
The Consistency of OWL Full

Jeremy J. Carroll1 and Dave Turner2

1 HP Labs, Bristol, UK
2 Computer Laboratory, Cambridge University

Dave.Turner@cl.cam.ac.uk

Abstract. We show that OWL1 Full without the comprehension prin-
ciples is consistent, and does not break most RDF graphs that do not
use the OWL vocabulary. We discuss the role of the comprehension prin-
ciples in OWL semantics, and how to maintain the relationship between
OWL Full and OWL DL by reinterpreting the comprehension principles
as permitted steps when checking an entailment, rather than as model
theoretic principles constraining the universe of interpretation. Starting
with such a graph we build a Herbrand model, using, amongst other
things, an RDFS ruleset, and syntactic analogs of the semantic “if and
only if” conditions on the RDFS and OWL vocabulary. The ordering of
these steps is carefully chosen, along with some initialization data, to
break the cyclic dependencies between the various conditions. The nor-
mal Herbrand interpretation of this graph as its own model then suffices.
The main result follows by using an empty graph in this construction. We
discuss the relevance of our results, both to OWL2, and more generally
to a future revision of the Semantic Web recommendations.

1 Introduction

1.1 A Wart on the Face of the Semantic Web

The lack of a consistency proof for OWL Full is a wart on the face of the,
otherwise impressive, formal foundations of the Semantic Web. This paper does
not turn that wart into a beauty spot. Instead, we propose a line of cosmetic
surgery, and provide the first necessary pre-op preparation.

We first address the reader who is already thinking of giving up, because
semantics is hard, OWL Full is hard and OWL Full semantics is very hard.
Before moving on to the next paper, we hope that the conclusions to this paper
will partially address your concerns, and urge you to read this subsection and
then skip straight to the conclusions.

This paper is motivated by two things. First, the authors and presumably
others have tried, and failed over an extended period of time to prove that OWL
Full is consistent. This is a minimal requirement for the OWL Full semantics
to have any meaning at all. For example, if OWL Full is not consistent, then
theorem 2 of [1], which relates OWL DL to RDF via OWL Full, is trivially true,
and makes no claim. Our view is that the Semantic Web involves both RDF and
description logics, and the place that these come together is in OWL Full. Thus,

2 Jeremy J. Carroll and Dave Turner

we believe OWL Full is important. But also we have found that OWL Full is
simply too difficult. No one implements OWL Full, not even close. It is not simply
that OWL Full is formally undecidable, so a logically complete implementation
is impossible but much more significantly that many of the apparently motivated
aspects of OWL Full have no relationship with any implementation experience
(including the implementation experience of the description logic community).

Second, Michael Schneider recently found a new variant of the Patel-Schneider
paradox. This shows that the comprehension principles (see section 2) used in
OWL1 Full, cannot be extended in a natural way to cover OWL2 [2].

We prove that OWL Full without the comprehension principles is consistent
and doesn’t break RDF or RDFS (which we define in a formal way). We sketch
how theorem 2 of [1], which currently relies on the comprehension principles,
can be rescued, by recasting them in a syntactic rather than semantic form.
Should OWL Full be proved inconsistent, this gives a plausible path to recover
it. Since implementations do not implement the comprehension principles, this
would have no impact on users or implementers of OWL.

Our proof is instructive, in that it provides the first RDFS interpretation that
satisfies many of the conditions of the OWL Full semantics. By understanding
this paper and the separate appendix [3] which presents the approximately 15,000
triples that articulate that interpretation, we can get a much better feel for what
the OWL Full semantics actually says.

Even without the comprehension principles, OWL Full is still much too com-
plicated. In the closing sections we propose further surgery.

1.2 Notation

We use dom and ran as the domain and range of functions (considered as sets
of pairs). idX is the identity function on X . To accommodate line length con-
straints we shorten some of the RDF, RDFS and OWL vocabulary. In particular,
we omit all namespace prefixes, except for rdfs:Class vs owl:Class. We also
shorten some of the names in the namespaces, e.g.: Property, subPropertyOf,
equivalentClass and priorVersion.

1.3 Outline of Paper

The paper starts by discussing the rationale behind the comprehension prin-
ciples, and their rôle. In section 3 we define OWL Fullc, which does not con-
tain them. The next several sections build up to section 9, in which we build
a Herbrand graph. This follows the method of [4, 5] of building a graph in
which the property extension of every predicate is made completely explicit.
For example, since Nothing and Thing are different in OWL there is a triple
(Thing, differentFrom, Nothing) in the Herbrand graph. A semantic interpre-
tation of the graph in terms of itself, is given in section 10. In section 11, we
sketch how the functions of the comprehension principles can be replaced, and
conclude with a proposal for moving forward with OWL.

