An OWL Full Interpretation

Jeremy J.Carroll HP Labs, Bristol, UK

Abstract

This report is an appendix to report HPL-2008-59. It gives a worked example of the construction used in the proof from that report. For finiteness, a reduced datatype map consisting of only xsd:boolean is used. Each of the graphs in the construction is listed explicitly, with some redundancy eliminated. The final Herbrand graph contains about 15,000 triples.

1 Introduction

This is an appendix to [1, 2]. The construction in those reports builds a Herbrand graph in which the property extension of every property is totally explicit. This appendix presents a complete worked example.

The construction is essentially an infinite one. We make it finite in the following ways:

- We have a very small datatype map D, being { xsd:boolean }
- We pretend $L_{\text{plain}} = \{""\}$
- We use the ter Horst technique of ignoring every rdf: i except the first; these only appear because of their presence in the RDF and RDFS axioms.

The first of these two are non-conformant. Datatype maps are required to include xsd:string, xsd:integer and XMLLiteral. L_{plain} is infinite. The differences are of no great consequence here.

Each section presents one of the graphs in the construction of section 9 of the two papers. Each graph is given by listing the new triples in that graph that were not in the previous triples.

1.1 Notation

In addition to the abbreviations specified in [2], we have the following: ${\tt disjoint}\, With$, ${\tt intersect}\, ection Of$, ${\tt equiv}\, alent {\tt Class}, {\tt minCard}\, inality, {\tt maxCard}\, inality, {\tt card}\, inality, {\tt different}\, From$, ${\tt AllDiff}\, erent, {\tt dist}\, inct{\tt Mem}\, bers$, ${\tt Fun}\, ctional {\tt Property}, {\tt subClass}\, of$, ${\tt allVal}\, ues\, From$, ${\tt someVal}\, ues\, From$, ${\tt ContainerMem}\, bership {\tt Property}, {\tt vers}\, ion {\tt Info}$, and ${}^{\wedge \wedge} xsd. {\tt boolean}$.

Some of the triples in the first few sections (5 to 8), are shown with a wavy line under, such as ("0"^^b, type, eg:c). This means that the triple is not included in the graphs H_i , i.e. sections 9 to 18.

To avoid too much redundancy we also use the following sets of nodes, identified by their first element, with an overline.

Relating to classes				
$\overline{b_{10}}$	$b_{10}, b_{9},$			
Nothing	Nothing, b_2 , DataRange, DataProp, DeprClass, DeprProp,			
	Ontology, Restrict, Alt, Bag, Seq, Statement, XMLLiteral,			
	Container,			
$\overline{b_3}$	$b_3, b_6, b_7,$			
owl:Class	owl:Class, rdfs:Class,			
ObjProp	ObjProp, Prop,			
Thing	Thing, Resource,			
Relating to properties				
$\overline{b_{11}}$	$b_{11}, b_{9},$			
priorVers	priorVers, allVals, backComp, card, hasValue, imports,			
	incompat, maxCard, minCard, onProperty, someVals, versInfo, _1,			
	object, predicate, subject, value, comment, isDefinedBy, label,			
	member, seeAlso,			

These are used in *metatriples* like (owl:Class, equivC, owl:Class) in the listing. This one stands for four triples in the graph, by taking each member of the set for both subject and object. Some of these may have occurred earlier in the construction.

2 The initial graph

This is given in section 5. It has several features intended to illustrate the action of the construction on literals, which while somewhat artificial in this example, are part of the D-semantics [3], and covered by our method.

- We use non-canonical lexical forms. The notion of 'canonical' used in \mathcal{VL}_D is not, in general, the same as that in XML Schema [4], which provides several different 'canonical' forms for the same value depending on which derived datatype is used. So in general, the literal replacement step between G_3 and H_0 is necessary. In our example, it is artificial.
- We use URI and blank nodes which implicitly represent literals; and then use some of these in predicate position.

3 The Function ψ

The function ψ , see section 9.2 of [2], is determined by some D-interpretation of G_3 . We take ψ to be:

$$\psi(x) = \begin{cases} \text{"true"}^{\wedge}b & x = \text{"1"}^{\wedge}b \\ \text{"false"}^{\wedge}b & x = \text{"0"}^{\wedge}b \\ \text{"true"}^{\wedge}b & x = \text{eg:v} \\ \text{"false"}^{\wedge}b & x = b_{15} \\ x & \text{otherwise} \end{cases}$$
(1)

Others would be found from different D-interpretations.

4 The Interpretation

The interpretation in section 10 of [2], uses the graph presented in this document, along with the empty sting, the boolean datatype, and its values as the domain of discourse. The function χ is

then given as:

$$\chi(x) = \begin{cases} \text{the boolean datatype} & x = \texttt{boolean} \\ \texttt{""} & x = \texttt{""} \\ \text{TRUE} & x = \texttt{"true"}^{\land} \texttt{b} \\ \text{FALSE} & x = \texttt{"false"}^{\land} \texttt{b} \\ x & \text{otherwise} \end{cases}$$
 (2)

With the last line meaning the occurrences of the appropriate text string in triples (and implicitly in metatriples) in sections 5 to 18, except where deleted by the wavy line. The actual interpretation is built as specified in [2], via the function θ , which we modify, following ter Horst [5] to deal with the rdf: $\dot{\jmath}$:

$$\theta(x) = \begin{cases} \chi(-1) & x \in \{ \text{rdf} : j : i = 2, 3 \dots \} \\ \chi(x) & x \in \text{nd}(H_9) \\ \chi(\psi(x)) & x \in \text{nd}(G_3) \end{cases}$$
 (3)

$\mathbf{5}$ G_0

 $\begin{array}{lll} ("", type, eg:c) & \underbrace{(eg:a, eg:p, eg:v)} & (eg:p, range, boolean) \\ \underbrace{("0"^{\wedge}b, type, eg:c)} & \underbrace{(eg:b, eg:p, b_{15})} \\ \underbrace{(eg:a, eg:p, "1"^{\wedge}b)} & \underbrace{(eg:v, eg:v, eg:v)} \\ \end{array}$

$\mathbf{6}$ G_1

 $(boolean, type, Datatype) \qquad \qquad ("false"^{\ }b, type, boolean) \\ ("", type, Literal) \qquad \qquad ("true"^{\ }b, type, boolean)$

G_2

(nil, type, List)(XMLLiteral, type, Datatype) (domain, domain, Prop) $(_1, type, Prop)$ $(_1, domain, Resource)$ (isDefinedBy, domain, Resource) (first, type, Prop) (first, domain, List)(label, domain, Resource) (object, type, Prop) (object, domain, Statement) (member, domain, Resource) (predicate, type, Prop) (predicate, domain, Statement) (range, domain, Prop) (rest, type, Prop) (rest, domain, List)(seeAlso, domain, Resource) (subject, type, Prop) (subject, domain, Statement) (subClass, domain, rdfs:Class) (subPropOf, domain, Prop) (type, type, Prop) (type, domain, Resource) (value, type, Prop) (value, domain, Resource) (_1, range, Resource) (_1, type, CMemProp) (comment, domain, Resource) (first, range, Resource) (object, range, Resource) (isDefinedBy, range, Resource)(Bag, subClass, Container) (predicate, range, Resource) (label, range, Literal) (Seq, subClass, Container) (rest, range, List) (member, range, Resource) (XMLLiteral, subClass, Literal) (subject, range, Resource) (range, range, rdfs:Class) (CMemProp, subClass, Prop) (Datatype, subClass, rdfs:Class) (type, range, rdfs:Class) (seeAlso, range, Resource) (value, range, Resource) (subClass, range, rdfs:Class) (isDefinedBy, subPropOf, seeAlso) (comment, range, Literal) (subPropOf, range, Prop) (Alt, subClass, Container) (domain, range, rdfs:Class)

