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Abstract

We have developed a program NeuroText to
populate the neuroscience databasesin SenseLab
(http:/ /senselab.med.yale.edu/senselab) by
mining thenaturallanguage text of neuroscience
articles. NeuroText uses a two-step approach to
identify relevant articles. The first step (pre-pro-
cessing), aimed at 100% sensitivity, identifies
abstracts containing database keywords. In the
second step, potentially relevant abstracts iden-
tified in the first step are processed for specificity
dictated by database architecture, and neuro-
science, lexical and semantic contexts. NeuroText
results were presented to the experts for valida-
tion using a dynamically generated interface that
also allows expert-validated articles to be auto-
matically deposited into the databases. Of the
test set of 912 articles, 735 were rejected at the
pre-processing step. For the remaining articles,
theaccuracy of predicting database-relevantarti-
cles was 85%. Twenty-two articles were erro-
neouslyidentified. NeuroText deferred decisions

on 29 articles to the expert. A comparison of
NeuroText results versus the experts” analyses
revealed thatthe program failed to correctly iden-
tify articles” relevance due to concepts that did
not yet exist in the knowledgebase or due to
vaguely presented information in the abstracts.
NeuroText uses two “evolution” techniques
(supervised and unsupervised) that play an
important role in the continual improvement of
the retrieval results. Software that uses the
NeuroText approach can facilitate the creation
of curated, special-interest, bibliography data-
bases.

Index Entries: Text mining; natural language
processing; neuroscience; databases; supervised
and unsupervised learning.
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Fig. 1. NeuronDB: Relevant references for properties with expert-supplied annotations related to compart-

ments of the olfactory mitral cells in the olfactory bulb.

Introduction

Neuroscientists studying membrane sig-
naling mechanisms in neurons are faced with
rapidly increasing literature. Databases are
needed to assist in enabling experimenters to
search forand extract datarelevant to their par-
ticular neuronal system and compare it to those
of other systems. To this end, CellProperties
Database (CellPropDB) and NeuronDB have
been constructed in the SenseLab
(http://senselab.med.yale.edu/senselab)
databases (Marenco et al., 1999; Shepherd et
al., 1998).

Populating these databases hasinitially been
done manually (Migliore et al., 2003), but the
rapidly expanding literature requires the
development of more automated procedures.

Neuroinformatics

This study reports the development of tools
that constitute a first step toward this goal.

NeuronDB and CellPropDB provide anno-
tated, bibliographic information related to
three essential elements of rapid neuronal sig-
naling: neurotransmitters, neurotransmitter
receptors, and intrinsic ion channels in differ-
ent types of neurons (Fig. 1).

The information in CellPropDB (neuronal
properties of a cell as a whole) and NeuronDB
(properties that have been experimentally
localized to specific neuronal compartments)
includes bibliographic citations to articles in
the neuroscience literature. Sources for this
information include research articles in jour-
nals, textbooks, and monographs. The
NeuroGuide website (http://neuroguide.
com) reports that there are more than 300 online
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resources that publish neuroscience-related
articles. Each article is a potential CellPropDB
and NeuronDB citation.

At present, mining relevant information
from such widespread literature sources man-
ually is daunting. An expert can sometimes
derive enough information from the title or a
few relevant keywords from the abstract to
determine whether an article is relevant and
should beincluded in the database, butat other
times it requires more extensive reading. The
development of automated approaches that
offer significant help to the expert is therefore
highly desirable. This paper describes such an
approach.

Our specific approach to the general prob-
lem of mining unstructured text to populate
databases involves the following key steps:

* A knowledgebase needs to be established. It
should contain specific information that will
help identify relevant articles in the correct
hierarchy (if any). This knowledgebase contains
keywords and their synonyms, and information
relevant to the scoring of these keywords.

¢ The text must also be examined to determine
whether the keywords occur in a context rele-
vant to the database domain. Key lexical and
semantic relationships between keywords to
correctly identify relationships have to be
scanned and identified.

¢ Thelexical scanner should alsobe able toiden-
tify the affirming /negating context of the text.
Correctly identifying journal articles that
specifically refute the presence of a property
is important.

¢ The program must accommodate the evolu-
tion of information in the database domain.
The knowledgebase has to be updated (ideal-
ly, dynamically) when new keywords, syn-
onyms, and relationships areidentified, as well
as when existing knowledgebase information
becomes irrelevant.

* Asuccessful program should ideally be exten-
sible to other domains withoutsignificantalgo-
rithmic modifications.

Volume 1, 2003

* The program requires close collaboration
between the informatics expert and the exper-
imental expert to validate the search results.

We have developed NeuroText to identify
potentially relevantarticles from neuroscience
sources to help populate the SenseLab data-
bases. This paper describes the design of
NeuroText and a pilot study of its operation.
The Journal of Neuroscience (http:/ /www.jneu-
rosci.org), the source for this study, contains
full-length articles of cellular and molecular
studies, development, plasticity and repair,
and behavioral systems, in addition to a small
number of shortarticles—“Rapid Communica-
tions.” Using the Journal of Neuroscience allows
our strategy to test different areas of neuro-
science while focusing on a single article
source.

The development of NeuroText does not
address the full natural language understand-
ing problems for general, unstructured text as
studied by researchers in the areas of Artificial
Intelligence and Computational Linguistics
(Baeza-Yates and Ribeiro-Neto, 1999). We
process text from neuroscience articles with a
focused end-goal in mind: populating a data-
base with specific information about neuronal
membrane properties. The nature of this
desired information dictates very focused
retrieval strategies.

Specific features of NeuroText’s approach
include the following.

¢ Keyword countingasaninitial basis for poten-
tial relevance: NeuroText is premised on the
straightforward assumption that researchers
presenting information will mention concepts
and keywordsrelated to thatinformation more
frequently than other non-related or distant-
ly-related concepts. For example, if the
research focuses on the serotonin receptor
expressed in the Purkinje cells of the cere-
bellum, elementary counting statistics should
be able to help differentiate this from a more
tangential mention of some other property
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such as “CA1 pyramidal cells in the hip-
pocampus” found in the same journal article.

Using contextual constraints to refine poten-
tial relevance: The context of the occurrence of
relevant keywords, however, precludes
reliance on the mere counting of database key-
words. Context is defined by the constraints
of the specific database domain (specifically)
and of neuroscience (as a whole). CellPropDB
and NeuronDB present information (struc-
tured in the region-neuron-property hierar-
chy) for a subset of normal, healthy neurons
from in vivo or in vitro studies. An efficient
program must therefore eliminate articles
related to neurons not currently in the data-
base, work related to diseased cells or neuro-
logical disorders (e.g., Alzheimer’s and
Parkinson’s diseases), and work pertaining
specifically to in vitro cell cultures. The pro-
gram also must determine whether the negat-
ed concepts are contributory to the publication.
As a specific example of a highly domain-spe-
cificcontextual constraint, the experts (Michele
Migliore and Gordon M. Shepherd, hereafter
MM and GMS) have determined that biblio-
graphic citations to publications about troph-
ic factors (related to growth or metabolism)
such as brain-derived neurotrophic factor
(BDNF), whose levels are a determinant in the
cause of depression in humans) (Barde et al.,
1982) should notbe covered in the current data-
base. The program has to recognize, however,
when BDNF is merely mentioned as a related
study withoutbeing central to thearticlebeing
analyzed.