The Consistency of OWL Full 3

This is a short version of a longer technical report [6]. Proofs are nearly
always omitted here as are several definitions, lemmas and more mathematical
discussions. Theorem, definition and lemma numbering is the same in the two
versions, resulting in some gaps in the number sequence in this paper.

2 The Comprehension Principles

Consider:
A = {1} B = {2} C = {1, 2} (1)

Given (1), then, in classical logic:

C = A ∪B (2)

Both (1) and (2), can be expressed in a natural way in OWL. In the direct
semantics of OWL DL, and the semantics of OWL Full, we have the entailment
analagous to:

(1) ⇒ (2) (3)

However, the OWL Full entailment depends on the comprehension principles, so
that OWL Fullc which we define in section 3, does not provide this entailment.
The problem is that the A∪B is written in OWL with a list (an RDF Collection),
and both of the list cells correspond to resources in the domain of discourse (or
universe), as specified in the RDF Semantics. In OWL Fullc, as in RDF and
RDFS, no requirement for these lists to exist is made, so that in general, they
might not, and the entailment fails.

Patel-Schneider [7] considered such problems at the beginning of the de-
velopment of OWL. Discussing restrictions rather than lists, he wrote: “OWL
interpretations must include resources for many restrictions, essentially all the
restrictions that can be built”. Partly because he took the lead rôle in designing
the OWL semantics and partly because of the strength of his argument this view
became embedded in the OWL Full semantics as the comprehension principles
which require OWL Full interpretations to include “essentially all” restrictions
and lists. An OWL Full interpretation of even the empty graph, containing no
triples at all, is immensely complicated. For example, there is a someValuesFrom

restriction for every class and every property, and since each of these is itself a
class (as are all the other restrictions, complements, unions and intersections
that are required by other comprehension principles), then there is an infinite
productive power, prepopulating the universe with all such objects recursively.

2.1 The Patel-Schneider and Schneider paradoxes

That paper [7] also reports the Patel-Schneider paradox, which showed that if
“essentially all” was made too general, then logical disaster loomed. He con-
structed a self-referential restriction that “consists of all resources that do not
belong to it”. If this were part of the prepopulated universe, then this would be

4 Jeremy J. Carroll and Dave Turner

a paradox following the form of Russell’s paradox. The comprehension principles
of OWL carefully avoid that particular problem, by not requiring self-referential
comprehension. Thus the restriction from the Patel-Schneider paradox, is simply
a falsehood, rather than a paradox, under the OWL Full semantics. However,
without a consistency proof, there is no guarantee that other logical paradoxes
are not implicit within the complex tangle of resources required by the compre-
hension principles.

Recently, Michael Schneider [8] found a new variant of the Patel-Schneider
paradox, for OWL2. The new self-restriction construct of OWL2 [2] is the class on
which a given property is reflexive. By its very nature the self-restriction on type

is self-referential and its complement is a new formulation of Patel-Schneider’s
paradoxical class.

2.2 Interdependencies

The comprehension principles lead to a tangle of interdependencies between the
infinitely many resources they require because some of them concern properties
and classes used within the framework of OWL. Restrictions on the predicates
type or onProperty are particularly problematic, or on many of the other predi-
cates in logical vocabulary. The normal way of trying to show that a model theory
is consistent is to actually produce an interpretation that satisfies the constraints,
for example by modifying an interpretation from some other model theory al-
ready known to be consistent. Cyclic interdependencies makes this harder as
we will see in the construction used in this paper. The cyclic interdependences
amongst the comprehension principles are sufficiently severe to make it very
difficult to break out of them enough to construct an interpretation.

Given these difficulties, we decided to tackle the easier problem of OWL Full
without the comprehension principles. This leaves us the task of providing some
account of the non-entailment (3), see section 11.

3 OWL Fullc

OWL Fullc is OWL Full without the comprehension principles. An OWL Fullc
interpretation is defined as a D-interpretation that satisfies all the constraints of
an OWL Full interpretation except for the comprehension principles. There are
two minor omissions from [1], that we provide in [6].

When referring to [1], it should be remembered that in OWL Full, we have
the simplifications: iot = RI , ioop = PI and ioc = CI .

4 Generalized Graphs

We follow [9] and simplify the concept of RDF graph [10]:

Definition 1. A generalised graph is any subset of (L ∪ U ∪B)3, with L,U,B
being disjoint sets of literals, IRI nodes, and blank nodes as usual.

The Consistency of OWL Full 5

We note that an RDF graph is a generalised graph, and the semantic notions
of interpretations, satisfaction and entailment carry over without problem. We
will use graph without qualifier to be a generalised graph.

We use the concept of interpretation from RDF semantics [4]. For an interpre-
tation I, we will write VI as the related vocabulary, and (IRI , IPI , iextI , ISI , ILI ,LVI)
as the corresponding sextuple (we use LV as the literal subset as opposed to LV
a lexical-to-value mapping).

