
CSS Regions Specification

Revision:

Revision: 0.6
Authors:

Alexandru Chiculita, (Adobe Systems, Inc.)
Andrei Bucur, (Adobe Systems, Inc.)
Mihnea Ovidenie (Adobe Systems, Inc.)
Virgil Palanciuc, (Adobe Systems, Inc.)
Peter Sorotokin (Adobe Systems, Inc.)

Copyright © 2011 Adobe Systems Inc.

Abstract
This specification defines a set of features that go beyond CSS Multi-column Layout. The
central concept of this specification is a region, which is similar to a column, but without
restrictions on its geometry and position. It also defines features for cross-region floats, text
fitting and region-based styling.

Table of Contents

CSS Regions Specification
Table of Contents
Introduction
Defining the flow and the regions
Defining the threads: ‘flow-thread’ property
Defining the threads: ‘region-thread’ property
Defining the threads: ‘region-index’ property
Region shape: ‘region-shape’ property
Region-based styling: ‘region-styling’ property
Fitting content in regions: ‘region-fitting’ property
Exclusions list: ‘exclusions’ property
Exclusion shape: ‘exclusion-shape’ property

Introduction
CSS Multi-column Layout specification has pushed the limit of what is possible to achieve with

#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70
#h.x9790aetwi70

CSS. However it still falls far short of the goal of representing typical magazine, newspaper,
or textbook layouts in the digital space. This specification aims to close the remaining gap by
giving content creators basic building blocks to express complex layouts. It does not aim to
cover higher-level layout issues (e.g. allocating areas to fit all the content completely or placing
areas on the page). These issues can be addressed by using either scripting or another CSS
module.

The most obvious shortcoming of the CSS Multi-column layout is that columns are all of the
same dimensions and placed next to each other. In more complex layouts, content can flow
from one area of the page to next one without limitation of the area sizes and positions. For
complex layouts, these areas need to be explicitly defined; in this specification they are called
regions. Regions are based on the rectangular geometry of the CSS box model. In addition to
regions, exclusion areas can be defined and they can act as arbitrary-shaped float elements.

Two other features that are commonly found in complex layouts are region-based styling and
text fitting. Region-based styling allows styling to be assigned based on the content placement
(e.g. in which region it falls), rather than structure (e.g. selectors). This can be seen as an
extension of CSS 2.1 :first-line pseudo-element. Text fitting is a feature that forces the layout
engine to fill a given set of regions with the given content completely, so that there is no gap left
at the end.

Defining the flow and the regions
In most cases, the content presented using complex layouts can be thought of consisting of
multiple flowing threads. Typically there is one main flowing thread in the document (the "body"
thread) and multiple auxiliary ones (sideboxes, pull quotes, etc.). Each flowing thread is usually
given a name.

Defining the threads: ‘flow-thread’ property
Name: flow-thread

Value: <name> | none

Initial: none

Applies to:
block-level elements, flows

Inherited: yes

Percentages: N/A

Media: visual

Computed value: as specified

The ‘flow-thread’ property is used to assign a HTML element to the flowing thread with the
specified name. HTML elements that belong to a flowing thread are always displayed in the
region marked for the same flowing thread(with region-thread property). If no region with the
specified flowing thread is available, elements in the thread are not displayed at all.

Elements with specified flow-thread will be taken out of the normal layout flow and rendered
inside the regions.

The ‘flow-thread’ property does not affect CSS cascade and inheritance.

The following “display” properties are compatible with the flow-thread concept:
block | inline-block.

If the ‘display’ property is set to ‘none’ then the ‘flow-thread’ property will be ignored.

In case of other display modes, the flow-thread property will have priority and will make other
display modes render as blocks.

Example:
<div style="flow-thread:content">
 Lorem ipsum dolor sit amet ...
</div>

<div style="flow-thread:quotations">
 Nihil sine Deo ...
</div>

Defining the threads: ‘region-thread’ property
Name: region-thread

Value: <name> | none

Initial: none

Applies to: regions

Inherited: no

Percentages: N/A

Media: visual

Computed value: as specified

Assign the region to display the contents of a specified flowing thread.

The content that participates in the specified flowing thread will be laid out across all the regions
in the order it appears in DOM.

The content of region elements will be suppressed. The element will act as a block or inline
block, depending on display property. Other modes will be default to block.

Example:
<div style="flow-thread:content ">
 Lorem ipsum dolor sit amet ...
</div>

<div style="flow-thread:quotations ">
 Nihil sine Deo ...
</div>

<div style="region-thread:content"></div>
<div style="region-thread:quotations"></div>
<div style="region-thread:content"></div>

Sample rendering

Text from the “content” flow-thread is rendered through two different elements. In
between them, the text from the “quotations” flow-thread is displayed in a separate
element.