Identifying important relationships between
keywords: Identifying relationships (in the
text) between regions, neurons, and the prop-
erties they express can be difficult, especially
if more than one property has been identified
with more than one neuron (or neuronal com-
partment). Therefore, information about
semantic relationships (neuroscience and lex-
ical) must be incorporated in the program to
define such relationships between keywords
as clearly as possible.

Easy automated wupdating of the
Knowledgebase: In the range of articles that

NeuroText might be asked to analyze, the con-
textand content are quite unrestricted and can
essentially encompass all of neuroscience.
Concepts hitherto unidentified (e.g., a neuro-
logical disorder found inneuroscience text that
should serve as a contextual constraint) need
to be incorporated into the knowledgebase to
guide the system’s operation. The domain
expert should be able to add this new knowl-
edge easily as he uses NeuroText to analyze
articles.

* The domain expert needs to make the final
decision: A survey of the efficacy of knowl-
edge engineering studies reveals that suc-
cessful programs identify target articles
approx 70% of the time—where the parame-
ters determined as precision and recall relate
to specificity and sensitivity of the retrieval
strategy, respectively (Korfhage, 1997;
Raghavan et al., 1989; Tague-Sutcliffe, 1992).
Since the eventual aim of our study is to pop-
ulate databases with authoritative informa-
tion, the expert/curator is charged with the
responsibility of depositing articles with 100%
accuracy.

¢ Presenting the results of NeuroText’s analysis
tothe expertfor validationand automatic dep-
osition: The final necessary step is to present
the results of text mining in an interface to the
expert. The interface should highlight key-
words, concepts of interest, and affirming and
negating sentencesif these are potentially deci-
sive in determining whether an article is
citable. An outline of the program’s analysis
should bereadily understandable to the expert.
The interface should also provide the expert
with the tools to dynamically override erro-
neous results of the program. The interface
should allow the expert to store validation
results for continuous monitoring of the effi-
cacy of the algorithms.

Background

Natural language understanding involves
the development of computational systems to
process and assimilate unstructured, non-anno-
tated written and spoken language in a fashion
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that mimics human understanding. Humans
are capable of understanding the nuances of
spoken or written text as a matter of course—
our comprehension enhanced by knowledge of
the world and by a constant process of learn-
ing. Whether speaking standard English, non-
grammatical English, other languages or even
sign language, communication has an instinc-
tual component (Pinker, 1994).

Researchin pursuingnaturallanguage tech-
niquesis of growing importance because of the
increased availability of online text, according
to Forrester Research (http://www.for
rester.com) a business technology company.
Human intervention in cataloguing millions of
bytes of such data is impractical. Natural lan-
guage processing (NLP), an information sci-
ence endeavor for well over 20 years, includes
projects in many areas, for example: word-
indexing and retrieval of relevant articles, syn-
tactic parsing of sentences, separating relevant
keywords from random noise in a sentence,
restructuring retrieved information toand from
databases, interfacing programs with audio
media, and translation of documents between
languages.

NLP in the Information Science Domain

A wide range of NLP tools have been creat-
ed in projects focusing on information science
generally. IBM (International Business
Machines) has devised various NLP tools. For
example, Intelligent Miner is based on clus-
tering algorithms that seek to identify and cat-
egorize vocabulary by concepts using lexical
relatedness (Justeson and Katz, 1995).
Intelligent Miner also uses a Multilanguage
interface “LINGUINI" (Prager, 1999).

Several other organizations have also creat-
ed practical software to analyze natural lan-
guage, e.g., Verity Inc.’sKnowledge Organizer
(Verity.com, 2000), TextWise’s CINDOR
(Multilanguage) (CindorSearch.com,2002) and
TextWise’s Content Repurposing Suite
(Textwise.com, 2002). Such software enables
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businesses to process documents, emails, and
other online text for categorization and
retrieval. WEBSOM is an internet tool for clus-
tering of documents online newsgroups, cre-
ated at the Helsinki University of Technology
in Finland (Lagus, 2000).

NLP in the Life Science Domain

NLP techniques have also been used in the
clinicaland biological field. Krauthammer and
coworkers reported a method of identifying
protein and gene names from the literature by
using the techniques of BLAST searching
(Krauthammer et al., 2000). Several groups
have created NLP systems for molecular biol-
ogy: GENIES (Friedman et al., 2001), EcoCyc
(Karp et al., 1999), TEXTQUEST (Iliopoulos et
al.,2001) and RIBOWEB (Chen et al., 1997) are
a few examples.

Friedman and coworkers have also utilized
NLPmethodsinthe clinical domains: MEDLEE
seeks to identify radiology concepts from
reports and medical discharge summaries
using NLP (Friedman et al., 1994). Hersh et al.
have created SAPHIRE, which maps clinical
keywords to their Unified Medical Language
System (UMLS) identifiers (Hersh et al., 2002).
UMLS concepts have also been used by
Aronson and coworkers who seek to map clin-
ical keywords for query, search, and retrieval
strategies (Aronson, 2001; Kim et al., 2001;
Weeber et al., 2001).

In NEGFINDER, Mutalik and coworkers
mapped medical concepts to their UMLS
unique identifiers while identifying negated
concepts in discharge summaries and med-
ical reports (Mutalik et al., 1999). Two sys-
tems, BRENDA, which is based at the
University of Cologne and presents informa-
tion related to enzymes extracted from 46,000
articles (Schomburg et al., 2002), and NTDB,
a database for thermodynamic properties of
nucleic acids (Chiu et al., 2001), similarly rely
on published scientific literature as their
sources.

Neuroinformatics
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Fig.2.The Process Flow Diagram shows the entire NeuroText process, which is a single PERL Script.The bold
lines show the main process, dashed lines show the intermediate read and write processes, and dotted lines
show access to the information stored in the knowledgebase.The abstracts are first processed using DTSearch,
which uses database keywords and their synonyms from the knowledgebase.The articles that meet the search
constraints are post-processed to identify and score abstracts that contain database keywords.The sentences
that contain the keywords are further scored based on context matching, semantic phrase matching, and lex-
ical (affirmed and negated word) matching.The abstract thus processed is presented to the expert in a dynam-
ic interface. The expert then deposits the relevant abstract information into the databases.
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Fig. 3. Entity-Relationship (ER) diagram showing the knowledgebase that each abstract scanned in NeuroText
is accessed by. The brain regions are related to neurons present in that region, in compliance with the data-
base hierarchy.The neuronal properties are independent as they appear in the text of the abstract, as are the
syntactic, semantic, and context word (phrase lists). Each metadata (regions, neurons,and properties) table is
related to its synonyms table. Every synonym identified would map back to the metadata.

Methods

This section gives an overview of
NeuroText’s operation and describes aspects
of its design. Figure 2 provides a process flow
diagram for NeuroText.