We define the set of nodes, the vocabulary of a graph G, and a syntactic class
extension function for a node u ∈ nd(G).

nd(G) = {s, p, o : (s, p, o) ∈ G} (4)

vocab(G) = nd(G) ∩ (L ∪ U) (5)

˙cext(G, u) = {v : (v, type, u) ∈ G} (6)

5 Literals and Datatypes

We take the normal set theoretic view and terminology of functions as sets of
pairs.

We use the concepts of literals, plain literals, typed literals and datatype
maps from RDF [4, 10]. l∧∧a is a typed literal where a is the datatype IRI.

Specifically, we take Lplain as the set of all plain literals. These are self-
denoting, meaning that each is its own associated value.

A datatype map D is a set of pairs (a, d) where a is a IRI and d is a datatype.
Each datatype comes with a value space, Vd, a lexical space Ld and a lexical-to-
value mapping LVd.

To represent this simply we use:

LD = Lplain ∪
⋃

(a,d)∈D

{l∧∧a : l ∈ Ld} (7)

VD = Lplain ∪
⋃

(a,d)∈D

Vd (8)

LVD = idLplain
∪

⋃

(a,d)∈D

LVd (9)

Given the syntactic emphasis of the Herbrand approach we use to construct
interpretations we represent the structure of the datatype map as the following
graph.

GD ={(l, type, a) : (a, d) ∈ D, v ∈ Vd, l = VL(v)}

∪ {(a, type, Datatype) : (a, d) ∈ D}

∪ {(l, type, Literal) : l ∈ Lplain}

(10)

6 Jeremy J. Carroll and Dave Turner

This graph is true for all D-interpretations in the sense that the function IL
can be extended to cover vocab(GD), and then the modified interpretation is
still a D-interpretation and it satisfies GD.

Ter Horst [5] omitted the following corollary to his lemma 4.10

Theorem 1. For any datatype map D, not using RDF vocabulary, except XMLLiteral,
the D-semantics is consistent.

6 Well-formed RDF Graphs and Datatype Maps

Our main theorem does not apply to all RDF graphs. For example,
{(Thing, sameAs, Nothing)} does not have an OWL Fullc interpretation. In this
section we specify the constraints, which are combined constraints on a datatype
map and a graph, that must be satisfied.

Some of the constraints are syntactic, and are designed to prevent too many
unexpected consequences under RDFS entailment for triples added during our
construction. The omitted preliminary definitions define declared subproperties,
subclasses, domains and ranges, by chasing subPropOf and subClassOf chains
through the graph.

We will refer to the five properties: subPropOf, range, domain, subClassOf
and type as the protected properties.

Definition 5. A combination of a datatype map D and an RDF graph G is
well-formed if all of the following hold:

1. There is a D-interpretation I of G that does not map any of the RDF, RDFS
or OWL vocabulary to values in VD, and does not map any of these items,
except XMLLiteral, to any of the datatypes in ran(D).

2. G contains no typed literals from datatypes not in D.
3. G contains no proper declared superproperties of the protected properties

4. None of the declared domains or ranges in G of the protected properties, or
of first or rest are in dom(D) ∪ {Literal}.

5. nil is the subject of no triple in G which has predicate being a declared
subproperty of first or rest.

6. If (s, p, o), (s, p′, o′) ∈ G, and for q ∈ {first, rest}, if both p and p′ are
declared subproperties of q then o = o′.

7. G does not use the OWL vocabulary.

8. LVD is surjective.

From the first and second points, G contains no ill-typed literals. The third and
fourth point means that we can add triples for the protected properties during
our construction without worrying about unexpected consequences from rules
rdfs2, rdfs3 and rdfs7. The fourth, fifth and sixth points ensures that collections
are well-behaved. The seventh reflects the modest ambition of this paper. The
eighth holds for the usual datatype map from XML Schema.

The Consistency of OWL Full 7

7 Main Theorem

We can now state the main theorem3. We sketch the proof in the next several
sections.

Theorem 2. For a well-formed combination of an RDF graph G and a datatype
map D there is an OWL Fullc interpretation.

Corollary 1. OWL Fullc is consistent.

Proof. Take the usual datatype map D and G as the empty graph. This has a
D-interpretation by the previous theorem, and so is well-formed.

Most ‘real world’ RDF graphs that do not use the OWL vocabulary are
well-formed with the XML Schema datatype map, i.e. the theorem has practical
importance!

8 Rules and Closures

We use eleven of the entailment rules from [4]. We refer to them as the set R,
which contains rdf1, rdfs2, rdfs3, rdfs4a, rdfs4b, rdfs6, rdfs7, rdfs9, rdfs10, rdfs12
and rdfs13. These deal with Prop, domain, range, Resource (twice), subPropOf
(twice), subClassOf (twice), ContMemProp, and Datatype respectively. Amongst
the omitted rules are the rules for the transitivity of subPropOf and subClassOf.
We use these rules without any of the side conditions specified in [4]. The action
of each rule is that if the triples in the precondition match triples in a graph G,
then we can construct a result triple, by substituting the variables.