Defining the threads: ‘region-index’ property
Name: region-index

Value: <integer>

Initial: 0

Applies to: regions

Inherited: no

Percentages: N/A

Media: visual

Computed value: as specified

Defines the order in which content is flowed inside the regions. If region A has its region-index

lower than region B region-index, the content will flow in region A before region B.
Negative values are allowed for this property. Regions with equal values will be sorted using the
order in DOM. By default all the regions will be sorted using DOM order.

Example:
<div style="display:region; region-index:1"></div>
<div style="display:region; region-index:2"></div>
<div style="display:region; region-index:3"></div>
<div style="display:region; region-index:4"></div>

Sample rendering

Text flows from one region to another based on the priority set by the “region-index”
property.

Consuming content from the flow: ‘content-
consumption’ property
Name: content-consumption

Value: consume | retain

Initial: consume

Applies to: regions

Inherited: no

Percentages: N/A

Media: visual

Computed value: as specified

In most cases, each piece of content in the flow is displayed only once. In some cases,
however, content needs to be displayed multiple times (e.g. chapter content at the page
header). Setting the ‘content-consumption’ property to retain on a region displays the available
content from the flow in the region in the usual manner. However, the same content displayed in
the region above also gets displayed in the subsequent region(s) as if that region did not exist to
consume the content.

Example:

<div style="flow-thread:chapter ">
 Chapter I: “The beginning”
</div>
<div style="flow-thread:content ">
 Lorem ipsum dolor sit amet ...
</div>

<div style="region-thread:chapter;

content-consumption:retain;"></div>

<div style="region-thread:content;"></div>

<div style="region-thread:chapter;

content-consumption:retain;"></div>

<div style="region-thread:content;"></div>

Sample rendering

Text from the “chapter” flow-thread is repeated on each region which has
the “content-consumption” property set to ”retain”.

Text from the “content” flow-thread is distributed across the regions. This is equivalent
to setting the “content-consumption” property to ”consume”.

Region shape: ‘region-shape’ property
Name: region-shape

Value: [[<length> <length>]]* | [[<length>,<length>]]*

Initial: EMPTY

Applies to: regions

Inherited: no

Percentages: relative to the region width (odd items,
counting from 1) or height (even items)

Media: visual

Computed value: sequence of lengths (in pixels)

This property defines a boundary where the flow content (text, images, other blocks) should
be laid out. By default, if ‘region-shape’ is not specified, the regular box model is used. If it is
specified, it must be a series of points that define a polygon, in the form x1, y1, x2, y2, ..., xN,
yN.

The first x and y coordinate pair and the last should be the same to close the polygon. When
these coordinate values are not the same, user agents should infer an additional coordinate pair
to close the polygon. The (x,y) coordinates are relative to the block's content box.

When defining a polygon area using percentages, the content box of the region must always be
fully known in advance (including the height).

One can specify more than one polygon to compose the region-shape. The polygons, separated
by “,” will be intersected to compute the final shape that will be taken into account. If the
intersection of the polygons is empty, the content will be displayed in the regular box as
if ‘region-shape’ property would have not been defined.

The polygon defined (or computed when more than one) in the region-shape property must be
fully contained within the content box. The user agent will clip the polygon with the content box.

Region-based styling: using ‘region’ pseudoselector-
like syntax
The styling of the elements in the flow is determined, in general, by the same rules as for all
other content. When the content is placed in the region, an additional higher-specificity styling
can be applied only to the content. When content is flowed from one region to another, only the
fragment of the content that is rendered inside the new region will be restyled using the new
computed style.
Using a new pseudoselector-like ‘region’ keyword, you can define additional styling rules that
needs to be applied to the content falling into region.

::region <selector> {

 ... CSS styling rules ...

}

The styling rules are only applied to the elements that belong to the region's thread and they are
only active for the content that falls in the particular region to which they apply. The specificity
of region styling rules is considered to be greater than all of the regular rules and smaller than
inline rules (which come from style attribute).

Only some of the CSS properties are available when styling the region:
● font properties
● color properties
● background properties
● word-spacing
● letter-spacing

● text-decoration
● vertical-align
● text-transform
● line-height
● clear

The above properties are similar to those available to first-line pseudoselector.