8 G_3

(subPropOf, type, Prop) (Container, type, rdfs:Class) (eg:p, type, Prop) (eg:c,type,rdfs:Class) (CMemProp, type, rdfs:Class) (eg:v,type,Prop) (Alt, type, rdfs:Class) (comment, type, Prop) (Datatype, type, rdfs:Class) (domain, type, Prop) (Bag, type, rdfs:Class) (Literal, type, rdfs:Class) (isDefinedBy, type, Prop) (List, type, rdfs:Class) (Resource, type, rdfs:Class) (label, type, Prop) (Prop, type, rdfs:Class) (boolean, type, rdfs:Class) (Seq, type, rdfs:Class) ("1"^^b, type, Literal) (member, type, Prop) ("false"^^b, type, Literal) (range, type, Prop) (Statement, type, rdfs:Class) ("true"^{^∧}b, type, Literal) (seeAlso, type, Prop) (XMLLiteral, type, rdfs:Class) (subClass, type, Prop) (rdfs:Class, type, rdfs:Class) $(b_{15}, \mathtt{type}, \mathtt{Literal})$ (eg:v,type,Literal) (eg:p, type, Resource) (first, type, Resource) ("", type, Resource) (nil, type, Resource) (eg:v,type,Resource) ("0"^^b, type, Resource) (object, type, Resource) (Alt, type, Resource) ("1"^^b, type, Resource) (Bag, type, Resource) (predicate, type, Resource) ("false"^^b, type, Resource) (List, type, Resource) (rest, type, Resource) ("true"^{∧∧}b, type, Resource) (Prop, type, Resource) (subject, type, Resource) (Seq, type, Resource) (type, type, Resource) $(b_{15}, \mathtt{type}, \mathtt{Resource})$ (eg:a, type, Resource) (Statement, type, Resource) (value, type, Resource) (eg:b, type, Resource) (XMLLiteral, type, Resource) (rdfs:Class, type, Resource) (eg:c,type,Resource) (_1, type, Resource) (Container, type, Resource) (CMemProp, type, Resource) (seeAlso, type, Resource) (List, subClass, List) (Prop, subClass, Prop) (Datatype, type, Resource) (subClass, type, Resource) (subPropOf, type, Resource) (Seq, subClass, Seq) (Literal, type, Resource) (Statement, subClass, Statement) (Resource, type, Resource) (boolean, type, Resource) (comment, type, Resource) ("1"^^b, type, boolean) (XMLLiteral, subClass, XMLLiteral) $(b_{15}, \mathtt{type}, \mathtt{boolean})$ (domain, type, Resource) (rdfs:Class, subClass, rdfs:Class) (Container, subClass, Container) (isDefinedBy, type, Resource) (eg:v, type, boolean) (CMemProp, subClass, CMemProp) (label, type, Resource) (eg:c,subClass,eg:c) (member, type, Resource) (Alt, subClass, Alt) (Datatype, subClass, Datatype) (range, type, Resource) (Bag, subClass, Bag) (Literal, subClass, Literal) (object, subPropOf, object) (isDefinedBy, subPropOf, isDefinedBy) (Resource, subClass, Resource) (boolean, subClass, Literal) (predicate, subPropOf, predicate) (label, subPropOf, label) (boolean, subClass, boolean) (rest, subPropOf, rest) (member, subPropOf, member) (eg:p,subPropOf,eg:p) (subject, subPropOf, subject) (range, subPropOf, range) (eg:v,subPropOf,eg:v) (type, subPropOf, type) (seeAlso, subPropOf, seeAlso) $(_1, subPropOf, _1)$ (value, subPropOf, value) (subClass, subPropOf, subClass) (comment, subPropOf, comment) (subPropOf, subPropOf, subPropOf) (_1, subPropOf, member) (first, subPropOf, first) (domain, subPropOf, domain)

$\mathbf{9} \quad H_0$

10 H_1

$({ t rdfs:} { t Class}, { t type}, \overline{b_3})$	$({\tt priorVers}, {\tt type}, {\tt FunProp})$	$(b_9, {\tt type}, {\tt priorVers})$
$(b_2, {\tt type}, b_8)$	$({\tt priorVers}, {\tt type}, {\tt InvFunProp})$	$({\tt allVals}, {\tt type}, {\tt Prop})$
$(b_2, \mathtt{type}, b_9)$	$({\tt backComp}, {\tt type}, {\tt OntProp})$	$(\mathtt{card}, \mathtt{type}, \mathtt{Prop})$
$(b_3, {\tt type}, b_9)$	$(\mathtt{imports}, \mathtt{type}, \mathtt{OntProp})$	$({\tt complmntOf}, {\tt type}, {\tt Prop})$
$(b_1, \mathtt{type}, \mathtt{AllDiff})$	$(\mathtt{incompat}, \mathtt{type}, \mathtt{OntProp})$	$(\mathtt{different}, \mathtt{type}, \mathtt{Prop})$
$({\tt versInfo}, {\tt type}, {\tt AnnProp})$	$({\tt priorVers}, {\tt type}, {\tt OntProp})$	$(\mathtt{disjoint}, \mathtt{type}, \mathtt{Prop})$
$({\tt comment}, {\tt type}, {\tt AnnProp})$	$(\verb"equivProp", \verb"type", SymProp")$	$(\mathtt{dstnctMems}, \mathtt{type}, \mathtt{Prop})$
$(\mathtt{isDefinedBy}, \mathtt{type}, \mathtt{AnnProp})$	$({\tt inverseOf}, {\tt type}, {\tt SymProp})$	$({\tt hasValue}, {\tt type}, {\tt Prop})$
$({\tt label}, {\tt type}, {\tt AnnProp})$	$({\tt subClass}, {\tt type}, {\tt TransProp})$	$(\mathtt{intersect}, \mathtt{type}, \mathtt{Prop})$
$({\tt seeAlso}, {\tt type}, {\tt AnnProp})$	$({\tt subPropOf}, {\tt type}, {\tt TransProp})$	$({\tt inverseOf}, {\tt type}, {\tt Prop})$
$({\tt maxCard}, {\tt type}, {\tt Prop})$	(DeprProp, type, rdfs:Class)	(b_2, b_{11}, b_3)
$({\tt minCard}, {\tt type}, {\tt Prop})$	$({\tt Nothing}, {\tt type}, {\tt rdfs:Class})$	(b_3, b_{12}, b_2)
$({\tt onProperty}, {\tt type}, {\tt Prop})$	$({\tt Ontology}, {\tt type}, {\tt rdfs:Class})$	$({\tt Nothing}, {\tt complmntOf}, \overline{\tt Thing})$
$(\mathtt{oneOf}, \mathtt{type}, \mathtt{Prop})$	$({\tt Literal}, {\tt type}, {\tt Datatype})$	$(\overline{\tt Thing}, {\tt complmntOf}, {\tt Nothing})$
$({\tt someVals}, {\tt type}, {\tt Prop})$	(b_2, b_8, b_4)	$({\tt Thing}, {\tt different}, {\tt Nothing})$
$({\tt unionOf}, {\tt type}, {\tt Prop})$	(b_3, b_8, b_2)	$({\tt Nothing}, {\tt disjoint}, {\tt Nothing})$
$(b_2, {\tt type}, {\tt rdfs:Class})$	(b_8, b_8, b_2)	$({\tt Nothing}, {\tt disjoint}, {\tt Resource})$
$({\tt owl:Class}, {\tt type}, {\tt rdfs:Class})$	(b_8, b_8, b_3)	$({\tt Resource}, {\tt disjoint}, {\tt Nothing})$
$({\tt DataRange}, {\tt type}, {\tt rdfs:Class})$	(b_2, b_9, b_3)	$(b_1, \mathtt{dstnctMems}, b_2)$
$({\tt DeprClass}, {\tt type}, {\tt rdfs:Class})$	(b_4, b_{10}, b_5)	$(b_1, \mathtt{dstnctMems}, b_3)$
$(\overline{\mathtt{Thing}}, \mathtt{equivC}, \overline{\mathtt{Thing}})$	<pre>(equivProp, inverseOf, equivProp)</pre>	(b_7,\mathtt{oneOf},b_3)
$(b_8, \mathtt{equivProp}, b_8)$	$({\tt imports}, {\tt inverseOf}, {\tt priorVers})$	$({\tt Thing}, {\tt sameAs}, {\tt Thing})$
$({\tt incompat}, {\tt equivProp}, {\tt backComp})$	$({\tt incompat}, {\tt inverseOf}, {\tt backComp})$	$(b_2, \mathtt{unionOf}, \mathtt{nil})$
$({\tt priorVers}, {\tt equivProp}, {\tt backComp})$	$({\tt inverseOf}, {\tt inverseOf}, {\tt inverseOf})$	$(\overline{\mathtt{owl}\mathtt{:Class}},\mathtt{unionOf},b_2)$
$({\tt priorVers}, {\tt equivProp}, {\tt priorVers})$	$({\tt priorVers}, {\tt inverseOf}, {\tt backComp})$	$({\tt rdfs:Class}, {\tt unionOf}, b_3)$
$(b_3, \mathtt{intersect}, b_5)$	$({\tt priorVers}, {\tt inverseOf}, {\tt priorVers})$	$(b_2, \mathtt{first}, \mathtt{rdfs:Class})$
$(\overline{\mathtt{owl} : \mathtt{Class}}, \mathtt{intersect}, b_2)$	$(b_2, \mathtt{oneOf}, \mathtt{nil})$	$(b_3, \mathtt{first}, \mathtt{rdfs:Class})$
$({\tt rdfs:Class}, {\tt intersect}, b_3)$	$(b_3, \mathtt{oneOf}, b_2)$	$(b_4, \mathtt{first}, \mathtt{Nothing})$
$(b_9, \mathtt{inverseOf}, b_{12})$	(b_6,\mathtt{oneOf},b_2)	(b_5,\mathtt{first},b_3)
$(b_{12}, \mathtt{inverseOf}, b_9)$	$(b_6, \mathtt{oneOf}, b_3)$	$(b_2, \mathtt{rest}, \mathtt{nil})$
$(b_3, { t rest}, { t nil})$	$(b_{10}, \mathtt{range}, b_8)$	$({\tt rdfs:Class}, {\tt subClass}, {\tt owl:Class})$
$(b_4, \mathtt{rest}, \mathtt{nil})$	$({\tt AnnProp}, {\tt subClass}, {\tt Prop})$	$({\tt Resource}, {\tt subClass}, {\tt Thing})$
$(b_5, \mathtt{rest}, \mathtt{nil})$	$({\tt DataProp}, {\tt subClass}, {\tt Prop})$	$(b_8, \mathtt{subPropOf}, b_8)$
$(b_9, \mathtt{domain}, b_{10})$	$({\tt OntProp}, {\tt subClass}, {\tt Prop})$	$({\tt inverseOf}, {\tt subPropOf}, {\tt inverseOf})$
$(b_{10}, \mathtt{domain}, b_8)$	$({\tt Restrict}, {\tt subClass}, {\tt rdfs:Class})$	$({\tt priorVers}, {\tt subPropOf}, b_9)$
$(b_{12}, \mathtt{domain}, b_{10})$	$({\tt Prop}, {\tt subClass}, {\tt ObjProp})$	$({\tt priorVers}, {\tt subPropOf}, {\tt backComp})$
$(b_9, \mathtt{range}, b_{10})$	$({\tt Prop}, {\tt subClass}, {\tt Thing})$	