A single PERL server-side script runs the
entire NeuroText Program—including the pre-
and post-processing steps. The only entry that
the expert/curator NeuroText requires is the
volume number from the Journal of
Neuroscience. The principal steps in
NeuroText’s operation are:

* Automatic downloading of abstracts from the
Journal of Neuroscience. (Alternately, this step
can be performed manually.)

* Dynamic creation of a set of DTSearch text-
searching macros, including keywords and
synonyms, from the database that contains
NeuroText’s knowledgebase. (DTSearch is a
commercial text-indexing and retrieval pro-
gram [DTSearch, 1999]).

Volume 1, 2003

® Pre-processing the downloaded abstracts
using DTSearch, searching for relevant
abstracts that meet defined search criteria.

* Post-processing abstracts filtered through the
previous step. This post processing involves
identifying and scoring keywords and syn-
onyms, lexical scanning, context matching, and
semantic phrase matching.

¢ Creating a dynamic, web-based interface that

allows the expert to assess the search results
and deposit relevant abstracts into a SenseLab
database. This dynamic interface, generated
by the PERLNeuroText program,isalsoaserv-
er-side PERL CGlI-script as opposed to text-
based HTML pages. Such a script is necessary
because the interface contains embedded
forms in which commands for automatic dep-
osition into the neuroscience databases are
encoded.

* Each NeuroTextresultafter pre-and post-pro-

cessing is tested by the experts (MM and GMS)
to validate NeuroText’s decision to “Deposit”
or “Not to Deposit.” If the expert decision can-

Neuroinformatics
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not be made after scanning the abstract,
NeuroText provides a link to the full text arti-
cle. While recourse to the full text is not an
objective test of NeuroText’s validity since only
abstractsarescanned, itisimportantinachiev-
ing the ultimate goal: populating the databases
with 100% accuracy.

NeuroText’s Knowledgebase

The NeuroText knowledgebase is stored in
a Microsoft Acess database. The knowledge-
base design is represented in Fig. 3.

Each table in the knowledgebase contains
information accessed during the various search
steps, e.g., information regarding database key-
words and their synonyms, and words and
phrases that serve as contextual and lexical
determinants. The entity-relation (ER) diagram
in Fig. 3 shows that only the brain region (and
synonyms) and the neurons (and synonyms)
are “joined” (because there exists a specificneu-
roscience relationship, namely, location). An
SQL statement queries the relationship (spe-
cific location) between regions and neurons.
The tables containing neuronal properties, and
lexical, semantic, context word /phraselists are
independent because NeuroText attempts to
identify concepts for their occurrence in the
text. Regions, neurons and neuronal proper-
ties, and their synonym tables are also related
primarily because every synonym maps back
toitskeyword thatishoused in the CellPropDB
and NeuronDB databases. Each word list
against which the abstract text is scanned is in
an independent table. They are not related to

any other keywords and no such relationships
need be established.

Keywords and Synonyms

The first set of tables is associated with key-
words (related tobrain regions, neuronnames,
neuronal properties, neuronal compartments
and neuronal connectivities) and their syn-

Neuroinformatics

onyms. An example from the neurons table for
the thalamic reticular neuron is:

SenseLab_Object_ID: 14

InternalKeyWord_Name:
Thalamic_Reticular

Visual Keyword_Name: thalamic reticular
Synonym1: nucleus reticularis thalami
Synonym2: NRT

Synonym3: perigeniculate

This entry defines the search string “thala-
micreticular” and a set of synonyms and close-
ly related terms. When any of these strings are
found, the system will initiate a count for the
concept “Thalamic_Reticular.” (The “SenseLab
object identifier” ensures that any keyword or
synonymin the text maps to the database inter-
nal keyword and its unique identifier.)

Neuroscience Context Word Lists

The second set of tables contains lists of
words that help determine the neuroscience
context in which particular keywords occur.
The context tables were created after extensive
consultation with the experts. There are two
sub-types of such lists: supporting and non-
supporting concepts (as defined by experts).
The words: potentiation, polarization, and spa-
tiotemporal are examples of supporting con-
cepts; seizures, dementia, and epilepsy are
examples of non-supporting concepts. (They
imply the context of disease rather than nor-
mal function.)

Word Lists for Affirmation and Negation

Additional tables, similar to the context
tables, store words and phrases which imply
affirmation (e.g., significant, marked, and cer-
tain) or negation (e.g., nullify, refute, and uncer-
tain) words. The word lists, consisting of 828
(349-affirmed and 479-negated) words, were
created using Roget’s Thesaurus (http://
humanities.uchicago.edu/orgs/ARTFL/forms

Volume 1, 2003
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_unrest/ROGET.html) in addition to affirm-
ing or negating words found in common
English usage.

The word lists were generated using the seed
words “certain” and “uncertain” for the
affirmed and negated word lists, respectively.

Semantic Phrases That Can Be Augmented
by “Unsupervised Learning”

Semantic phrase tables were created a priori
from a training set of 50 full-length neuro-
science articles. Additional semantic relation-
ships were derived from information already
stored in the target databases. These stored
relationships generally define the brain-region-
neuron-neuronal property hierarchy. The train-
ing set articles were scanned to identify,
primarily, semantic phrases that related brain
regions to neurons, and neurons (or neuron
compartments) to neuronal properties typi-
callyused by researchersinjournal articlesand
neuroscience parlance. The semantic phrase
tables store phrases that can identify relation-
ships that would enhance the probability of
identifying properties key to the search as
opposed to properties occurring randomly in
the text. Examples include “expressed in” and
“mediated predominantly.” As described later
in the paper, NeuroText is designed to recog-
nize new semantic phrases and add them toits
knowledgebase automatically.

Archival Tables to Help Maintain
the Knowledgebase

The final component of NeuroText’s knowl-
edgebase consists of archival tables. Archival
tables are used to store words, concepts, and
phrases thathave beenremoved from the data-
base. This information is not deleted; it can be
restored to active use (if desired) when the
knowledgebase is updated.

The NeuroText Program

A single script is used 1) to process all the
abstracts downloaded for one volume of the

Neuroinformatics

Journal of Neuroscience, and 2) to create a web-
based interface that allows the expert to vali-
date NeuroText results. NeuroText identifies
abstractsrelevant for depositionin CellPropDB
and NeuronDBin two steps: a sensitivity search
followed by post-processing for specificity.
Abstracts were chosen for analysis in favor of
full-length text because 1) abstracts generally
captured the main themes of the articles avoid-
ing irrelevant keywords; 2) Scanning abstracts
also sped up computation time.

Sensitivity Search

The sensitivity search makes use of a com-
mercial indexing program DTSearch®
(DTSearch, 1999). Figure 4 illustrates the user-
interface to DTSearch when used manually.

(Since NeuroText used DTSearch in auto-
mated mode, the NeuroText user does not see
this interface.) Database keywords and syn-
onyms from the NeuroText knowledgebaseare
dynamically incorporated into the DTSearch
control files. A batch script dynamically gen-
erated from the ACCESS database indexes the
abstracts into word lists for each issue in each
volume and creates a search query patterned
after the hierarchy described previously: 1)
brain region, 2) neuron, and 3) property.

