� in Arabic.

Note that you still don't need any markup or styling for

this. There are still only three directional runs here.

The really interesting part comes when a space or

punctuation falls between two strongly typed

characters with different directionality. In such a case

they will be treated as if they have the directionality of

the overall paragraph or context. Even if there are

several neutral characters between the two different

strongly typed characters, they will all be treated in the

same way.

This has the effect of creating a boundary between

directional runs.

where the algorithm needs help

The bidi algorithm will handle text perfectly well in

most situtations, and typically no special markup or

other device is needed other than to set the overall

direction for the document. You would be very lucky,

however, if you got off that easily all the time.

neutrals that get misplaced

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

6 of 12 18/08/2003 16:39

Let's introduce some punctuation to the Arabic phrase

in the last example. By default we will see the

following:

The title is "ح ������ ا��������!" in Arabic.

The quotation marks are OK, but the exclamation

mark is in the wrong position. It should appear to the

left of the Arabic text.

Given our understanding of the bidi algorithm we can

easily understand why this happened. Because the

exclamation mark was typed in between the last RTL

letter 'ب' (on the left) and the LTR letter 'i' (of the word

'in') its directionality is determined by the overall

context of the paragraph (here LTR). Note that it

makes no difference that there are actually two

punctuation characters and a space in this position -

they are all neutrals and so are all affected the same

way. Because the exclamation mark is seen as LTR it

joins the directional run that includes the text 'in

Arabic'.

To fix this it would be useful to be able to type an

invisible, strongly-typed RTL character after the

exclamation mark. That way the exclamation mark

would be interpreted as RTL and join the Arabic

directional run.

It just so happens that there is such a character - the

Unicode character U+200F, called the

RIGHT-TO-LEFT MARK (RLM). There is a similar

character, U+200E, called the LEFT-TO-RIGHT MARK

(LRM).

Because the character is invisible it is typically better

to actually type in a numeric character reference

(‏) or, if available, a character entity (such as

‏ in XHTML). In the following example ‏ has

been added after the exclamation mark and the result

looks fine:

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

7 of 12 18/08/2003 16:39

The title is " !����ح ������ ا���� " in Arabic.

The title is " !����ح ������ ا���� " in Arabic.

neutrals with an identity crisis

In our next example the list order is incorrect because

the first two Arabic words should be reversed and the

intervening comma, which is part of the English text,

should appear immediately to the right of the first

word.

The names of these states in Arabic are

�
� ,�����ا� and ����.respectively ا�

The reason for the failure is that, with a strongly typed

right-to-left (RTL) character on either side, the

bidirectional algorithm sees the neutral comma as part

of the Arabic text. In fact it is part of the English text,

and should mark the boundary of two directional runs

in Arabic. We actually find ourselves in the opposite

situation to that described in the previous section.

The solution is to use another invisible Unicode

character, this time the LEFT-TO-RIGHT MARK, next

to the comma. This puts our neutral punctuation

between strongly typed RTL and LTR characters and

forces it to take on the directionality of the overall

context, which is the English LTR flow. This breaks the

Arabic words into two separate directional runs, which

are ordered LTR in accordance with the prevailing

direction of the paragraph.

The names of these states in Arabic are

�
�, ������ and ا����.respectively ,ا�

Again, it might be better to use an NCR (‎) or

a character entity (such as ‎) if available.

once again, together

The examples we have used so far have been English

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

8 of 12 18/08/2003 16:39

and LTR based. The same principles apply for RTL

text in languages such as Hebrew and Arabic. Lets

see one more example.

In the following Hebrew text the parentheses look a

real mess.

W3C (World Wide Web Consortium(

.ERCIM- מעביר את שירותי הארחה באירופה ל

In addition, the Hebrew-speaking writer of this text

really wants the word 'W3C' to be to the right, outside

the parentheses as shown here:

W3C)World Wide Web Consortium(

.ERCIM- מעביר את שירותי הארחה באירופה ל

It looks like this is going to be incredibly complicated to

sort out, but actually the solution is trivial. Just insert

an RLM after 'W3C' and you're done. It's really that

simple!

If you're not convinced, here's the explanation. The

RLM after 'W3C' makes this piece of LTR text a

separate directional flow. Remember that flows will be

ordered right-to-left because this is the overall

paragraph direction. Since the 'W3C' text was typed in

first, that now appears farthest to the right. The paren

is now between strongly typed RTL and LTR

characters, and so also takes on the directionality of

the overall paragraph, RTL. So that comes next. Then

comes the unbroken LTR directional flow which is the

stuff inside the parens.