H_2

$(b_4, {\tt type}, b_8)$	$(\overline{{\tt owl:Class}}, {\tt type}, {\tt owl:Class})$	(List, type, owl:Class)
$(b_5, {\tt type}, b_8)$	$(FunProp, type, \overline{owl:Class})$	$({\tt CMemProp}, {\tt type}, {\tt owl:Class})$
$(b_2, \mathtt{type}, b_{10})$	$({\tt InvFunProp}, {\tt type}, \overline{{\tt owl:Class}})$	$({\tt Datatype}, {\tt type}, {\tt owl:Class})$
$(b_3, {\tt type}, b_{10})$	$(\overline{\mathtt{Nothing}}, \mathtt{type}, \overline{\mathtt{owl} : \mathtt{Class}})$	(Literal, type, owl:Class)
$(\overline{b_3}, \mathtt{type}, \overline{\mathtt{owl:Class}})$	$(\overline{\texttt{ObjProp}}, \mathtt{type}, \overline{\texttt{owl:Class}})$	$({\tt boolean}, {\tt type}, {\tt owl:Class})$
$(b_8, \mathtt{type}, \overline{\mathtt{owl:Class}})$	$({\tt OntProp}, {\tt type}, \overline{{\tt owl:Class}})$	$(\texttt{"true"}^{\wedge \wedge} \texttt{b}, \texttt{type}, \texttt{ObjProp})$
$(\overline{b_{10}}, \mathtt{type}, \overline{\mathtt{owl:Class}})$	$({\tt SymProp}, {\tt type}, \overline{{\tt owl:Class}})$	$(b_8, {\tt type}, \overline{{\tt ObjProp}})$
(eg:c,type,owl:Class)	$(\overline{\mathtt{Thing}}, \mathtt{type}, \overline{\mathtt{owl:Class}})$	$(b_{10}, {\tt type}, \overline{{\tt ObjProp}})$
$({\tt AllDiff}, {\tt type}, \overline{{\tt owl:Class}})$	$({\tt TransProp}, {\tt type}, \overline{{\tt owl} : {\tt Class}})$	$(\overline{b_{11}}, \mathtt{type}, \overline{\mathtt{ObjProp}})$
$({\tt AnnProp}, {\tt type}, \overline{{\tt owl:Class}})$	$(\mathtt{priorVers}, \mathtt{type}, \overline{\mathtt{owl} : \mathtt{Class}})$	$(b_{12}, {\tt type}, \overline{{\tt ObjProp}})$