The search is designed to identify, if possi-
ble, at least one region, one neuron, and one
property in each abstract. The search first scans
the abstract 1) for all brain regions to find one
or more, then 2) for all the neurons to find one
or more, and finally 3) for all the properties to
find one or more. The top-level DTSearch com-
mand that coordinates this scanning processis:

“(@JournalName TO @AbstractLimiter)
CONTAINS (@regions AND @cells AND
(@receptors AND @currents AND @transmit-
ters))” (Expression 1)

The first part of this expression (“@Journal
Name TO @AbstractLimiter”) restricts the
scanning of the abstract to avoid erroneously
scanning titles of articles cited in the abstracts’
reference lists. For our pilot study,
@JournalName = “Journal of Neuroscience.”
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In DTSearch, each “@” represents a macro.
Amacro canbe one word or several words con-
nected by simple (AND or OR) or complicat-
ed Boolean operators. For example, “Ip,q” is a
calcium-ion current. In the literature, this cur-
rent may be referred to as Ip,q or P,Q currents
and P,Q-type or Purkinje currents (Sun and
Dale, 1998). To identify these variants,
NeuroText uses the following macro:

(I p,q OR Purkinje OR ((P OR Q) w/3
(type OR channel)))

“W /3” means that the connected words (or
phrases) should occur within three words of
each other. Specific word ranges for different
database keywords were determined after a
careful survey of articles in the training set.
Each macro may contain one or several layers
of macros embedded in it.

The aim of this first step (the sensitivity
search) is to identify as many articles as possi-
ble that contain keywords or concepts associ-
ated with database keywords in the correct
hierarchy. During this step, NeuroText does not
seek to relate region, neuron, and property.
Every abstract-search that meets the sensitivi-
ty search criterion in Expression 1is combined
into an initial search report that becomes the
starting point for further analysis.

Post-Processing for Specificity

Post-processing is designed to help ensure
the specificity of the neuroscience abstract for
deposition into CellPropDB or NeuronDB: that
theneuron mentioned in the article doesindeed
belong to a specific region in the brain, and the
property was indeed found (or was not found)
in that neuron and/or its compartments. Post-
processing helps ensure that the contextual and
lexical constraints of information being sug-
gested for deposit into NeuronDB and
CellPropDB are adhered to. The individual
post-processing steps are described in the fol-
lowing paragraphs.
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Scanning the Abstract Text

Every word of every sentence in the abstract
isscanned using the NeuroText knowledgebase
toidentify keywords and their synonyms. Each
time a keyword is identified, a count for this
keyword is initiated. At the same time, every
word in the entire sentence where a keyword
occurs is scanned against the context table to
identify contextual patterns thatmightenhance
or reduce the score that the keyword receives.
(If no discernable context is identified, then the
initial score for each keyword is retained.)

The entire abstract is included in the search
report. This enables NeuroText to search for
additional keywords related to neuron com-
partments (axonal, somatic, and dendritic) that
were not part of the earlier search. In this sec-
ond search, for example, certain fiber pathways
and interneurons, which provide key connec-
tivity information as to their originating and
terminating neurons, can also beidentified. An
example of a pathway is mossy fibers. The term
“mossy fibers” applies to axons that arise from
dentate granule cells and terminate on CA3
cellsinthe hippocampus (Claiborneetal., 1986),
and axons that arise from inferior olive cells
and terminate on Purkinje cells in the cerebel-
lum. Occurrence of the word “mossy fibers” in
the text of an article therefore counts as a score
increment for dentate granule axons and the
presynaptic axon input to CA3 pyramidal neu-
rons. NeuroText can distinguish mossy fibers
associated with Purkinje cells as irrelevant to
the database—primarily because they are not
currently in the databases.

Each sentence of the abstract’s text that con-
tains keywords is also scanned for affirming
or negating contexts. Sentences in the text
where either concept occurs are flagged.
Keywords in these sentences are scored in a
variety of ways. For example, only sentences
that contain keywords for properties (recep-
tors, currents and transmitters) and neuronal
compartments are scored if affirmed or negat-
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160 pdf-Link to Full-Text of Article 160 xaal XML-Link

Vohue 17, Nuraber 1, Issue of January 1, 1997 pp. 160-170

Low-Threshold Ca 2+ Cunrents in Dendritic Recordings from Purkinje Cells in Rat Cerehbellar Slice Cultures
Recetved July 12, 1996; revised Oct. 15, 1996; accepted Oct. 22, 1996

Brain Research Institute, University of Zurich, CH-8029 Zurich, Switzerland

Voltage-dependent Ca 2+ conductances were investigated in Purkinge cells 11 rat cerebellar slice cultures-using the whole-cell and cell-attached
configurations of the patch-clarp technique. In the presence of 0.5 ra M Ca 2+ in the

a slow (304 + 46 msec tiree constant), and a nondecaying component. Rundown of the slow and sustained cormponents of the current, or application of
antagonists for the PAQ-type Ca 2+ channels, allowed isolation of the fast-inactivating Ca 2+

current, which had a threshold for activation of - 60 ra¥ and reached a raxirnal amplitude of 0.7 NA at a merdbrane potential of - 33 1V, Both
activation and steady-state inactivation of this fast-inactivating Ca 2+ current were described

with Boltzraarn equations, with half-activation and inactivation at - 51 1V and - 86 ¥V, respectively. This Ca 2+ current was nifedipine-insensitive,

but its araplitude was reduced reversibly by bath-application of NiCl 2 and ariloride, thus

allowng its identification as a T-type Ca 2+ cument. Channels with a conductance of 7 pS giving rise to a fast T-type enserable current (insensitrve to
orega -Aga-IVA) were localized with a high density on the dendntic merabrane. Channel

in somatic merdbrane patches.

Cerebellum; PurkinjeO; ; Ca; Na_Transient; Soma;

1843 pdf-Link to Full-Text of &rticle 1248 sxal XIWL-Link

EstradiotIncreases the Sensitivity of Hippocampal CA1 Pyraridal Cells to NIMID A Receptor-IMediated Synaptic Input. Correlation with
Dendritic Spine Density

Recerved Sept. 12, 1996; revised Dec. 12, 1996; accepted Dec. 19, 1996

Previous studies have shown that estradiotinduces new dendritic spines and synapses on hippocampal Ca1 pyraridal cells. We have assessed the
consequences of estradiol-induced dendritic spines on CA1 pyramidal cell intrinsic and synaptic

electrophysiological properties. Hippocampal slices were prepared frorm ovariectornized rats treated with either estrachotor oil vehicle. CA1
pyraraidal cells were recorded and injected with biocytin to visualize spines. The association of

dendritic spine density and electrophysiological pararmeters for each cell was then tested using linear regression analysis. We found a negative
relationship between spine density and imput resistance;, howewver, no other intrinsic property

raeasured was Significonily associated with dendritic spine density. Glutamate receptor autoradiography deraonstrated an estradiol-induced increose

inbinding to NIVID A, but not AVMIPA, receptors. We then used inputioutput (I/O) cwrves (EPSP slope
vs stiraulus intensity) to delesnming whether the sensitivity of C4 1 pyramidal cells to synaptic input is correlated with dendritic spine density.
Consistent with the lack of an estradioteffect on AWVPA receptor binding, we observed no

relationship between the slope of an IO curve generated under standard recording conditions, in which the AIVIPA receptor dominates the EPSP, and

spine density. However, recording the phanacologically isolated NIVID A receptor-mediated
coraponent of the EPSP revealed a ggnificon] correlation between 1O slope and spine density. These results indicate that, in paralle] with estradiol-
induced increases in spinefsymapse density and NIVIDA receptor binding, estradiottreatraent

increases sensitivity of CA1 pyraraidal cells to NIVID A receptor-mediated symaptic input; further, sensitivity to NIVID A receptor-mediated
symnaptic input is well correlated with dendritic spine density.