We define closed and rule closure in the usual way:

Definition 6. A graph G is closed with respect to a set of rules R, if for every
rule r ∈ R, and every subset m ⊂ G matching the precondition of r, the resulting
consequent triple r(m) ∈ G.

i.e. a graph G is R-closed if none of the rules when applied to G create new
triples, not already in G. Since we are mainly interested in infinite graphs, we
use an abstract definition of closure, which corresponds to exhaustive application
in the finite case.

Definition 7. Given a set of rules R, the R-closure of G, (written R(G)) is the
minimal R-closed graph containing G.

We omit the other entailment rules in [4], and so have to achieve the same
effect in other ways.

– The rules lg and gl are addressed by using general graphs.
– The rules rdf2, rdf2D and rdfs1 are addressed by GD defined above.
– The rule rdfs5 is addressed using the “if and only if” semantics for subPropOf.
– The rules rdfs8 and rdfs11 are addressed using the “if and only if” semantics

for subClassOf.
3 This theorem is due to the first author.

8 Jeremy J. Carroll and Dave Turner

9 Syntactic construction of an OWL Fullc universe

To make a simple universe, or domain of discourse, we construct a graph whose
nodes are in one-one correspondence with the elements of that universe. This
means, in particular, that we have to simplify the representation of literals in
the graph. All nodes interpreted as literals, whether in canonical form or not,
whether syntactically literal, or IRI node or blank node, will be replaced by a
canonical form (from VLD).

The construction comes in two phases. In the first phase, we start with the
RDF graph G given in the main theorem, and add:

1. initialisation triples GD for the datatype map
2. the RDF and RDFS axiomatic triples,
3. and take the R-closure.

The resulting graph is G3 and is D-satisfiable. We then simplify the representa-
tion of all literals in this graph using a known D-interpretation and VLD. We
use this simplified graph in the second stage. This graph still contains no OWL
vocabulary.

In the second stage we build a Herbrand model. This is a graph that contains
all the triples needed to explicitly represent all the properties in the universe.
Unlike in Hayes’ or ter Horst’s work, we do not just add necessary consequences
but also add contingent facts that happen to be true in this particular model, but
are not necessarily true. For example, OWL requires a property priorVers to
exist. In our universe like in many real life ontologies this property will be empty.
Thus it will also be functional, inverse functional, transitive and symmetric.
These four facts about our universe have to be recorded explicitly because of the
“if and only if” conditions on the related classes. However, they are contingent
in that in some other universe in which the initial graph is true, priorVers has
a rich structure and has none of these properties.

9.1 Replacing the literals

This graph G3 has potentially many different nodes that denote the same literal
under a given D-interpretation I. To simplify the rest of the proof, we want to
construct a new graph H0 that does not have that property.

From the definition of satisfaction in [4] there is a specific interpretation I,
and a specific function A from the blank nodes of G to IRI such that I + A
satisfies G3. We will use these symbols unchanged in later sections, referring back
to the same functions used in the following constuction of H0 using G3, I,A and
VLD.

We use an auxiliary node mapping function ψ:

ψ : nd(G3) → nd(G3) ∪ LD (11)

ψ(n) =

{

VL((I +A)(n)) if n ∈ ˙cext(G3, Literal),

n otherwise.
(12)

H0 = {(ψ(s), ψ(p), ψ(o)) : (s, p, o) ∈ G3} (13)

The Consistency of OWL Full 9

9.2 Phase 2: mechanics

The second stage consists of a number of steps, each with a related attribute
of the graph. Each step adds triples to the graph in order that it satisfy the
corresponding attribute. In the initial steps (1 and 2) of this stage, we deal with
the ‘if’ conditions of RDFS. The later steps (3-9) deal with OWL vocabulary
and the “. . . and only if” conditions on the RDFS vocabulary. The attribute of
the graph is a syntactic rule based on the semantic conditions for the relevant
triples of that step (typically the conditions for the predicate). The triples added
do not negate the attributes of the graph achieved in earlier steps. Thus we
gradually build a graph with more and more syntactic attributes corresponding
to conditions from the semantics. The final graph has all the attributes and is
in one-one correspondence with an OWL Fullc universe. We can then build a
Herbrand interpretation in the usual way.

The first two steps of the second stage are as follows:

1. Add axiomatic and other triples for OWL Fullc, (tables 4 and 5)
2. We take the R∪R′-closure, where R′ is the set of additional rules in table 1.