(eg:p, type, ObjProp)	$(\overline{\mathtt{priorVers}},\mathtt{type},\overline{\mathtt{ObjProp}})$	("", type, Thing)
$({\tt complmntOf}, {\tt type}, {\tt ObjProp})$	$(\mathtt{sameAs}, \mathtt{type}, \overline{\mathtt{ObjProp}})$	$(\texttt{"false"}^{\wedge \wedge} \texttt{b}, \texttt{type}, \texttt{Thing})$
$(\mathtt{different}, \mathtt{type}, \mathtt{ObjProp})$	$({\tt unionOf}, {\tt type}, {\tt ObjProp})$	$(\texttt{"true"}^{\wedge \wedge} \texttt{b}, \texttt{type}, \texttt{Thing})$
$(\mathtt{disjoint}, \mathtt{type}, \mathtt{ObjProp})$	$(\mathtt{first}, \mathtt{type}, \mathtt{ObjProp})$	$(b_1, \mathtt{type}, \overline{\mathtt{Thing}})$
$({\tt dstnctMems}, {\tt type}, {\tt ObjProp})$	$(\mathtt{rest}, \mathtt{type}, \mathtt{ObjProp})$	$(\overline{b_3}, \mathtt{type}, \overline{\mathtt{Thing}})$
$(\mathtt{equivC}, \mathtt{type}, \overline{\mathtt{ObjProp}})$	<pre>(type, type, ObjProp)</pre>	$(b_4, \mathtt{type}, \overline{\mathtt{Thing}})$
$(\mathtt{equivProp}, \mathtt{type}, \overline{\mathtt{ObjProp}})$	$({\tt domain}, {\tt type}, {\tt ObjProp})$	$(b_5, \mathtt{type}, \overline{\mathtt{Thing}})$
$(\mathtt{intersect}, \mathtt{type}, \mathtt{ObjProp})$	$({\tt range}, {\tt type}, {\tt ObjProp})$	$(b_8, \mathtt{type}, \overline{\mathtt{Thing}})$
<pre>(inverseOf,type,ObjProp)</pre>	$(\mathtt{subClass}, \mathtt{type}, \mathtt{ObjProp})$	$(b_{10}, \mathtt{type}, \overline{\mathtt{Thing}})$
$(\mathtt{oneOf}, \mathtt{type}, \mathtt{ObjProp})$	(subPropOf, type, ObjProp)	$(\overline{b_{11}}, \mathtt{type}, \overline{\mathtt{Thing}})$
	<u></u>	
$(b_{12}, \mathtt{type}, \mathtt{Thing})$	$(\underline{\mathtt{Nothing}},\mathtt{type},\underline{\mathtt{Thing}})$	(equivC, type, Thing)
(eg:a, type, Thing)	$(\overline{\mathtt{ObjProp}}, \mathtt{type}, \overline{\mathtt{Thing}})$	(equivProp, type, Thing)
(eg:b, type, Thing)	$(\mathtt{OntProp},\mathtt{type},\underline{\mathtt{Thing}})$	$(intersect, type, \underline{Thing})$
(eg:c, type, Thing)	$(\mathtt{SymProp},\mathtt{type},\overline{\mathtt{Thing}})$	$(\mathtt{inverseOf},\mathtt{type},\overline{\mathtt{Thing}})$
(eg:p, type, Thing)	$(\overline{\mathtt{Thing}},\mathtt{type},\overline{\mathtt{Thing}})$	$(\mathtt{oneOf}, \mathtt{type}, \overline{\mathtt{Thing}})$
$(\mathtt{AllDiff}, \mathtt{type}, \overline{\mathtt{Thing}})$	$({\tt TransProp}, {\tt type}, \overline{{\tt Thing}})$	$(\overline{\mathtt{priorVers}},\mathtt{type},\overline{\mathtt{Thing}})$
$(\mathtt{AnnProp},\mathtt{type},\overline{\mathtt{Thing}})$	$(\mathtt{complmntOf}, \mathtt{type}, \overline{\mathtt{Thing}})$	$(\mathtt{sameAs}, \mathtt{type}, \overline{\mathtt{Thing}})$
$(\overline{\mathtt{owl} \mathpunct{:} \mathtt{Class}}, \mathtt{type}, \overline{\mathtt{Thing}})$	$(\mathtt{different}, \mathtt{type}, \overline{\mathtt{Thing}})$	$(\mathtt{unionOf}, \mathtt{type}, \overline{\mathtt{Thing}})$
$(\mathtt{FunProp},\mathtt{type},\overline{\mathtt{Thing}})$	$(\mathtt{disjoint}, \mathtt{type}, \overline{\mathtt{Thing}})$	$(\mathtt{List}, \mathtt{type}, \mathtt{Thing})$
$({\tt InvFunProp}, {\tt type}, \overline{\tt Thing})$	$(\mathtt{dstnctMems}, \mathtt{type}, \overline{\mathtt{Thing}})$	$(\mathtt{first}, \mathtt{type}, \mathtt{Thing})$
(· · · · · · · · · · · · · · · · · · ·	(1	(, , , , , , , , , , , , , , , , , , ,
(nil, type, Thing)	(boolean, type, Thing)	(eg:p, domain, Resource)
(rest, type, Thing)	$(b_2, \mathtt{type}, \mathtt{List})$	(complmntOf, domain, Resource)
(type, type, Thing)	$(b_3, \mathtt{type}, \mathtt{List})$	(different, domain, Resource)
(CMemProp, type, Thing)	$(b_4, {\sf type}, {\sf List})$	(disjoint, domain, Resource)
(Datatype, type, Thing)	$(b_5, {\sf type}, {\sf List})$	(dstnctMems, domain, Resource)
(Literal, type, Thing)	("true"^^b, domain, Resource)	(equivC, domain, Resource)
$(\mathtt{domain}, \mathtt{type}, \mathtt{Thing})$	$(b_8, \mathtt{domain}, \mathtt{Resource})$	$(\mathtt{equivProp},\mathtt{domain},\mathtt{Resource})$
$(\mathtt{range}, \mathtt{type}, \mathtt{Thing})$	$(\underline{b_{10}}, \mathtt{domain}, \mathtt{Resource})$	$(\mathtt{intersect}, \mathtt{domain}, \mathtt{Resource})$
$(\mathtt{subClass},\mathtt{type},\mathtt{Thing})$	$(b_{11}, \mathtt{domain}, \mathtt{Resource})$	$(\mathtt{inverseOf},\mathtt{domain},\mathtt{Resource})$
$(\mathtt{subPropOf},\mathtt{type},\mathtt{Thing})$	$(b_{12}, \mathtt{domain}, \mathtt{Resource})$	$(\mathtt{oneOf},\mathtt{domain},\mathtt{Resource})$
$(\mathtt{priorVers},\mathtt{domain},\overline{b_3})$	(priorVers, domain, ObjProp)	(priorVers, domain, Resource)
$(priorVers, domain, b_8)$	(priorVers, domain, OntProp)	(priorVers, domain, boolean)
$(\texttt{priorVers}, \texttt{domain}, \overline{b_{10}})$	(priorVers, domain, SymProp)	(sameAs, domain, Resource)
(priorVers, domain, eg:c)	(priorVers, domain, Thing)	(unionOf, domain, Resource)
(priorVers, domain, AllDiff)	(priorVers, domain, TransProp)	(first, domain, Resource)
(priorVers, domain, AnnProp)	(priorVers, domain, priorVers)	(rest, domain, Resource)
(priorVers, domain, owl: Class)	(priorVers, domain, List)	(domain, domain, Resource)
(priorVers, domain, FunProp)	(priorVers, domain, CMemProp)	(range, domain, Resource)
(priorVers, domain, FunFlop)	= ,	(subClass, domain, Resource)
·	<pre>(priorVers, domain, Datatype) (priorVers, domain, Literal)</pre>	(subPropOf, domain, Resource)
$(\mathtt{priorVers},\mathtt{domain},\mathtt{Nothing})$	(priorvers, domain, Literal)	(SubFropor, domain, kesource)
$(\texttt{"true"}^{\wedge \wedge} \texttt{b}, \texttt{range}, \texttt{Resource})$	$(\mathtt{equivC}, \mathtt{range}, \mathtt{Resource})$	$({\tt priorVers}, {\tt range}, {\tt AnnProp})$
$(b_8, {\tt range}, {\tt Resource})$	$(\verb"equivProp", \verb"range", Resource")$	$(priorVers, range, \overline{owl:Class})$
$(b_{10}, {\tt range}, {\tt Resource})$	$({\tt intersect}, {\tt range}, {\tt Resource})$	$({\tt priorVers}, {\tt range}, {\tt FunProp})$
$(\overline{b_{11}}, { t range}, { t Resource})$	(inverseOf, range, Resource)	<pre>(priorVers, range, InvFunProp)</pre>
$(b_{12}, \mathtt{range}, \mathtt{Resource})$	(oneOf, range, Resource)	$(priorVers, range, \overline{Nothing})$
(eg:p,range,Resource)	$(\mathtt{priorVers},\mathtt{range},\overline{b_3})$	(priorVers, range, ObjProp)
(complmntOf, range, Resource)	$(\texttt{priorVers}, \texttt{range}, b_8)$	(priorVers, range, OntProp)
(different, range, Resource)	$(t prior Vers, range, \overline{b_{10}})$	(priorVers, range, SymProp)
(disjoint, range, Resource)	(priorVers, range, eg:c)	(priorVers, range, Thing)
(dstnctMems, range, Resource)	(priorVers, range, AllDiff)	(priorVers, range, TransProp)
((1)(0, 1111111)	(1 , , , , ,)

(priorVers, range, priorVers) (type, range, Resource) $(b_9, \mathtt{subClass}, b_9)$ (priorVers, range, List) (domain, range, Resource) $(b_{10}, \mathtt{subClass}, b_{10})$ (AllDiff, subClass, AllDiff) (priorVers, range, CMemProp) (range, range, Resource) (priorVers, range, Datatype) (subClass, range, Resource) (AnnProp, subClass, AnnProp) (priorVers, range, Literal) (subPropOf, range, Resource) (owl:Class, subClass, owl:Class) (priorVers, range, Resource) $(b_2, \mathtt{subClass}, b_2)$ (DataRange, subClass, DataRange) (priorVers, range, boolean) $(b_3, \mathtt{subClass}, b_3)$ (DataProp, subClass, DataProp) (sameAs, range, Resource) $(b_6, \mathtt{subClass}, b_6)$ (DeprClass, subClass, DeprClass) (unionOf, range, Resource) $(b_7, \mathtt{subClass}, b_7)$ (DeprProp, subClass, DeprProp) (rest, range, Resource) $(b_8, \mathtt{subClass}, b_8)$ (FunProp, subClass, FunProp) (InvFunProp, subClass, InvFunProp) $(b_9, \mathtt{subPropOf}, b_9)$ (dstnctMems, subPropOf, dstnctMems) (Nothing, subClass, Nothing) $(b_{10}, \mathtt{subPropOf}, b_{10})$ (equivC, subPropOf, equivC) (ObjProp, subClass, ObjProp) $(b_{11}, \mathtt{subPropOf}, b_{11})$ (equivProp, subPropOf, equivProp) (Ontology, subClass, Ontology) $(b_{12}, \mathtt{subPropOf}, b_{12})$ (hasValue, subPropOf, hasValue) (OntProp, subClass, OntProp) (allVals, subPropOf, allVals) (imports, subPropOf, imports) (Restrict, subClass, Restrict) (backComp, subPropOf, backComp) (incompat, subPropOf, incompat) (SymProp, subClass, SymProp) (card, subPropOf, card) (intersect, subPropOf, intersect) (Thing, subClass, Thing) (complmntOf, subPropOf, complmntOf) (maxCard, subPropOf, maxCard) (TransProp, subClass, TransProp) (different, subPropOf, different) (minCard, subPropOf, minCard) (priorVers, subClass, priorVers) (disjoint, subPropOf, disjoint) (onProperty, subPropOf, onProperty) (oneOf, subPropOf, oneOf) (sameAs, subPropOf, sameAs) (unionOf, subPropOf, unionOf) (priorVers, subPropOf, priorVers) $({\tt someVals}, {\tt subPropOf}, {\tt someVals})$ (versInfo, subPropOf, versInfo)

12 H_3

The nodes of the graph H_2 are: { "", "false"^^b, "true"^b, b_1 , b_2 , b_3 , b_4 , b_5 , b_6 , b_7 , b_8 , b_9 , b_{10} , b_{11} , b_{12} , eg:a, eg:b, eg:c, eg:p, AllDiff, AnnProp, owl:Class, DataRange, DataProp, DeprClass, DeprProp, FunProp, InvFunProp, Nothing, ObjProp, Ontology, OntProp, Restrict, SymProp, Thing, TransProp, allVals, backComp, card, complmntOf, different, disjoint, dstnctMems, equivC, equivProp, hasValue, imports, incompat, intersect, inverseOf, maxCard, minCard, onProperty, oneOf, priorVers, sameAs, someVals, unionOf, versInfo, Alt, Bag, List, Prop, Seq, Statement, XMLLiteral, _1, first, nil, object, predicate, rest, subject, type, value, rdfs:Class, Container, CMemProp, Datatype, Literal, Resource, comment, domain, isDefinedBy, label, member, range, seeAlso, subClass, subPropOf, boolean, }.

For any single node n in this set, we add (n, sameAs, n). For any pair of distinct nodes n, n' in this set, we add (n, different, n').