Adaras, M. M., Fink, S. E,, Shah, R. &, Janssen, W. G. M., Hayashy, S, Milner, T. &, IMcEwen, B. S, Momson, J. H. (2002). Estrogerrand Aging
Affect the Subcellular Distribution of EstrogerrReceptor-alpha in the Hippocampus of Ferale

NMDA4; AMPA;
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ed; affirmed or negated scoring is not carried
out if a sentence contains neurons and brain
regions keywords.

It is relatively easy to associate cells with
regions in the brain. For example, the olfacto-
ry mitral cellis the principal neuron in the olfac-
tory bulb (Mori et al., 1981). In making these
associations, NeuroText also needs to be able
to discriminate ambiguities (e.g., whether
granule cells arise from the dentate gyrus ver-
sus the cerebellum). Differentiating properties
found in neurons, especially if keywords for
more than one are found in the same abstracts,
can pose difficulties. The situation is further
complicated if properties are identified with
more than one compartment in a neuron.
Isolating a property to a neuronal compart-
ment is difficult to extract from natural text
(unless explicitly stated, e.g., “occurs in” or
“expressed in [by]”), especially if the infor-
mation is contained in keywords scattered
throughout the text. In such cases, very often,
the expertrelies onapriori knowledge to extract
relevant information. As a result, to handle
such complex cases, our presentation interface
(discussed later) provides a link to the full-
length article to help the expert make the final
decision to cite an article.

Semantic Phrases and Unsupervised Learning

During post-processing, when a “neuronal
property” keyword occurs in a sentence by

itself or with another keyword, the sentence is
scanned against the “semantic phrase” com-
ponent of NeuroText’s knowledgebase. If arel-
evant phrase is identified, the keyword score
is enhanced. It is also flagged as related to the
neuron (or compartment) or region. The sen-
tence is also scanned for an affirming or negat-
ing tone. If a negating word or concept is
identified with the property, the score for that
property is not enhanced. Each property (or
neuronal compartment) keyword is thus
scored differently from a region or a neuron.

If potential “relation” phrases are not iden-
tified, the sentence containing the keyword
matches is stripped of database keywords and
extraneous noise words, and then appended
to the end of the semantic relationship table in
the knowledgebase. For example, the phrase
“rapidly activated” relates an ion channel to a
neuron. This phrase was stored in the seman-
tic phrase table. If a sentence in the abstract
contains two keywords, and the sentence con-
tains the phrase “rapidly activated” then
NeuroText assigns a score increment if the
keyword relates to a property or a neuronal
compartment. If the phrase does not find a
match, it is appended to the table of such
semantic phrases. Any subsequent abstract or
full-length article that NeuroText scans will
avail of this new phrase.

Fig.5.(left) (A) Results of post-processing in NeuroText as presented to the expert.In this example,NeuroText
determined that the article should be deposited. The lexically negated sentence has been highlighted along
with database keywords and support and non-support terms. Here calcium and sodium currents have been
identified in the Cerebellar Purkinje cells. The decision file for this abstract is at
http://senselab.med.yale.edu/textmine/ 1 604.html. (B) In this example, NeuroText determined that the arti-
cle should not be deposited. The lexically negated sentence has been highlighted along with database key-
words and support and non-support terms.The figure shows that while the receptors NMDA and AMPA are
identified, no regions in the brain or neurons (currently present in the databases) were identified. The deci-
sion tree for this file can be found at http://senselab.med.yale.edu/textmine/[848.html.
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Scoring for Relevance

After the abstract text has been scanned, the
scores for each neuroscience keyword are
examined. The maximum score for keywords
of each type is determined. Regions are iden-
tified with neurons. Regions and neurons that
do not match are discarded. If more than one
region-cell pair or property or neuronal com-
partment exists in the text, keywords whose
count is less than one-fourth of the count for
the maximum of that class of keywords are dis-
carded as likely “random” occurrences. (The
presentation interface discussed in the fol-
lowing allows the expert to dynamically
change the results if a keyword is mistakenly
identified or discarded.) In this way, the scores
are based on database and neuroscience con-
text, on affirming or negating sentence tone (in
case of properties and compartments), and on
semantic relation-phrase matching.

Organizing the Citation Information

NeuroTextalsoidentifies and separates cita-
tion data including first and last page num-
bers, volume number, month and year of
publication, authors, and title. This informa-
tion is used when populating the NeuronDB
and CellPropDB databases.

Interface for Expert Evaluation
and Deposition

Interface Design

Every abstract processed in the previous step
is presented to the expert (Fig. 5A,B).

Thisinterface, whichis generated as the post-
processing step proceeds, isa dynamically gen-
erated PERL (CGI) script that performs
information presentation and data deposition.
An expert can access this interface remotely on
the internet, make decisions, and deposit rel-
evant data. The file presents the abstract with
relevant words and sentences highlighted.
Database keywords are enlarged; enhancing
concepts are bolded; non-support concepts

Neuroinformatics

have “strikethroughs” in them. Negating
words are italicized; affirming words have a
different font. Sentences with negating words
are white text on black background; sentences
that point to lexically affirming tones have a
gray background. Sentences with conflicting
negating and affirming tones or no discernible
tones are not highlighted. The abstract is fol-
lowed by NeuroText’s assessment regarding
the relevance of the article, as well as a link to
an HTML file that contains a step-wise expla-
nation leading to the NeuroText decision.

NeuroText’s Assessment Decision

After analyzing the abstract, NeuroText
presents one of three decisions in a dynami-
cally generated web page to the expert:

¢ A “Deposition Recommended” decision is
made if a region, a neuron in that region, and
a property identified with the neuron or its
compartment is clearly identified.

* “Deposition Not Recommended” is the
NeuroText decision if the score for keywords
in an abstract during the sensitivity search is
nullified, if the sentences are identified by the
context thatwould negate the scores, orifiden-
tified regions are not associated with identi-
fied neurons.

* A “Deposition Under Advisement” decision
is made if a region-cell pair is properly iden-
tified in NeuroText but either no specific prop-
erty (from the database) is identified, or if the
property scores are negated but the region-
neuron pairsarenot. NeuroTextassumesa pos-
sible relation between a neuron (and its
compartments) and its properties, and directs
the expert to take a closer look before making
a decision.