These rules add triples for for domain, range, for which OWL Fullc has “if
and only if” semantics. Although the rules are unsound in general, they will
be trivially true in our universe,

Preconditions Consequent

odr1 p type Prop p range Resource

odr2 p type Prop p domain Resource

odr3 c type rdfs:Class priorVers range c

odr4 c type rdfs:Class priorVers domain c

Table 1. Entailment rules for domain and range

The triples generated in steps 3-9 are identified in table 2, with the addition
that step 4 creates (? type Datatype) triples for finite classes of literals. d in
steps 3-9 are identified in table 2, with the addition that step 4 creates (? type

Datatype) triples for finite classes of literals. We represent each of the steps as
a function from graphs to graphs. The result of this function is then either a set
of triples that need to be added, in the constructive step for that function, or
that must already be present in the graph, for later steps.

With Γ1, . . . Γ9 as described below, we define, for i = 1, . . . 9

Hi = Hi−1 ∪ Γi(Hi−1) (14)

The following lemma expresses the fact that we keep moving forward in this
process:

10 Jeremy J. Carroll and Dave Turner

Lemma 1. For each i, j = 1, . . . 9, with i ≤ j, we have Γi(Hj) ⊂ Hj.

At the end of the process, H9 is such that it has an even stronger relationship
with these functions, in that they precisely characterise the triples of various
sorts that are present in H9. The final function Γ9 is defined using an auxiliary
function Ω. For i = 3, . . . 8, each of the functions Γi, and also for i = 9, Ω,
produces a graph consisting of triples matching the expressions in table 2, in
which ? stands for any value. We take Mi to be the simple graph to graph
function that selects exactly those triples that match the ith row of the table,
so that, for example, M7(G) = {(s, inverseOf, o) ∈ G}.

i Predicates or Triple Patterns

3 sameAs differentFrom

4 (? type FunctionalProp) (? type InvFunProp)
(? type SymProp) (? type TransProp)

5 complmntOf subClassOf disjointWith equivClass

6 unionOf intersectionOf oneOf distinctMembers

7 inverseOf

8 domain range

9 subPropOf equivProp

Table 2. The definition of Mi

Lemma 2. For i = 3, . . . 8, Mi(Γi(H9)) = Mi(H9), and Ω(H9) = M9(H9).

Axiomatic and Other Triples. Axiomatic and additional triples are given in
tables 4, 5. They include blank nodes from a set disjoint with nd(H0). b1 is the
same blank node in both tables. No other blank nodes are introduced later. The
table of other triples are assorted ad hoc facts about our particular universe and
interpretation.

Γ1(G) is simply the graph formed by the union of these two tables.

RDFS related. Γ2(G) = (R∪R′)(G) where R is our set of eleven RDFS rules,
and R′ is the set of four rules in table 1. The rules rdfs6, rdfs10 in R and the
rules in R′ ensure that when we add subClassOf, subPropOf, domain and range

triples in later steps, there are no new consequences from rules rdfs2 and rdfs3 in
R, since these have already been added in step 2. The rules in R′ are plausible,
because: the domain and range triples follow the OWL “if and only if’ semantics
for these properties, remembering the contingent fact that in our interpretation
priorVers has empty property extension.

The Consistency of OWL Full 11

“. . . and only if” The definitions of Γ3, . . . Γ9 are straightforward syntactic
variants of the corresponding semantic conditions for the properties given in ta-
ble 2, and are found in [6]. There are only two complications. The first is that Γ4

also introduces triples of the form (a, type, Datatype) and (a, subClassOf, Literal)
for all finite, nonempty classes whose class extension is a subset of the class ex-
tension of Literal. The second is that in Γ9 the property extension of subPropOf
and equivProp are changed, and they may both become superproperties of other
properties. Thus a closure is needed. Proving this closure works is one of the more
complicated parts of the proof.

Proving lemmas 1 and 2 depends crucially on the ordering of the steps,
in that the later steps do not undermine the work done in the earlier steps;
and on the initialization tables, in that when the earlier steps may get things
wrong, this is patched up with the additional triples. The proof of step 4 is
particularly intricate. There are 56 different cases to consider, 18 of which depend
on identifying relevant triples that are not in H9, and 27 of which depend on
identifying pairs of relevant triples that are in H3. For example, oneOf is not
symmetric because (nil, oneOf, b2) /∈ H3 or H9.

10 An OWL Fullc interpretation of H9 and G0

We define a simple interpretation J of VJ = vocab(H9) ∪ vocab(G3), using the
datatype map D, the D-interpretation I used in section 9.1, via the auxiliary
node mapping function ψ used in that section.