13 H_4

 $("true"^{\wedge \wedge}b, type, FunProp)$ (disjoint, type, SymProp) $(b_{10}, type, InvFunProp)$ $(b_{10}, \mathtt{type}, \mathtt{FunProp})$ $(\overline{b_{11}}, \mathtt{type}, \mathtt{InvFunProp})$ (equivC, type, SymProp) $(\overline{b_{11}}, \mathtt{type}, \mathtt{FunProp})$ $(b_{12}, type, InvFunProp)$ (priorVers, type, SymProp) $(b_{12}, type, FunProp)$ (eg:p, type, InvFunProp) (sameAs, type, SymProp) $(\texttt{"true"}^{\wedge \wedge} \texttt{b}, \texttt{type}, \texttt{TransProp})$ (eg:p,type,FunProp) (dstnctMems, type, InvFunProp) (priorVers, type, FunProp) (priorVers, type, InvFunProp) $(b_{10}, \mathsf{type}, \mathsf{TransProp})$ (sameAs, type, FunProp) (sameAs, type, InvFunProp) $(\overline{b_{11}}, \mathtt{type}, \mathtt{TransProp})$ (first, type, FunProp) $("true"^{\wedge \wedge}b, type, SymProp)$ $(b_{12}, \mathtt{type}, \mathtt{TransProp})$ (rest, type, FunProp) (complmntOf, type, SymProp) (eg:p, type, TransProp) $("true"^{\wedge \wedge}b, type, InvFunProp)$ (different, type, SymProp) (dstnctMems, type, TransProp) (equivC, type, TransProp) (sameAs, type, TransProp) (eg:c, subClass, Literal) (equivProp, type, TransProp) (rest, type, TransProp) (priorVers, type, TransProp) (eg:c, type, Datatype)

14 *H*₅

		<u> </u>
(Nothing, complmntOf, Thing)	$(\underline{b_3}, \mathtt{disjoint}, \overline{\mathtt{ObjProp}})$	$(b_8, \mathtt{disjoint}, b_3)$
(Thing, complmntOf, Nothing)	$(b_3, \mathtt{disjoint}, \mathtt{OntProp})$	$(b_8, exttt{disjoint}, exttt{eg:c})$
$(\underline{b_3}, \mathtt{disjoint}, \underline{b_8})$	$(\overline{b_3}, \mathtt{disjoint}, \mathtt{SymProp})$	$(b_8, \mathtt{disjoint}, \mathtt{AllDiff})$
$(\underline{b_3}, \mathtt{disjoint}, b_{10})$	$(\underline{b_3}, \mathtt{disjoint}, \mathtt{TransProp})$	$(b_8, \mathtt{disjoint}, \mathtt{AnnProp})$
$(\underline{b_3}, \mathtt{disjoint}, \mathtt{eg:c})$	$(\underline{b_3}, \mathtt{disjoint}, \mathtt{priorVers})$	$(b_8, \mathtt{disjoint}, \mathtt{FunProp})$
$(\underline{b_3}, \mathtt{disjoint}, \mathtt{AllDiff})$	$(\underline{b_3}, \mathtt{disjoint}, \mathtt{List})$	$(b_8, \mathtt{disjoint}, \mathtt{InvFunProp})$
$(\overline{b_3}, \mathtt{disjoint}, \mathtt{AnnProp})$	$(\overline{b_3}, \mathtt{disjoint}, \mathtt{CMemProp})$	$(b_8, \mathtt{disjoint}, \overline{\mathtt{Nothing}})$
$(\overline{b_3}, \mathtt{disjoint}, \mathtt{FunProp})$	$(\overline{b_3}, \mathtt{disjoint}, \mathtt{Datatype})$	$(b_8, \mathtt{disjoint}, \overline{\mathtt{ObjProp}})$
$(\overline{b_3}, \mathtt{disjoint}, \mathtt{InvFunProp})$	$(\overline{b_3}, \mathtt{disjoint}, \mathtt{Literal})$	$(b_8, \mathtt{disjoint}, \mathtt{OntProp})$
$(b_3, \mathtt{disjoint}, \overline{\mathtt{Nothing}})$	$(b_3, \mathtt{disjoint}, \mathtt{boolean})$	$(b_8, \mathtt{disjoint}, \mathtt{SymProp})$
$(b_8, \mathtt{disjoint}, \mathtt{TransProp})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{FunProp})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{Literal})$
$(b_8, \mathtt{disjoint}, \mathtt{priorVers})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{InvFunProp})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{boolean})$
$(b_8, \mathtt{disjoint}, \mathtt{CMemProp})$	$(\overline{b_{10}}, \mathtt{disjoint}, \overline{\mathtt{Nothing}})$	$(exttt{eg:c}, exttt{disjoint}, \overline{b_3})$
$(b_8, \mathtt{disjoint}, \mathtt{Datatype})$	$(\overline{b_{10}}, \mathtt{disjoint}, \overline{\mathtt{ObjProp}})$	$(\mathtt{eg:c},\mathtt{disjoint},b_8)$
$(b_8, \mathtt{disjoint}, \mathtt{Literal})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{OntProp})$	$(\texttt{eg:c}, \texttt{disjoint}, \overline{b_{10}})$
$(b_8, \mathtt{disjoint}, \mathtt{boolean})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{SymProp})$	(eg:c,disjoint,AllDiff)
$(\overline{b_{10}}, \mathtt{disjoint}, \overline{b_3})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{TransProp})$	(eg:c,disjoint,AnnProp)
$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{eg:c})$	$(\overline{b_{10}}, exttt{disjoint}, exttt{priorVers})$	$(eg:c,disjoint,\overline{owl:Class})$
$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{AllDiff})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{CMemProp})$	(eg:c,disjoint,FunProp)
$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{AnnProp})$	$(\overline{b_{10}}, \mathtt{disjoint}, \mathtt{Datatype})$	(eg:c,disjoint,InvFunProp)
(eg:c,disjoint, Nothing)	(AllDiff, disjoint, b_8)	(AllDiff, disjoint, SymProp)
(eg:c,disjoint, ObjProp)	$\begin{array}{c} \texttt{(AllDiff, disjoint}, \overline{b_{10}}) \end{array}$	(AllDiff, disjoint, TransProp)
(eg:c,disjoint,OntProp)	(AllDiff, disjoint, eg:c)	(AllDiff, disjoint, priorVers)
(eg:c,disjoint,SymProp)	(AllDiff, disjoint, AnnProp)	(AllDiff, disjoint, List)
(eg:c,disjoint,TransProp)	(AllDiff, disjoint, owl:Class)	(AllDiff, disjoint, CMemProp)
(eg:c,disjoint,priorVers)	(AllDiff, disjoint, FunProp)	(AllDiff, disjoint, Datatype)
(eg:c,disjoint, priorvers)	(AllDiff, disjoint, InvFunProp)	(AllDiff, disjoint, Literal)
(eg:c,disjoint,CMemProp)	(AllDiff, disjoint, Nothing)	(AllDiff, disjoint, boolean)
(eg:c,disjoint,Datatype)	(AllDiff, disjoint, ObjProp)	(AnnProp, disjoint, $\overline{b_3}$)
(AllDiff, disjoint, $\overline{b_3}$)	(AllDiff, disjoint, OntProp)	$(\mathtt{AnnProp},\mathtt{disjoint},b_8)$
(KIIDIII, disjoint, 03)	(AIIDIII, disjoint, onti 10p)	(Hilli Top, disjoint, 08)
$({ t Ann Prop}, { t disjoint}, \overline{b_{10}})$	$({\tt AnnProp}, {\tt disjoint}, {\tt Literal})$	$({\tt FunProp}, {\tt disjoint}, b_8)$
$({\tt AnnProp}, {\tt disjoint}, {\tt eg:c})$	$({\tt AnnProp}, {\tt disjoint}, {\tt boolean})$	$({ t FunProp},{ t disjoint},\overline{b_{10}})$
$({\tt AnnProp}, {\tt disjoint}, {\tt AllDiff})$	$(\overline{\mathtt{owl} \colon\! \mathtt{Class}}, \mathtt{disjoint}, \mathtt{eg} \colon\! \mathtt{c})$	$({\tt FunProp}, {\tt disjoint}, {\tt eg:c})$
$({\tt AnnProp}, {\tt disjoint}, \overline{{\tt owl:Class}})$	$(\overline{{\tt owl:Class}}, {\tt disjoint}, {\tt AllDiff})$	$({\tt FunProp}, {\tt disjoint}, {\tt AllDiff})$
$({\tt AnnProp}, {\tt disjoint}, \overline{{\tt Nothing}})$	$(\overline{{\tt owl:Class}}, {\tt disjoint}, {\tt AnnProp})$	$({\tt FunProp}, {\tt disjoint}, \overline{{\tt Nothing}})$
$({\tt AnnProp}, {\tt disjoint}, {\tt OntProp})$	$(\overline{\mathtt{owl:Class}}, \mathtt{disjoint}, \overline{\mathtt{Nothing}})$	$({\tt FunProp}, {\tt disjoint}, {\tt List})$
$({\tt AnnProp}, {\tt disjoint}, {\tt priorVers})$	$(\overline{{\tt owl:Class}}, {\tt disjoint}, {\tt CMemProp})$	$({\tt FunProp}, {\tt disjoint}, {\tt Datatype})$
$({\tt AnnProp}, {\tt disjoint}, {\tt List})$	$(\overline{{\tt owl:Class}}, {\tt disjoint}, {\tt Literal})$	$({ t InvFunProp},{ t disjoint},\overline{b_3})$
$({\tt AnnProp}, {\tt disjoint}, {\tt CMemProp})$	$(\overline{{\tt owl:Class}}, {\tt disjoint}, {\tt boolean})$	$({\tt InvFunProp}, {\tt disjoint}, b_8)$
$({\tt AnnProp}, {\tt disjoint}, {\tt Datatype})$	$({\tt FunProp}, {\tt disjoint}, \overline{b_3})$	$({ t InvFunProp}, { t disjoint}, \overline{b_{10}})$
(InvFunProp, disjoint, eg:c)	(Nothing, disjoint, AnnProp)	(Nothing, disjoint, priorVers)
(InvFunProp, disjoint, AllDiff)	(Nothing, disjoint, owl: Class)	(Nothing, disjoint, List)
(InvFunProp, disjoint, Nothing)	(Nothing, disjoint, FunProp)	(Nothing, disjoint, CMemProp)
(InvFunProp, disjoint, List)	(Nothing, disjoint, InvFunProp)	(Nothing, disjoint, Datatype)
(InvFunProp, disjoint, Datatype)	(Nothing, disjoint, Nothing)	(Nothing, disjoint, Literal)
$(\overline{ ext{Nothing}}, \overline{ ext{disjoint}}, \overline{b_3})$	(Nothing, disjoint, ObjProp)	(Nothing, disjoint, boolean)
$(\overline{\text{Nothing}}, \overline{\text{disjoint}}, b_8)$	(Nothing, disjoint, OntProp)	$(\overline{\mathtt{ObjProp}},\mathtt{disjoint},\overline{b_3})$
$(\overline{ ext{Nothing}}, \overline{ ext{disjoint}}, \overline{b_{10}})$	(Nothing, disjoint, SymProp)	$(\overline{\texttt{ObjProp}}, \mathtt{disjoint}, b_8)$
(Nothing, disjoint, eg:c)	(Nothing, disjoint, Thing)	$(\overline{\mathtt{ObjProp}},\mathtt{disjoint},\overline{b_{10}})$
(Nothing, disjoint, AllDiff)	(Nothing, disjoint, TransProp)	(ObjProp, disjoint, eg:c)
(),	(G, J	(J 1) J , - O /