(The changed direction of the right-most parenthesis

comes automatically. The glyph used for these

'mirrored characters' changes according to its

directionality. It's still the same character.)

nesting directional runs

The unicode bidi algorithm and the directional markers

work quite well when there is only a single level of

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

9 of 12 18/08/2003 16:39

mixed text. If you have a situation where there are two

or more nested levels of directional text you will need

a different solution. Here is an example of incorrectly

ordered text:

The title says "פעילות הבינאום, W3C" in

Hebrew.

The order of the two Hebrew words is correct, but the

text 'W3C' should appear on the left hand side of the

quotation and the comma should appear between the

Hebrew text and 'W3C'. In other words, the desired

result is:

The title says " W3C, פעילות הבינאום " in

Hebrew.

The problem arises because the directional flows are

being ordered according to the LTR context of the

paragraph. Inside the Hebrew quotation, however, the

correct default ordering should be RTL.

To resolve this problem we need to open a new

embedding level. In XHTML this would be done by

enclosing the quotation in markup and assigning it a

directionality of RTL using the dir attribute.

The title says "<span

dir="rtl"> W3Cפעילות הבינאו�, "

in Hebrew.

In markup languages other than XHTML/HTML you

may find a similar attribute to which you can apply

styling to achieve the correct effect. If you don't have

such an attribute you may have to resort to individually

styling the appropriate inline markup, but it would

probably be better to lobby your markup developer to

provide you with one.

There are Unicode control characters you could use to

achieve the same result, but because they create

states with invisible boundaries this is not

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

10 of 12 18/08/2003 16:39

recommended.

overriding the algorithm

There may be occasions where you don't want the bidi

algorithm to do its reordering work at all. In these

cases you need some additional markup to surround

the text you want left unordered.

In XHMTL 1.0 this is achieved using the inline bdo

element. In XHTML 2 it will be implemented as a value

of rlo or lro on the direction attribute, enabling it to be

applied to any element. Again, there are Unicode

control characters you could use to achieve the same

result, but because they create states with invisible

boundaries this is not recommended.

The examples above that show the characters as

ordered in memory use the bdo tag to achieve that

effect. For example, to show the underlying sequence

of characters for:

W3C, פעילות הבינאום

We would use the following markup in XHTML 1.0:

<p><bdo dir="ltr">,פעילות הבינאו�

W3C</bdo></p>

The result would be:

םואניבה תוליעפ , W3C

numbers are a little special

Numbers in RTL scripts run left-to-right within the

right-to-left flow, but they are handled a little differently

than words by the bidi algorithm. They are said to have

weak directionality. The following two examples

illustrate this difference. Comparison of the two cases

shows the words on either side of the fourth item in

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

11 of 12 18/08/2003 16:39

the sequence have been reversed. The only difference

between the two sentences in memory is the use of

'1234' versus 'four'.

one two %&'& four %()*

one two %&'&1234%()*

In the first example the letters in the word 'four' are

strongly typed and therefore break the two Arabic

words into separate directional runs, ordered left to

right as per the paragraph context.

In the second example, the weakly typed number

'1234' is seen as part of the Arabic text, so the two

Arabic words are treated as part of the same

directional run - even though the sequence of digits

runs LTR, as in memory.

This only happens in RTL text.

Sounds complicated? Don't worry, usually the bidi

algorithm will just take care of things for you. I really

only included this section for those who notice the

difference and wonder what's going on.

Note also that alongside a number certain otherwise

neutral characters, such as currency symbols, will be

treated as part of the number rather than a neutral .

Last modified 2003/07/23 by Richard Ishida.

the bidi algorithm and markup file:///C:/Documents%20and%20Settings/Ishida/My%...

12 of 12 18/08/2003 16:39

<p style="text-align:right">

,INRIA-מחליפה את שירותי הארחה באירופה מ W3C
hkkjhkjhkjhkhkj khkjh kjh k

W3C-השינוי מאפשר ל .ERCIM-הממוקמת בצרפת, ל< br/>

</ br>להעמיק את קשרי המחקר ברחבי אירופה, תו� שמירה

</ br>על הקשר ההיסטורי החזק ע� INRIA, אחד ממייסדי

ERCIM. השינוי יתבצע ב 1 לינואר 2003.

</p>

 <p style="text-align:right"> ,INRIA-מחליפה את שירותי הארחה באירופה מ W3
 khkjh kjh k W3C-השינוי מאפשר ל .ERCIM-הממוקמת בצרפת, ל<
על הקשר ההיסטורי החזק ע� INRIA, אחד ממייסדי </ br>להעמיק
 .ERCIM </p>