We take the universe U as the nodes of H9 except those that represent
literals or datatypes, and we define two auxiliary functions: χ, a one-one mapping
between nd(H9) and U ; and θ, that extends the domain of χ to include nd(G3)

U = (nd(H9) \ (dom(D) ∪ LD)) ∪ VD ∪ ran(D) (15)

χ : nd(H9) → U (16)

χ(x) =

d (x, d) ∈ D

LV(d) x ∈ LD

x otherwise

(17)

θ : nd(H9) ∪ nd(G3) → U (18)

θ(x) =

{

χ(x) x ∈ nd(H9)

χ(ψ(x)) x ∈ nd(G3)
(19)

(19) is well-defined, because if x ∈ nd(H9 ∩ nd(G3)) then x = ψ(x).
The interpretation J is then defined as:

IRJ = U ISJ (x) = θ(x) ILJ (x) = θ(x) (20)

IPJ = {χ(p) : p ∈ ˙cext(H9, Prop)} (21)

iextJ (x) = {(χ(s), χ(o)) : (s, χ−1(x), o) ∈ H9} (22)

LVJ = {χ(l) : l ∈ ˙cext(H9, Literal)} (23)

12 Jeremy J. Carroll and Dave Turner

The definitions of iextJ , ISJ , ILJ are restricted to their respective domains of
IPJ , IRIs and typed literals in VJ .

Lemma 5. J satisfies H9 and G3.

10.1 J is an OWL Fullc interpretation

After establishing, in the omitted lemmas 6, 7, and 8, that J is a D-interpretation,
we then consider each of the conditions from [1], sections 5.2 and 5.3, along with
the additional modifications made in our section 3, in order to prove that it is an
OWL Fullc interpretation. Most of these follow directly from lemma 2, or from
the axiomatic triples.

The most straightforward part is to check the constraints concerning restric-
tions. Since none of the relevant properties have non-empty property extension
under J , there is nothing to prove.

11 OWL without Comprehension

Having discarded the comprehension principles, we need to articulate what to
do without them.

We start at the application level. The comprehension principles play no part
in application operation. Applications from the RDF, RDFS world-view, con-
centrate largely on A-box consequences, and the comprehension principles all
concern the T-box. This reflects the emphasis of the description logic commu-
nity, prior to OWL, on T-box reasoning, and fitted unnaturally with RDF. Even
applications from the description logic viewpoint do not implicitly use the com-
prehension principles, when one rearticulates their operation in terms of OWL
Full. For example, a classifier that given an ontology, provides a picture of the
class hierarchy, generally show only those classes, and possibly class expressions,
that are already written down within the ontology. A few may show a few addi-
tional class intersections or unions, which would require a finite and measured
introduction of unnamed classes currently articulated in OWL Full using the
infinite and unmeasured comprehension principles. A further style of description
logic application that could be seen as dependent on the comprehension princi-
ples would be a query answering system that allows the user to type in a class
expression and ask whether it is empty or not. Such a question presupposes that
the class expression is not itself simply ‘false’.

At the architectural level, the comprehension principles play a vital rôle in
theorem 2 of [1]. This articulates the relationship between OWL DL and OWL
Full, on the DL syntactic subset specified by the mapping rules. It is unfortu-
nately defective in giving only a one-sided implication, and lacking an articu-
lation of when the converse implication fails. So it does not give an account of
similarities and differences between OWL DL and OWL Full, which would have
been a more useful result. Such an account is impossible to give before showing
that OWL Full is consistent. Our goal for a reworked theorem 2 would be to

The Consistency of OWL Full 13

change OWL Full such that a consistency proof is possible (or hopefully even
easy!) and then have a theorem 2 that gives a full and precise account of the
relationship between the direct semantics and the OWL Full semantics on the
DL syntactic subset.

Given that the direct semantics for OWL, follows classical logic, and finds
implications such as (3) as entailments, and OWL Fullc does not, a compre-
hension rule is required in such an articulation of the relationship. A possible
approach, would be to replace the comprehension principles, that operate on the
semantic level, with syntactic comprehension rules, as in table 3. Each of these

For any x, y from nd(G) or LD or dom(D) or the OWL,

RDF or RDFS vocabularies, add a new blank node bi and:

1: (b1 rest x) (b1 first y)
2: (b2 type owl:Class) (b2 unionOf x)
3: (b3 type owl:Class) (b3 intersectionOf x)

4a: (b4 type owl:Class) (b4 oneOf x)
4b: (b′4 type DataRange) (b′4 oneOf x)
5: (b5 type owl:Class) (b5 complmntOf x)
6: (b6 type Restrict) (b6 onProperty x) (b6 allValuesFrom y)
7: (b7 type Restrict) (b7 onProperty x) (b7 someValuesFrom y)
8: (b8 type Restrict) (b8 onProperty x) (b8 hasValue y)
9: (b9 type Restrict) (b9 onProperty x) (b9 minCardinality y)

10: (b10 type Restrict) (b10 onProperty x) (b10 maxCardinality y)
11: (b11 type Restrict) (b11 onProperty x) (b11 cardinality y)

Table 3. Comprehension rules for the DL syntactic subset

is such that, given nodes that exist in a graph (or in the vocabularies being
used) it produces a syntactic representation of the resources currently required
by the comprehension principles. Then a comprehension sequence from a graph
G0 to Gn would consist of a finite sequence of rule applications to add more and
more such terms. We conjecture that these rules are such that as long as all the
Gi are in the DL syntactic subset, such a sequence would preserve OWL Fullc
satisfiability. If this is indeed so, for the purposes both of stating and proving a
revamped theorem 2, one could define a notion of generalized entailment from
G to H , being that there is a comprehension sequence within the DL subset
from G = G0 to Gn, such that Gn OWL Fullc entails H . This notion would also
suffice to articulate within OWL Fullc the finite uses of comprehension we saw
in a few OWL DL style applications.