(ObjProp, disjoint, AllDiff) (OntProp, disjoint, Nothing) (SymProp, disjoint, eg:c) $(\overline{\mathtt{ObjProp}},\mathtt{disjoint},\overline{\mathtt{Nothing}})$ (OntProp, disjoint, priorVers) (SymProp, disjoint, AllDiff) (ObjProp, disjoint, List) (OntProp, disjoint, List) $(SymProp, disjoint, \overline{Nothing})$ $(\overline{\texttt{ObjProp}}, \texttt{disjoint}, \texttt{Datatype})$ (OntProp, disjoint, CMemProp) (SymProp, disjoint, priorVers) $(\mathtt{OntProp},\mathtt{disjoint},\overline{b_3})$ (OntProp, disjoint, Datatype) (SymProp, disjoint, List) $(OntProp, disjoint, b_8)$ (OntProp, disjoint, Literal) (SymProp, disjoint, Datatype) $(\mathtt{OntProp},\mathtt{disjoint},\overline{b_{10}})$ (OntProp, disjoint, boolean) $(\overline{\text{Thing}}, \overline{\text{disjoint}}, \overline{\overline{\text{Nothing}}})$ (OntProp, disjoint, eg:c) $(SymProp, disjoint, \overline{b_3})$ $(TransProp, disjoint, \overline{b_3})$ (OntProp, disjoint, AllDiff) $(\texttt{SymProp}, \texttt{disjoint}, b_8)$ $(TransProp, disjoint, b_8)$ $(SymProp, disjoint, \overline{b_{10}})$ $(TransProp, disjoint, \overline{b_{10}})$ (OntProp, disjoint, AnnProp) (TransProp, disjoint, eg:c) (priorVers, disjoint, AnnProp) (List, disjoint, eg:c) (TransProp, disjoint, AllDiff) (priorVers, disjoint, Nothing) (List, disjoint, AllDiff) (TransProp, disjoint, Nothing) (priorVers, disjoint, OntProp) (List, disjoint, AnnProp) (TransProp, disjoint, List) (priorVers, disjoint, SymProp) (List, disjoint, FunProp) (TransProp, disjoint, Datatype) (priorVers, disjoint, List) (List, disjoint, InvFunProp) $(priorVers, disjoint, \overline{b_3})$ (List, disjoint, Nothing) (priorVers, disjoint, CMemProp) $(priorVers, disjoint, b_8)$ (priorVers, disjoint, Datatype) (List, disjoint, ObjProp) $(priorVers, disjoint, \overline{b_{10}})$ (priorVers, disjoint, Literal) (List, disjoint, OntProp) (priorVers, disjoint, eg:c) (priorVers, disjoint, boolean) (List, disjoint, SymProp) (priorVers, disjoint, AllDiff) (List, disjoint, $\overline{b_3}$) (List, disjoint, TransProp) (List, disjoint, priorVers) (CMemProp, disjoint, AnnProp) $(\mathtt{Datatype}, \mathtt{disjoint}, b_8)$ (List, disjoint, CMemProp) (CMemProp, disjoint, owl:Class) (Datatype, disjoint, $\overline{b_{10}}$) (List, disjoint, Datatype) (CMemProp, disjoint, Nothing) (Datatype, disjoint, eg:c) (List, disjoint, Literal) (CMemProp, disjoint, OntProp) (Datatype, disjoint, AllDiff) (List, disjoint, boolean) (CMemProp, disjoint, priorVers) (Datatype, disjoint, AnnProp) $(\mathtt{CMemProp},\mathtt{disjoint},\overline{b_3})$ (CMemProp, disjoint, List) (Datatype, disjoint, FunProp) $(CMemProp, disjoint, b_8)$ (CMemProp, disjoint, Datatype) (Datatype, disjoint, InvFunProp) $(\mathtt{CMemProp},\mathtt{disjoint},\overline{b_{10}})$ (CMemProp, disjoint, Literal) $(Datatype, disjoint, \overline{Nothing})$ (CMemProp, disjoint, eg:c) (CMemProp, disjoint, boolean) (Datatype, disjoint, ObjProp) (CMemProp, disjoint, AllDiff) $(\mathtt{Datatype}, \mathtt{disjoint}, \overline{b_3})$ (Datatype, disjoint, OntProp) (Datatype, disjoint, SymProp) (Literal, disjoint, AllDiff) $(boolean, disjoint, b_8)$ (Datatype, disjoint, TransProp) (Literal, disjoint, AnnProp) $(boolean, disjoint, \overline{b_{10}})$ (Datatype, disjoint, priorVers) (Literal, disjoint, owl: Class) (boolean, disjoint, AllDiff) (Datatype, disjoint, List) (Literal, disjoint, Nothing) (boolean, disjoint, AnnProp) (Datatype, disjoint, CMemProp) (Literal, disjoint, OntProp) (boolean, disjoint, owl: Class) (Datatype, disjoint, Literal) (Literal, disjoint, priorVers) $(boolean, disjoint, \overline{Nothing})$ (Datatype, disjoint, boolean) (Literal, disjoint, List)(boolean, disjoint, OntProp) (Literal, disjoint, $\overline{b_3}$) (Literal, disjoint, CMemProp) (boolean, disjoint, priorVers) $(Literal, disjoint, b_8)$ (Literal, disjoint, Datatype) (boolean, disjoint, List) $(Literal, disjoint, \overline{b_{10}})$ $(boolean, disjoint, \overline{b_3})$ (boolean, disjoint, CMemProp) (boolean, disjoint, Datatype) (Nothing, equivC, Nothing) (boolean, equivC, boolean) $(\overline{b_3}, \mathtt{equivC}, \overline{b_3})$ (ObjProp, equivC, ObjProp) $(\overline{b_3}, \mathtt{subClass}, \overline{b_3})$ $(b_8, \mathtt{equivC}, b_8)$ $(\overline{b_3}, \mathtt{subClass}, \overline{\mathtt{owl:Class}})$ (OntProp, equivC, OntProp) $(\overline{b_{10}}, \mathtt{equivC}, \overline{b_{10}})$ $(\overline{b_3}, \mathtt{subClass}, \overline{\mathtt{Thing}})$ (SymProp, equivC, SymProp) (eg:c,equivC,eg:c) (TransProp, equivC, TransProp) $(b_8, \mathtt{subClass}, \overline{\mathtt{Thing}})$ (AllDiff, equivC, AllDiff) (priorVers, equivC, priorVers) $(b_8, \mathtt{subClass}, \mathtt{List})$ (AnnProp, equivC, AnnProp) $(b_9, \mathtt{subClass}, b_{10})$ (List, equivC, List)(owl:Class, equivC, owl:Class) (CMemProp, equivC, CMemProp) $(b_{10}, \mathtt{subClass}, b_9)$ $(\overline{b_{10}}, \mathtt{subClass}, \overline{\mathtt{owl:Class}})$ (FunProp, equivC, FunProp) (Datatype, equivC, Datatype)