This web page also serves as a script which
will be used to deposit information into the
databases. The NeuroText “decision” isaccom-
panied by alink toa decision tree which enables
the experts and curators to view a stepwise
breakdown of NeuroText’s scoring. This is fol-
lowed by a deposition form (Fig. 6) containing
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Regions Cells Support Terms
Olfactory_Bulb - Olfactory_Pyramidal Yolume __A_!
Number
Neocortex | Pyramidal_Deep ~| Issue 4
Receptors Currenis Transmitiers Conparimenis Non-Support Texrms
g g g o R - g
NMDA Na_Platueau Noradrenaline Dendrite — [Number
AMPA | ¥ | |Acetylcholine ;] Apical_Dendrite | |Issue |
Score Efficacy
C1C203C4C5C6C7C8C 9@ 10 I False Positive || False Negative ¥ None
Annotaﬁon[

Decision | Deposit this article | Do not deposit this atticle | Save for future deposition

Fig.6. The decision form in the deposition interface for an abstract. Each of the keywords identified and scored
are automatically highlighted. Complete lists are included to enable the experts to override erroneous find-
ings in NeuroText.The knowledgebase can be augmented by clicking relevant words and phrases in the lists

marked “Support Terms” and “Non-Support Terms.”

tabulated, scrolling lists in which keywords for
regions, neurons, receptors, ionic currents, neu-
rotransmitters and neuronal compartments are
identified.

The expert can also ascertain if the decision
as a whole or in part contains false-positives
or false-negatives, and record these while scor-
ing the search efficacy. The expert can override
NeuroText based on their assessment of an
abstract by making changes in this informa-
tion before it is deposited into the SenseLab
database (by clicking on the correct informa-
tion in the scrolling lists).

Supervised Learning

Supervised learning was included in
NeuroText to allow the system to update and
modify the knowledgebase in a continually
evolving fashion. To allow such supervised
learning, two additional scrolling lists, besides
those associated with keywords, are present-
ed to the expert in the interface. These word-
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concept lists are identical. The lists are creat-
ed from an array of words from the abstract’s
text after stripping away every word already
present in the knowledgebase. If a concept not
present in the knowledgebase is deemed nec-
essary to enhance the score or diminish the
score of keywords, the expert can click on that
word or concept in the appropriate list. When
the information is submitted for deposition,
thenegating concepts are added to the file con-
taining non-support concepts in the knowl-
edgebase.

Any phrases or sentences containing these
words are also removed from the phrase
knowledgebaseand placed inanarchival table.
Similarly, new support concepts identified by
the experts, are placed in the file containing
support terms. The program also scans the
archival tables to retrieve any phrases associ-
ated with this affirmed concept that mighthave
been previously placed in the archive.
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Deposition in the SenseLab Databases

During the post-processing, as each abstract
isscanned, an XML fileis generated. Embedded
in the XML tags are citation data that will be
deposited into the databases (Crasto et al.,
2002). At the end of each abstract, the expert is
prompted to decide whether the abstractinfor-
mation should or should not be deposited.
When the information is submitted, the XML
files for articles to be deposited are collated
into a submission file.

Validation

In order to determine the efficacy of
NeuroText results, the entire corpora of
abstracts (Journal of Neuroscience, vol. 17) were
presented to both experts (MM and GMS) at
both steps. At the pre-processing step, identi-
fying errors (specifically false-negatives, since
false positives at this step will be further eval-
uated at post-processing) isimportantbecause
they point to any deficiencies in the search con-
straints used by DTSearch. After post-pro-
cessing, all the abstracts are presented to the
experts. The experts verified the result for each
abstract with the NeuroText scoring scheme.
If the expert could not ascertain an article’s
suitability for deposition even from an inde-
pendent perspective, the full text of the article
was accessed.

SenselLab Database: Presenting
Neuronal Property Information
to the User

This subheading describes how SenseLab
itself presents data to the user onceitis deposit-
ed into a SenseLab database. Researchers can
navigate the web pages of NeuronDB and
CellPropDB and access information related to
each neuron. For example, clicking on the
“Plus/Reference” notes for the olfactory mitral
cell in the olfactory bulb page in NeuronDB
(http:/ /senselab.med.yale.edu/senselab/Ne

Neuroinformatics

uronDB/ndbEavSum.asp?id=267&mo=4&)
reveals citations related to articles for differ-
ent properties of neuronal compartments:
“Intracellular recordings: CNQX blocks early
component of EPSPresponse to olfactory nerve
volley (Chen WR and Shepherd GM, 1997
[rat]16” (Chen and Shepherd, 1997) is one
example (Fig. 1). A user can click on the cita-
tion superscript “16” to obtain the reference.
The experts (MM and GMS) provide the anno-
tations. The above information relates to the
AMPA receptor in the distal apical dendrite of
the olfactory mitral neuron in the olfactory
bulb. Each datum of information—title, anno-
tation, author names, volume number, journal
name, publication year, and page numbers—
is then stored in the database whose architec-
ture is based on the Entity Attribute Values
with Classes and Relationship (EAV/CR)
schema—a flexible schema devised to store and
retrieve heterogeneous data (Nadkarni et al.,
1999).

Results of the Pilot Study

To perform an initial pilot test of NeuroText
in operation, 912 abstracts from volume 17 of
the Journal of Neuroscience (1997) were down-
loaded (http://www.jneurosci.org). Figures
5A and B present the results from NeuroText
for asample abstract taken from this set. At the
same time, these articles were scanned inde-
pendently by the experts. The results of
NeuroText post-processing (for every volume
studied) are available at the SenseLab website
at http://senselab.med.yale.edu/textmine/
NeuroText.pl. This web page allows users to
view NeuroTextresults (Internet Explorer [ver-
sion 5 and above] Netscape [version 7 and
above] work best for this page).

The page dynamically created for deposi-
tion into the databases is only available to the
experts. Table 1 summarizes the results of
NeuroText’s analysis compared to that of the
experts.
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Table 1 —Summary of Results of NeuroText Versus Expert Analyses

of 148 Articles from the Journal of Neuroscience Volume 177

Articles for Deposition by Expert

Articles not for Deposition by Expert

Articles for Deposition
by NeuroText

Articles Not for Deposition
by NeuroText

28 (True Positives [TP])

9 (False Positives [FP])

13 (False Positives [FP])

98 (True negatives [TN])

*Not included are 29 articles that NeuroText deemed as “Deposition Under Advisement.” The tabulated
entries will be used to calculate Specificity and Sensitivity presented in the “Results” subheading.

FN %100

Spectieity = o s P

; Sensitivity =

TP %100
TP + FN

Of the 177 article abstracts identified for post-
processing, 1) 29 were deferred by NeuroText for
final decision to the experts, 2) 126 were correct-
ly identified, 3) 13 were incorrectly identified
(false positives), and 4) 9 were identified by the
experts that NeuroText judged “Deposition Not
Recommended” (false negatives).