14 Jeremy J. Carroll and Dave Turner

12 Conclusions

12.1 OWL Full is too complicated

The most striking thing about proving OWL Fullc consistent is that it is unrea-
sonably hard work. It is a modest goal but would take two or more papers to
do it justice. We do not believe that a consistency proof for OWL Full will be
achieved any time soon. In fact, we doubt whether OWL Full is consistent.

The requirement that OWL Full does not break RDF and RDFS as expressed
in our main theorem, is entirely reasonable. It seems like an architectural princi-
ple that should have been included in the RDF Semantics document: “Semantic
extensions must not . . . [make consistent graphs that do not use their vocabu-
lary inconsistent]”.

Ter Horst [11] shows that a large number of “if . . . then” conditions can be
accommodated as rules with very little problem. The parts of the OWL Fullc
semantics that were either based on “if . . . then” or were based on constructs
such as restrictions that simply do not occur in RDF except by using the OWL
vocabulary were easy; trivial even, for our minimalist goal.

The problem we solved were the cyclic dependencies introduced by the “if
and only if” conditions. These are at their worst for subPropertyOf, where the
question of which property is a subproperty of subPropertyOf is hard to duck,
and hard to answer. But there are many other potential circularities that are
addressed in our construction like ‘is inverseOf functional?’ versus ‘does type

have an inverse?’

While we do not advocate dropping all “if and only if”s, each one is costly and
needs justification rooted in actual practice: running code that is best understood
with a semantics that has that particular condition. Consider the classifier that
displays a class hierarchy. Each of the lines on the display corresponds to a
subClassOf relationship that has been inferred using “if and only if” semantics.
We do not believe that any tool supports some such feature for inverseOf,
subPropertyOf, range, unionOf If there are none or even only a few such
tools, then the best decision is to remove those conditions from the semantics of
OWL Full.

The reason for our concern is the rôle of OWL Full as the lynch pin that holds
together RDF (cheap and cheerful, scalable, with wide deployment) and OWL
DL (heavyweight, industrial strength reasoning). If these two diverge too much
then both communities will lose the benefits that our complementary strengths
bring. Schneider’s result shows that some reworking of OWL1 Full is needed
before OWL2 proceeds past Candidate Recommendation. This presents an op-
portunity to also fix several of the more severe non-critical foundational issues
both with OWL Full and with RDF: the excess of “if and only if” conditions;
generalizing the RDF abstract syntax [9]; named graph support. While only
comprehension needs work in order to complete OWL2, all of the others would
help OWL2 and be wider improvements for the RDF and OWL1 communities.

The Consistency of OWL Full 15

12.2 Summary

This paper has shown that OWL Full without the comprehension principles is
self-consistent and more strongly is consistent with the D-semantics for most
non-OWL RDF graphs. We have in the process pointed to several weaknesses of
the OWL Full semantics most notably but by no means exclusively the compre-
hension principles themselves.

Because of the Schneider paradox OWL Full semantics need some redesign.
This paper has shown that a possible route is to convert the comprehension
principles into syntactic devices. We advocate a more radical overhaul.

Returning to the subject of the wart many of us care so much more about
the DL left-side profile of OWL that we feel we can ignore the wart on the Full
right-side. We close by remembering that the Semantic Web is seen by most
people outside our relatively small community, face on with both the right and
the left sides showing. Fixing the difficult problem of OWL Full consistency
would benefit all of us.

References

1. Patel-Schneider, P.F., Horrocks, I., Hayes, P.: OWL Web Ontology Language
Semantics and Abstract Syntax. W3C recommendation, W3C (February 2004)
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/.

2. Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C Working Draft, W3C
(2008) http://www.w3.org/TR/2008/WD-owl2-syntax-20080411/.

3. Carroll, J.J.: An OWL Full Interpretation. Technical Report, HP Labs (2008)
HPL-2008-60.

4. Hayes, P.: RDF Semantics. W3C recommendation, W3C (February 2004)
http://www.w3.org//TR/2004/REC-rdf-mt-20040210/.

5. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. Web Semantics
3(2-3) (2005) 79–115

6. Carroll, J.J., Turner, D.: The Consistency of OWL Full (with proofs). Technical
Report, HP Labs (2008) HPL-2008-59.

7. Patel-Schneider, P.F., Fensel, D.: Layering the Semantic Web: Problems and Di-
rections. In Horrocks, I., Hendler, J., eds.: Proc. of the 1st International Semantic
Web Conference (ISWC2002). (2002)

8. Schneider, M.: OWL 2 Full: Current State and Issues (2008)
http://lists.w3.org/Archives/Public/public-owl-wg/2008Apr/0029.