(Literal, equivC, Literal)

(InvFunProp, equivC, InvFunProp)

 $(\overline{b_{10}}, \mathtt{subClass}, \overline{\mathtt{Thing}})$

 $(\overline{b_{10}}, \mathtt{subClass}, \mathtt{List})$ (Nothing, subClass, AllDiff) (owl:Class, subClass, rdfs:Class) $(eg:c, subClass, \overline{Thing})$ $(FunProp, subClass, \overline{ObjProp})$ (Nothing, subClass, AnnProp) $(AllDiff, subClass, \overline{Thing})$ $(FunProp, subClass, \overline{Thing})$ $(\overline{Nothing}, subClass, \overline{owl:Class})$ (AnnProp, subClass, FunProp) (InvFunProp, subClass, ObjProp) (Nothing, subClass, FunProp) (AnnProp, subClass, InvFunProp) (InvFunProp, subClass, Thing) (Nothing, subClass, InvFunProp) $(\overline{\text{Nothing}}, \text{subClass}, \overline{\text{Nothing}})$ (AnnProp, subClass, ObjProp) (InvFunProp, subClass, TransProp) (AnnProp, subClass, SymProp) $(\overline{\text{Nothing}}, \text{subClass}, \overline{b_3})$ (Nothing, subClass, ObjProp) (AnnProp, subClass, Thing) $(\overline{\text{Nothing}}, \text{subClass}, b_8)$ (Nothing, subClass, OntProp) $(\overline{\mathtt{Nothing}},\mathtt{subClass},\overline{b_{10}})$ (AnnProp, subClass, TransProp) (Nothing, subClass, SymProp) (owl:Class, subClass, Thing) (Nothing, subClass, eg:c) $(\overline{\text{Nothing}}, \text{subClass}, \overline{\text{Thing}})$ (Nothing, subClass, TransProp) (priorVers, subClass, owl:Class) (OntProp, subClass, InvFunProp) (Nothing, subClass, priorVers) (OntProp, subClass, ObjProp) (priorVers, subClass, FunProp) (Nothing, subClass, List) (OntProp, subClass, SymProp) (priorVers, subClass, InvFunProp) (Nothing, subClass, CMemProp) (OntProp, subClass, Thing) (priorVers, subClass, ObjProp) (Nothing, subClass, Datatype) (OntProp, subClass, TransProp) (priorVers, subClass, Thing) (Nothing, subClass, Literal) (SymProp, subClass, ObjProp) (priorVers, subClass, TransProp) (Nothing, subClass, boolean) (SymProp, subClass, Thing) $(List, subClass, \overline{Thing})$ $(\overline{\mathtt{ObjProp}}, \mathtt{subClass}, \overline{\mathtt{Thing}})$ (Thing, subClass, Resource) (CMemProp, subClass, FunProp) (ObjProp, subClass, Prop) (TransProp, subClass, ObjProp) (CMemProp, subClass, InvFunProp) (OntProp, subClass, FunProp) (TransProp, subClass, Thing) (CMemProp, subClass, ObjProp) (CMemProp, subClass, SymProp) (Datatype, subClass, owl:Class) (boolean, subClass, Thing) (CMemProp, subClass, Thing) (Datatype, subClass, Thing) (CMemProp, subClass, TransProp) (Literal, subClass, Thing)

15 H_6

 $\begin{array}{lll} (b_1, \operatorname{dstnctMems}, b_4) & (\overline{\operatorname{Nothing}}, \operatorname{intersect}, b_4) & (\overline{b_3}, \operatorname{unionOf}, b_5) \\ (b_1, \operatorname{dstnctMems}, b_5) & (\overline{\operatorname{Thing}}, \operatorname{intersect}, \operatorname{nil}) & (\operatorname{owl:Class}, \operatorname{unionOf}, b_3) \\ (b_1, \operatorname{dstnctMems}, \operatorname{nil}) & (b_3, \operatorname{oneOf}, b_3) & (\overline{\operatorname{Nothing}}, \operatorname{unionOf}, b_4) \\ (\overline{b_3}, \operatorname{intersect}, b_5) & (b_7, \operatorname{oneOf}, b_2) & (\overline{\operatorname{Nothing}}, \operatorname{unionOf}, \operatorname{nil}) \\ (\operatorname{owl:Class}, \operatorname{intersect}, b_3) & (\overline{\operatorname{Nothing}}, \operatorname{oneOf}, \operatorname{nil}) \\ \end{array}$

16 *H*₇

 $\begin{array}{lll} ("{\tt true}"^{\wedge \wedge} b, {\tt inverse0f}, "{\tt true}"^{\wedge \wedge} b) & ({\tt complmnt0f}, {\tt inverse0f}, {\tt complmnt0f}) & ({\tt equivC}, {\tt inverse0f}, {\tt equivC}) \\ (b_{11}, {\tt inverse0f}, b_{12}) & ({\tt different}, {\tt inverse0f}, {\tt different}) & ({\tt priorVers}, {\tt inverse0f}, {\tt priorVers}) \\ (b_{12}, {\tt inverse0f}, b_{11}) & ({\tt disjoint}, {\tt inverse0f}, {\tt disjoint}) & ({\tt sameAs}, {\tt inverse0f}, {\tt sameAs}) \\ \end{array}$

17 H_8

("true"^{∧∧}b, domain, FunProp) $(b_{10}, \mathtt{domain}, \mathtt{Thing})$ $(b_{12}, \mathtt{domain}, \mathtt{List})$ ("true" ^ b, domain, InvFunProp) $(b_{10}, domain, List)$ (eg:p, domain, Thing) $(\texttt{"true"}^{\wedge \wedge} b, \mathtt{domain}, \overline{\mathtt{ObjProp}})$ $(\overline{b_{11}}, \mathtt{domain}, b_8)$ $(complmntOf, domain, \overline{owl:Class})$ $("true"^{\wedge \wedge}b, domain, SymProp)$ $(\overline{b_{11}},\mathtt{domain},\overline{b_{10}})$ (complmntOf, domain, Thing) $("true"^{\wedge \wedge}b, domain, Thing)$ $(\overline{b_{11}}, \mathtt{domain}, \overline{\mathtt{owl:Class}})$ (different, domain, Thing) ("true"^^b, domain, TransProp) $(\overline{b_{11}}, \mathtt{domain}, \mathtt{Thing})$ (disjoint, domain, owl: Class) $("true"^{\wedge \wedge}b, domain, Literal)$ $(\overline{b_{11}}, \mathtt{domain}, \mathtt{List})$ (disjoint, domain, Thing) ("true"^{∧∧}b, domain, boolean) $(b_{12}, \mathtt{domain}, b_9)$ (dstnctMems, domain, AllDiff) $(b_8, \mathtt{domain}, \overline{\mathtt{owl:Class}})$ $(b_{12}, \mathtt{domain}, \overline{\mathtt{owl:Class}})$ (dstnctMems, domain, Thing) $(b_8, domain, Thing)$ $(b_{12}, \mathtt{domain}, \mathtt{Thing})$ (equivC, domain, owl: Class)