Using the values from Table 1, of 148 arti-
cles for which NeuroText did not defer deci-
sion, NeuroTextidentified 126 articles correctly
(in agreement with the experts) and 22 incor-
rectly, for an accuracy of 85%. Similarly, the
proportions (Cicchetti and Feinstein, 1990;
Spitzer and Fleiss, 1982) for identifying true
positives was 72% and for true negatives 90%.
Alternatively, using the odds-ratio test (Agresti,
1990), the odds ratio of a correct identification
of an article (as citable or not-citable) by
NeuroText is approx 26:1.

Identifying true positives correctly isimpor-
tant for accuracy of deposition. Correctly iden-
tified articles for deposition describe the
sensitivity (recall) and specificity (precision)
(Table 1). NeuroText identified 28 true posi-
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tives, 13 false positives for a specificity of 90%;
and 9 false negatives for a sensitivity of 76%.
Ninety-eight articles were correctly identified
as true negatives.

Subsequent analysis of the results revealed
thatalmostall articles that NeuroText deferred
(deemed as “Under Advisement”) required
that the experts consult the full text (available
as a link in NeuroText results) before deciding
whether or not to cite the article. Most
NeuroText false positives were deemed as pos-
sible weak citations—that the abstracts did not
contain novel information. Most of the false
negatives were due to inadequacies of the
knowledgebase. With a subsequently
enhanced knowledgebase, the number of false-
ly identified articles decreased significantly.
The experts did not call into question the algo-
rithmic details nor the search and scoring
strategies for any of thearticlesanalyzed. Every
volume of the Journal of Neuroscience contains
approx 1000 articles. NeuroText’s time for pro-
cessing 1000 abstracts in a volume is less than
two hours.
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Discussion

In this subheading, we discuss examples of
NeuroText’s classification of abstracts, includ-
ing cases where its results are in disagreement
with the experts’ judgment. The experts (MM
and GMS) who are the main decision makers
as to an abstract’s citability also served as
impartial evaluators of NeuroText results.

Interface of NeuroText Results

Figure 5A and B illustrates two examples
where NeuroText and the experts are in agree-
ment. In A, calcium and sodium currents are
identified in the Purkinje cells of the cerebel-
lum. The database keywords are highlighted.
Thescores for the keywords are enhanced from
concepts entered into the knowledgebase. The
sentence with a black background reflects the
identification of a negated tone from the word
“but.” A closer view of the sentence shows that
the word “but” does not have a bearing on the
context of the article. It directs the expert to a
sentence thatmight potentially negate the find-
ing of the keyword in that sentence, and which
may have consequences on the overall deci-
sion.

Enhancement of the Knowledgebase
by the Expert

Figure 5B illustrates an abstract that
NeuroText and the experts deemed “Not for
Deposition.” The word “estradiol” in the non-
support file of the knowledgebase decreases
thescore of theregion (hippocampus) and neu-
ron (CA1 pyramidal cells) keyword matches.
When these keywords-match scores are tallied,
NeuroText deems them insufficient in the final
decision. This method of counting illustrates
the importance of a knowledgebase. If “estra-
diol” wasnotin the knowledgebase, NeuroText
would have positively scored keywords and
probably erroneously flagged the abstract as
“fit for deposition.”

Asaresultof this pilot test, certain keywords
were added to lists of enhancing and negating
keywords as determined by the experts. Such
contextual information was not previously
available to NeuroText, which failed to account
for these while scoring the occurrence of a key-
word in the databases. The nine non-support
keywords and acronyms which were added to
the knowledgebase following analysis of the
results included among them: ischemia, par-
valbumin, calcineurin, and estrogen.

Analyses of theresultsalsoallowed theentry
of a synonym for thalamic reticular neuron in
the thalamus not present in the knowledge-
base—"perigeniculate.”

Potential NeuroText Failures
Mismatches or Incomplete Matches

As mentioned earlier, it is impossible to cre-
ate an all-encompassing knowledgebase. We
anticipate that NeuroText’s knowledgebase
will continually evolve and that the domain
expert will make the final decisions about dep-
osition into the SenselLab databases.

¢ For example, CA1 and CA3 are regions in the
hippocampus. Several of the false-positives
arose from misidentification of CA1 and CA3
neurons as CA1 and CA3 pyramidal neurons.

* Dopaminergic cells were also misidentified as
dopaminergic receptors. Specific peptide and
enzyme information (notin the databases) was
also not flagged as negated because of opioid
receptor peptides being present in the data-
base.

The knowledgebase when minimally mod-
ified to take into account these discrepancies
properly identified these articles, e.g., replac-
ing “CA1” with “CA1 pyramidal” for a key-
word match. Researchers sometimes use CA1l
and CA1l pyramidal neurons interchangeably;
in which case, NeuroText would report a false
hit. NeuroText’s use of partial matches result-
ed in false-positives:
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* NeuroText falsely mapped the sub-thalamic
region (not in the database) as the thalamus.
The entorhinal cortex was identified and
scored as a hit for neocortex, which some might
find problematic. In order to avoid such errors
and problems, the knowledgebase was mod-
ified toan extent that only exact matches would
be allowed. Such a step might prove detri-
mental in the future as useful information in
the form of partial matches might be ignored
in NeuroText.

* Specific properties such as long-term potenti-
ation (LTP) and long-term depression (LTD)
were initially considered of secondary rele-
vance to the databases because of the over-
whelming number of these studies. Articles
related to these terms may contain relevant
information that might merit depositionin the
databases. In the future, these articles will
appear under the decision “Under Advise-
ment.”

The advantage of presenting the interface to
the experts with the tools to allow the dynam-
ic modification of NeuroText decisions while
making modifications to enhance the knowl-
edgebase ensures that the information deposit-
edisaccurate. By changing theknowledgebase,
most NeuroText failures can be remedied such
that subsequent articles scanned would bene-
fit from these changes. This would result in
better agreements between expertand the com-
puter program.

There are some instances where NeuroText
inits current form would mostlikely fail, irrev-
ocably. One such example is articles pertain-
ing to diseases:

¢ NeuronDB and CellPropDB allow only arti-
cles describing research related to normal
brains; thus, terms like Parkinson, Huntington,
and Alzheimer’s diseases and several other
neurobiological disorders are contextually
negated. NeuroText however, cannot differ-
entiate between the articles (where these key-
words occur) that deal with the biology of cells
and those that describe clinical work.
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According to the expert, the latter may be
deposited, the formernot. The knowledgebase
would have toundergo considerable enhance-
ment and domain-extension to include clini-
cal articles—beyond the scope of NeuroText
in its current form.

¢ In the analysis of the results, the expert often
termed an article as too general or too specif-
ic to be deposited. This qualitative determi-
nation can be neither borne out by NeuroText
results nor by a careful perusal of the decision
tree. The telling detail in these NeuroText fail-
ures is that they are not consistently false-pos-
itives or false-negatives. The failures
encompass bothin equal measure—indicative
of information that might be inferred from the
abstracts in the absence of keywords or a con-
cept that could enhance or negate the scores
for the keywords, if present.