9. de Bruijn, J.: RIF RDF and OWL Compatibility. W3C Working Draft, W3C
(2008) http://www.w3.org/TR/2008/WD-rif-rdf-owl-20080415/.

10. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation, W3C (February 2004)
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

11. ter Horst, H.J.: Combining RDF and Part of OWL with Rules: Semantics, Decid-
ability, Complexity. In: International Semantic Web Conference. (2005) 668–684

16 Jeremy J. Carroll and Dave Turner

(owl:Class type rdfs:Class) (priorVers type OntProp) (Nothing complmntOf Resource)

(rdfs:Class subClassOf owl:Class) (backComp type OntProp) (subClassOf type TransProp)

(Prop subClassOf ObjProp) (incompat type OntProp) (AnnProp subClassOf Prop)

(DataProp subClassOf Prop) (disjointWith type Prop) (OntProp subClassOf Prop)

(b1 type AllDifferent) (inverseOf type Prop) (Prop subClassOf Thing)

(Resource subClassOf Thing) (differentFrom type Prop) (Resource disjointWith Nothing)

(Nothing type rdfs:Class) (complmntOf type Prop) (Nothing disjointWith Nothing)

(DeprClass type rdfs:Class) (unionOf type Prop) (Nothing disjointWith Resource)

(DeprProp type rdfs:Class) (intersectionOf type Prop) (Thing equivClass Resource)

(Restrict subClassOf rdfs:Class) (oneOf type Prop) (Thing equivClass Thing)

(Literal type Datatype) (allValuesFrom type Prop) (Resource equivClass Resource)

(Datatype subClassOf rdfs:Class) (onProperty type Prop) (Resource equivClass Thing)

(subClassOf type TransProp) (someValuesFrom type Prop) (DataRange type rdfs:Class)

(subPropOf type TransProp) (hasValue type Prop) (Thing sameAs Thing)

(versionInfo type AnnProp) (minCardinality type Prop) (Thing differentFrom Nothing)

(label type AnnProp) (maxCardinality type Prop) (inverseOf inverseOf inverseOf)

(comment type AnnProp) (cardinality type Prop) (inverseOf subPropOf inverseOf)

(seeAlso type AnnProp) (distinctMembers type Prop) (equivProp type SymProp)

(isDefinedBy type AnnProp) (Thing complmntOf Nothing) (equivProp inverseOf equivProp)

(Ontology type rdfs:Class) (Resource complmntOf Nothing)

(imports type OntProp) (Nothing complmntOf Thing)

Table 4. The axiomatic triples for OWL Fullc

(inverseOf type SymProp) (rdfs:Class type b6) (b12 inverseOf b9)

(priorVers inverseOf priorVers) (rdfs:Class type b7) (b8 b8 b2)

(priorVers inverseOf backComp) (rdfs:Class unionOf b2) (b8 b8 b3)

(incompat inverseOf backComp) (owl:Class unionOf b2) (b3 b8 b2)

(imports inverseOf priorVers) (rdfs:Class unionOf b3) (b2 b8 b4)

(priorVers equivProp priorVers) (b2 unionOf nil) (b2 b9 b3)

(priorVers equivProp backComp) (rdfs:Class intersectionOf b2) (b4 b10 b5)

(incompat equivProp backComp) (owl:Class intersectionOf b2) (b2 b11 b3)

(priorVers type FunctionalProp) (rdfs:Class intersectionOf b3) (b3 b12 b2)

(priorVers type InvFunProp) (b3 intersectionOf b5) (b2 type b8)

(b2 type rdfs:Class) (b7 oneOf b3) (b2 type b9)

(b2 first rdfs:Class) (b3 oneOf b2) (b3 type b9)

(b2 rest nil) (b2 oneOf nil) (b12 domain b10)

(b3 first rdfs:Class) (b6 oneOf b2) (b9 domain b10)

(b3 rest nil) (b6 oneOf b3) (b10 domain b8)

(b4 first Nothing) (b1 distinctMembers b2) (b9 range b10)

(b4 rest nil) (b1 distinctMembers b3) (b10 range b8)

(b5 first b3) (b8 subPropOf b8) (priorVers subPropOf b9)

(b5 rest nil) (b8 equivProp b8) (b9 type priorVers)

(rdfs:Class type b3) (b9 inverseOf b12) (priorVers subPropOf backComp)

Table 5. Additional triples assumed in the proof.