Example:

<style type=”text/css”>

div
{

font-size: 1em;
color: black;

}

::region div.emphasize
{

font-size: 1.3em;
color: red;

}
</style>

<div style="region-thread:content;"></div>

<div class=”emphasize” style="region-thread:content;"></div>

<div style="region-thread:content;"></div>

Sample rendering

Text in the second region has its styles overwritten by higher specificity rules
under “region-styling: emphasize”

Fitting content in regions: ‘content-fitting’ property
Name: content-fitting

Value: none | auto

Initial: none

Applies to: region and block elements

Inherited: no

Percentages: N/A

Media: visual

Computed value: as specified

Tries to fit the element in the allocated space. Setting the ‘content-fitting’ property is ignored
when the content width and height are not specified in advance.

When set on a region, the whole content participating in the region-thread will fit inside all the
regions.

none
The content is laid out using normal CSS box layout rules.

auto
Content is distributed (stretched or shrunk) across the whole content box or all regions in the
thread; this is done by adjusting effective values of the properties that affect text width (word
spacing, letter spacing, horizontal scaling).

Defining the exclusions
Exclusions are arbitrary shapes that will be avoided by the user agent when laying out content.
Exclusion areas are calculated based on the margin box of other elements that are specified as
exclusions elements. Content elements can define a list of exclusions using a CSS selector.

The following restrictions apply when defining exclusions:

● A node should not reference (as exclusions) other nodes that are related to it - i.e. child
nodes or ancestor nodes.

● A content (flow) node and its region(s) should not attempt to mutually exclude each
other.

● There should be no circular references created by the exclusion areas. When the user
agent detects circular references, it may choose to ignore any of them so that the
circular references are eliminated.

Exclusions list: ‘exclusions’ property
Name: exclusions

Value: CSS selector

Initial: EMPTY

Applies to: any element

Inherited: yes

Media: visual

Define a list of exclusion elements identified by the specified CSS selector.

Exclusion shape: ‘exclusion-shape’ property
Name: exclusion-shape

Value: [[[<length> <length>]]* | [[<length>,<length>]]*
]

Initial: EMPTY

Applies to: all block elements

Inherited: no

Percentages: relative to the region margin width (odd items,
counting from 1) or margin height (even items)

Media: visual

Computed value: sequence of lengths (in pixels)

The ‘exclusion-shape’ is intended to be applied on intruding elements, ex. floating images. The
regions are not affected by the ‘exclusion-shape’, only the content that flows into the regions is
affected. One particular example when both ‘exclusion-shape’ and ‘region-shape’ can be set on
the same element, is for a sidebar floating text-box region.

The ‘exclusion-shape’ property can be used to define a tighter wrap-around area for a given
region. It is similar to the ‘region-shape’ and is specified also as a list of points.

The ‘exclusion-shape’ for a block selected with the "exclusions" is by default the rectangle that
includes the margins.

One can define more than one polygon as an exclusion shape. When more than one polygon
is defined, the union of polygons will be considered as the final shape that will be excluded by
the layout engine when flowing the content. This is different than in the case of ‘region-shape’
property, where the intersection of polygons is taken into account.

Example:
<div id=”circle”
 style="exclusion-shape: poly(x1, y1, .., xN, yN)"></div>

<div style="region-thread:content;

exclusions: #circle;"></div>

Sample rendering

The #circle DIV’s shape is used as an exclusion for the region with content.

References
CSS3 pseudo-elements

Changelog

Version Author Date(mm/dd/yyyy) Change

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fcss3-selectors%2F%23pseudo-elements&sa=D&sntz=1&usg=AFQjCNH1rOJh1aA64BJJqtyaN7eeTABXaA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fcss3-selectors%2F%23pseudo-elements&sa=D&sntz=1&usg=AFQjCNH1rOJh1aA64BJJqtyaN7eeTABXaA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fcss3-selectors%2F%23pseudo-elements&sa=D&sntz=1&usg=AFQjCNH1rOJh1aA64BJJqtyaN7eeTABXaA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fcss3-selectors%2F%23pseudo-elements&sa=D&sntz=1&usg=AFQjCNH1rOJh1aA64BJJqtyaN7eeTABXaA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fcss3-selectors%2F%23pseudo-elements&sa=D&sntz=1&usg=AFQjCNH1rOJh1aA64BJJqtyaN7eeTABXaA

0.6 Mihnea Ovidenie 03/07/2011 * Remove display flow-content and region
values
* Region shape can contain more than
one polygon whose intersection is used to
determine the final shape
* Region styling changed from ‘region-
styling’ to a pseudoselector-like definition

0.6 Alexandru
Chiculita

03/07/2011 * Change text fitting property from ‘region-
fitting’ into ‘content-fitting’ as it cam be
used for regions and other content too.

0.6 Mihnea Ovidenie 03/07/2011 * Restrict the properties available to region
styling.