(priorVers, domain, OntProp) (equivC, domain, Thing) $(\overline{priorVers}, domain, b_8)$ (equivProp, domain, ObjProp) $(\overline{\mathtt{priorVers}},\mathtt{domain},\overline{b_{10}})$ $(\overline{\mathtt{priorVers}},\mathtt{domain},\mathtt{SymProp})$ (equivProp, domain, Thing) (priorVers, domain, eg:c) (priorVers, domain, Thing) (intersect, domain, owl: Class) (priorVers, domain, AllDiff) (priorVers, domain, TransProp) $(\overline{\tt priorVers}, \tt domain, \tt AnnProp)$ (priorVers, domain, priorVers) (intersect, domain, Thing) (priorVers, domain, List) (inverseOf, domain, ObjProp) (priorVers, domain, owl:Class) (inverseOf, domain, Thing) (priorVers, domain, FunProp) (priorVers, domain, CMemProp) (priorVers, domain, InvFunProp) (oneOf, domain, owl:Class) (priorVers, domain, Datatype) (oneOf, domain, Thing) (priorVers, domain, Nothing) (priorVers, domain, Literal) $(\overline{\mathtt{priorVers}}, \mathtt{domain}, \overline{b_3})$ (priorVers, domain, ObjProp) (priorVers, domain, boolean) (sameAs, domain, Thing) (subClass, domain, owl:Class) $("true"^{\wedge \wedge}b, range, Literal)$ (unionOf, domain, owl: Class) (subClass, domain, Thing) ("true" \^\b, range, boolean) (unionOf, domain, Thing) (subPropOf, domain, ObjProp) $(b_8, range, Thing)$ (first, domain, Thing) (subPropOf, domain, Thing) $(b_8, range, List)$ ("true"^{∧∧}b, range, FunProp) (rest, domain, Thing) $(b_{10}, range, Thing)$ ("true"^{∧∧}b, range, InvFunProp) (type, domain, Thing) $(b_{10}, range, List)$ $("true"^{\wedge \wedge}b, range, \overline{0bjProp})$ (domain, domain, ObjProp) $(\overline{b_{11}}, \mathtt{range}, \overline{b_{10}})$ ("true"^{∧∧}b, range, SymProp) (domain, domain, Thing) $(\overline{b_{11}}, \mathtt{range}, \overline{\mathtt{owl:Class}})$ $("true"^{\wedge \wedge}b, range, Thing)$ (range, domain, ObjProp) $(\overline{b_{11}}, \mathtt{range}, \mathtt{Thing})$ (range, domain, Thing) ("true"^{^^}b, range, TransProp) $(\overline{b_{11}}, \mathtt{range}, \mathtt{List})$ $(\mathtt{disjoint}, \mathtt{range}, \overline{\mathtt{owl} \colon \mathtt{Class}})$ $(inverseOf, range, \overline{ObjProp})$ $(b_{12}, range, b_8)$ $(b_{12}, range, \overline{b_{10}})$ (disjoint, range, Thing) (inverseOf, range, Thing) $(b_{12}, range, \overline{owl:Class})$ (dstnctMems, range, Thing) (oneOf, range, Thing) $(b_{12}, \mathtt{range}, \mathtt{Thing})$ (oneOf, range, List) (dstnctMems, range, List) $(b_{12}, range, List)$ (equivC, range, owl:Class) $(\overline{\text{priorVers}}, \text{range}, \overline{b_3})$ (eg:p,range,Thing) (equivC, range, Thing) $(\overline{\text{priorVers}}, \text{range}, b_8)$ $(\overline{\mathtt{priorVers}}, \mathtt{range}, \overline{b_{10}})$ (eg:p,range,Literal) (equivProp, range, ObjProp) (complmntOf, range, owl:Class) (equivProp, range, Thing) (priorVers, range, eg:c) (priorVers, range, AllDiff) (complmntOf, range, Thing) (intersect, range, Thing)(different, range, Thing) (intersect, range, List) (priorVers, range, AnnProp) (priorVers, range, owl:Class) (priorVers, range, List) (rest, range, Thing) (priorVers, range, FunProp) (priorVers, range, CMemProp) (type, range, owl:Class) (priorVers, range, InvFunProp) (priorVers, range, Datatype) (type, range, Thing) (domain, range, owl:Class) (priorVers, range, Nothing) (priorVers, range, Literal) (priorVers, range, ObjProp) (priorVers, range, boolean) (domain, range, Thing) (priorVers, range, OntProp) (sameAs, range, Thing) (range, range, owl:Class) (priorVers, range, SymProp) (unionOf, range, Thing) (range, range, Thing) (priorVers, range, Thing) (unionOf, range, List) (subClass, range, owl:Class) (priorVers, range, TransProp) (first, range, owl: Class) (subClass, range, Thing) (priorVers, range, priorVers) (first, range, Thing) (subPropOf, range, ObjProp) (subPropOf, range, Thing)

18 H_9

("true" \^ b, equivProp, "true" \^ b) (equivProp, equivProp, equivProp) (domain, equivProp, domain) $(b_{10}, \mathtt{equivProp}, b_{10})$ (intersect, equivProp, intersect) (range, equivProp, range) $(\overline{b_{11}}, \mathtt{equivProp}, \overline{b_{11}})$ (inverseOf, equivProp, inverseOf) $({\tt subClass}, {\tt equivProp}, {\tt subClass})$ $(b_{12}, \mathtt{equivProp}, b_{12})$ (oneOf, equivProp, oneOf) (subPropOf, equivProp, subPropOf) (eg:p, equivProp, eg:p) (priorVers, equivProp, priorVers) ("true"^^b, subPropOf, equivProp) ("true"^^b, subPropOf, inverseOf) (complmntOf, equivProp, complmntOf) (sameAs, equivProp, sameAs) ("true"^^b, subPropOf, sameAs) (different, equivProp, different) (unionOf, equivProp, unionOf) ("true" \^ b, subPropOf, subPropOf) (disjoint, equivProp, disjoint) (first, equivProp, first) $(b_8, \mathtt{subPropOf}, \mathtt{different})$ (dstnctMems, equivProp, dstnctMems) (rest, equivProp, rest) (equivC, equivProp, equivC) (type, equivProp, type) $(b_9, \mathtt{subPropOf}, b_{11})$

```
(b_{10}, \mathtt{subPropOf}, \mathtt{different})
                                             (complmntOf, subPropOf, different) (priorVers, subPropOf, b_{12})
(b_{11}, \mathtt{subPropOf}, b_9)
                                             (complmntOf, subPropOf, disjoint)
                                                                                          (priorVers, subPropOf, eg:p)
(\overline{b_{11}}, \mathtt{subPropOf}, \mathtt{different})
                                             (dstnctMems, subPropOf, different)
                                                                                          (\overline{priorVers}, subPropOf, complmntOf)
(\overline{b_{11}}, \mathtt{subPropOf}, \mathtt{disjoint})
                                             (equivC, subPropOf, subClass)
                                                                                          (priorVers, subPropOf, different)
(\overline{b_{11}}, \mathtt{subPropOf}, \mathtt{subClass})
                                             (equivProp, subPropOf, subPropOf)
                                                                                          (priorVers, subPropOf, disjoint)
(b_{12}, \mathtt{subPropOf}, b_8)
                                                                                          (priorVers, subPropOf, dstnctMems)
                                             (intersect, subPropOf, different)
(b_{12}, \mathtt{subPropOf}, \mathtt{different})
                                             (priorVers, subPropOf, "true"^^b)
                                                                                          (priorVers, subPropOf, equivC)
                                             (\overline{priorVers}, subPropOf, b_8)
(b_{12}, subPropOf, disjoint)
                                                                                          (priorVers, subPropOf, equivProp)
(b_{12}, \mathtt{subPropOf}, \mathtt{oneOf})
                                             (\overline{priorVers}, subPropOf, b_{10})
                                                                                          (priorVers, subPropOf, intersect)
(eg:p,subPropOf,different)
                                             (\overline{\mathtt{priorVers}}, \mathtt{subProp0f}, \overline{b_{11}})
                                                                                          (priorVers, subPropOf, inverseOf)
(priorVers, subPropOf, oneOf)
                                             (priorVers, subPropOf, rest)
                                                                                          (priorVers, subPropOf, subPropOf)
(\overline{priorVers}, subPropOf, \overline{priorVers})
                                             (\overline{priorVers}, subPropOf, type)
                                                                                          (unionOf, subPropOf, different)
(priorVers, subPropOf, sameAs)
                                             (priorVers, subPropOf, domain)
                                                                                          (first, subPropOf, different)
(priorVers, subPropOf, unionOf)
                                             (priorVers, subPropOf, range)
                                                                                          (rest, subPropOf, different)
(priorVers, subPropOf, first)
                                             (priorVers, subPropOf, subClass)
```

References

- [1] Carroll, J.J., Turner, D.: The Consistency of OWL Full. Technical Report, HP Labs (2008) HPL-2008-58.
- [2] Carroll, J.J., Turner, D.: The Consistency of OWL Full (with proofs). Technical Report, HP Labs (2008) HPL-2008-59.
- [3] Hayes, P.: RDF Semantics. W3C recommendation, W3C (February 2004) http://www.w3.org//TR/2004/REC-rdf-mt-20040210/.
- [4] Malhotra, A., Biron, P.V.: XML Schema Part 2: Datatypes Second Edition. W3C Recommendation, W3C (October 2004) http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.
- [5] ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary. J. Web Semantics **3**(2-3) (2005) 79–115