With an aim to providing relevant informa-
tion for the knowledgebase, the experts often
had to access the full text of the article seeking
information that could be condensed and
added to the knowledgebase—most times such
attempts met with failures. Four specificexam-
ples follow.

NeuroText False-Negatives

® The decision tree for the abstract for article:
“Inhibition of Synaptic Transmission by
Neuropeptide Y in Rat Hippocampal Area
CA1: Modulation of Presynaptic Ca<* Entry”
(Qian et al., 1997) is at http://senselab.med.
yale.edu/textmine/8169.html. The decision
tree shows that no CA1-CA3 hippocampal
pyramidal neurons were identified even
though the abstract clearly shows that they
express a calcium ion channel. NeuroText
judged this article as not to be deposited since
no neuron was clearly identified. The experts
however, determined that this article merited
deposition into CellPropDB. They opined that
the CA3-CA1 synaptic pairs are unique. They
are made by Schaeffer collaterals of CA3
pyramidal neurons on the middle region of
theapical dendrites of the CA1 pyramidalneu-
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rons. The information even without the asso-
ciated keywords would map onto relevant
pyramidal neurons, hence meriting deposi-
tion.

* In the abstract of the article: “Dopaminergic
Modulation of Sodium Current in
Hippocampal Neurons via cAMP-Dependent
Phosphorylation of Specific Sites in the Sodium
Channel oo Subunit” (Cantrell et al., 1997), one
region was identified—the hippocampus—
without specific mention of CA1 or CA3
pyramidal neurons—key to the databases.
Nigral dopaminergic neurons were also iden-
tified without specific mention of their asso-
ciated region—Substantia Nigra. The
NeuroText decision tree rejected this abstract
(http:/ /senselab.med.yale.edu/textmine/
7330.html) for lack of specific neurons associ-
ated withidentified regions. The experts how-
ever, found that by tracking the dopaminergic
inputinto the hippocampus, theactions of spe-
cific dopamine receptors that modulate spe-
cific presynaptic terminal properties would be
interesting enough to deposit. This is an exam-
ple where the experts determine that the arti-
cle despite the non-specific nature of the study
is interesting and novel enough to present to
database users.

NeuroText False-Positives

* The first of two abstracts termed “weak”
(NeuroText false-positives) by the experts was:
“Ca?* or Sr2* Partially Rescues Synaptic
Transmission in Hippocampal Cultures
Treated with Botulinum Toxin A and C, But
Not Tetanus Toxin” (Capognaetal., 1997). The
NeuroTextdecision tree (http:/ /senselab.med.
yale.edu/textmine/7190.html) indicates that
the Hippocampus and CA3 pyramidal neu-
rons were identified, along with a calcium ion
channel—strontium notbeing part of the data-
bases. The knowledgebase has been modified
to specifically identify CA3 pyramidal neu-
rons in the hippocampus, as opposed to
unspecified CA3 neurons. Identification of
CA3 in the abstract comes from the words
“CA3 pairs.” The expert’s opinion was that

Neuroinformatics

these words might or might not mean CA3
pyramidal neurons. In this particular case,
NeuroText failures arose from an uncertainty
inidentifying keywords whose names may not
be in standard neuroscience usage.

* The abstract “Instantaneous Perturbation of
Dentate Interneuronal Networksby a Pressure
Wave-Transient Delivered to the Neocortex”
(Toth et al., 1997) was also determined as not
meriting deposition by the experts: NeuroText
identified the AMPA and glutamate receptors
in the Soma of Dentate Granule cells in the
Dentate Gyrus, therefore deciding that this
abstract merited deposition. Keyword match-
es were also found for Neocortex; these hits
were discarded as random occurrences as no
matching neurons were identified (http://
senselab.med.yale.edu/textmine/8106.html).
In the experts” opinion however, the AMPA
and Glutamate receptors were identified on
interneurons and were not related to granule
cells. Thereceptor property identified as relat-
ed to dentate granule cells was incorrect—and
the interneurons are not part of the database.
This difficulty in identifying specific proper-
ties being expressed in specific cells from
“unhelpful” text was alluded to in the
“Methods” subheading.

Scalability and Interoperability

Scalability is an important consideration.
Obvious questions arise as to the effort it takes
to build a knowledgebase for a domain being
studied. Our recommendation is to create a
training set depending on availability and
accessibility of articles that, according to the
expert(s), contains key information. Once an
initial knowledgebase is established, the evo-
lution tools of NeuroText, (i.e., the word-lists
of support and non-support terms available to
experts and curators in the presentation and
deposition interface for each abstract) will
enable knowledgebase enhancement.

Thevalidation-depositioninterfaceislinked
to the SenseLab databases that use a specific
architecture. Naturally, such links would not
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be useful to populate databases with different
articles on different platforms. To address this
issue, every NeuroText result also contains a
dynamically created XML file in whose nest-
ed fields the mined information is embedded.
The XML files are created with a view to inter-
operability. Researchers who wish to use the
NeuroText tool would have to simply create
an XML parser (XML parsers are available for
different platforms and programming lan-
guages) to extract relevant data and link (or
post)ittoadatabase or storage medium of their
choice.

Conclusions

One of the key features of NeuroText is that
it is designed to be extensible to different
domains. All the domain-specific information
resides in a knowledgebase separate from the
program code. The knowledgebase tables con-
tain terms and concepts specific to the SenseLab
databases, the neuroscience domain, and to
affirming or negating tone. This information
could be replaced for use in another similar
bioscience domain. Another important feature
of NeuroText is its dynamically generated
interface, which presents results to the expert
and allows the user to override the erroneous
results of the automated method while auto-
matically adding to the knowledgebase.
NeuroText evolved with the need to populate
the SenseLab neuronal databases rapidly and
accurately. A side-by-side comparison of the
time it takes for an expert to scour a year’s
worth of articles from the Journal of
Neuroscience, naturally, isnot possible. The time
for processing approx one thousand articles
(24 issues) by NeuroText is approx one hour
and forty minutes. NeuroText also offers con-
tinuity and consistency and eases the work-
load on experts and database curators.

The “evolution” steps in NeuroText ensure
thatthe knowledgebaseis constantly enhanced
and modified depending on the type of infor-
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mation that the experts and database admin-
istrators want to disseminate. This helps ensure
that the program increases its accuracy every
timeitscans aneuroscience article. The knowl-
edgebaseis very simple to create, format, mod-
ify, and update.

Future Directions

To extend NeuroText abilities beyond the
Journal of Neuroscience, NeuroText was also test-
ed on 100 articles downloaded from PUBMED
using a search for keywords “cerebellum” and
“Purkinje.” The results are available at
http:/ /chutney.med.yale.edu/textmine/Cere
bellum_Purkinje.pl. When fully operational,
we expect approx 90% of the databases to be
populated using the NeuroText tool. We antic-
ipate that approx 10% of the information will
be supplied by users of the databases in terms
of interesting information not directly avail-
able from online sources. We are in the process
of extending NeuroText to include all neuro-
science publications (monographs, edited vol-
umes and brain atlases), thus helping ensure
a comprehensive automatic retrieval and dep-
osition into SenselLab databases.
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