
The use of Metadata in URIs
DRAFT TAG Finding 09 June 2006
This version:

http://www.w3.org/2001/tag/doc/metaDataInURI-31-20060609.html
Latest version:

http://www.w3.org/2001/tag/doc/metaDataInURI-31 (XML)
Previous versions:

Unapproved Editors Drafts:
http://www.w3.org/2001/tag/doc/metaDataInURI-31-20060511.html,
http://www.w3.org/2001/tag/doc/metaDataInURI-31-20030708.html,
http://www.w3.org/2001/tag/doc/metaDataInURI-31-20030704.html
(W3C Member-only)

Editors:
Noah Mendelsohn <noah_mendelsohn@us.ibm.com>
Stuart Williams <skw@hplb.hpl.hp.com>

Copyright © 2006 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C
liability, trademark and document use rules apply.

Abstract

Status of this Document
Editors DRAFT

This document has been developed for discussion by the W3C Technical
Architecture Group. This finding addresses the TAG issue metadataInURI-31.

The content of this document is intended for discussion and does NOT
necessarily represent a consensus position of the TAG. An informal guide to
previous discussion of this topic is available and may be useful to reviewers of
this draft.

The terms MUST, MUST NOT, SHOULD, and SHOULD NOT are used in this
document in accordance with [RFC2119].

Publication of this finding does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time.

Additional TAG findings, both approved and in draft state, may also be
available.

Please send comments on this finding to the publicly archived TAG mailing list
www-tag@w3.org (archive).

Table of Contents
1 Introduction
2 Encoding and using metadata in URIs

2.1 Reliability of URI metadata
2.2 Avoid depending on metadata
2.3 Guessing information from a URI
2.4 HTML Forms, and Documenting Metadata Assignment Policies
2.5 Authority use of URI metadata
2.6 URIs that are convenient for people to use
2.7 Changing metadata
2.8 Hiding metadata for security reasons

3 Conclusions
4 References

1 Introduction
Web-based software uses URIs to designate resources for retrieval or for
other operations. The authority that creates a URI is responsible for assuring
that it is associated with the intended resource, and that the appropriate data
is manipulated or returned in response to operations that use the URI as a
resource designator. Many URI schemes offer a flexible structure that can
also be used to carry additional information, called metadata, about the
resource. Such metadata might include the title of a document, the creation
date of the resource, the MIME media type that is likely to be returned by an
HTTP GET, a digital signature usable to verify the integrity or authorship of
the resource content, or hints about URI assignment policies that would allow
one to guess the URIs for related resources.

This finding addresses several questions regarding such metadata in URIs:

1. What information about a resource can or should be embedded in its
URI?

2. What metadata can be reliably determined from a URI, and in what
circumstances is it appropriate to rely on the correctness of such
information?

3. In what circumstances is it appropriate to use information from a URI
as a hint as to the nature of a resource or its representations?

The first question is focused on people and software acting in the role of or on
behalf of a URI assignment authority (authorities) for URI assignments within

Comment [skw1]: The
concept of authority wrt to URI is
one which some have pushed back
against. They have argued that the
URI scheme itself is what states
what a given URI identifies.
Generally this is presented as an
operationalised notion of what it
means to ‘identify’ a resource.
This view would likely also argue
that RFC2616 ‘creates’ all possible
HTTP URIs.

Comment [skw2]: Do you
have an example of such a scheme.
I can’t think of any!!!

the scope of that authority. The other questions are focused on people and
software making use of URIs assigned outside of their own authority
(observers). Of course, the questions are related, insofar is one reason for an
authority to encode metadata is for the benefit of resource users.

The TAG has earlier published a finding Authoritative Metadata [AUTHMETA],
which explains how to determine correct metadata in cases where conflicting
information has been provided. This finding is concerned with just one
possible means of determining resource metadata, i.e. from the URI itself.

2 Encoding and using metadata in URIs
This section uses simple examples to illustrate some issues that arise when
encoding metadata in URIs, or when relying on information gleaned from such
URIs. Good Practice Notes are provided to explain how to use the Web
effectively, and Constraints are given where necessary for using the Web
correctly. As these examples show, encoding or not encoding metadata in a
URI or deciding whether to rely on such metadata is often a tradeoff, involving
some benefits and some costs. In such cases, choices should be made that
best meet the needs of particular resource providers and users.

2.1 Reliability of URI metadata

Consider Martin, who is using a Web-based bug tracking system to
investigate some software problems. He sees a bug report which says:

"See http://example.org/bugdata/brokenfile.xml for an example of XML that is
not well-formed."

The bug tracking system is built to show examples just as they are entered
into the system, so for http://example.org/bugdata/brokenfile.xml it returns a
stream of (poorly formed) XML with Content-Type text/plain. That Content-
Type should cause a properly configured browser to show Martin the
erroneous text just as it was recorded:

<?xml version="1.0">
<PetList>
<Dog>Rover</Dog>
 <Cat>Felix</Fish>

</PetList>

Unfortunately, Martin uses a browser that incorrectly attempts to infer the
format of the returned data from the URI suffix. Keying on the ".xml" in the
URI, it launches an XML renderer for what should have been plain text. When
Martin attempts to view the faulty file, he sees instead a browser error saying
that the erroneous XML could not be displayed.

Constraint

Comment [skw3]: Whilst I’m
conscious that this is either text
that I wrote or similar, it is again
couched in terms of authority,
which I know some rejects. That
said I think that there may be a
crossing of layers here in that an
operationalised view of what a
given URI identifies has nothing to
say about what a resource signifies.

FWIW IIRC Roy on the other hand
supported the notion of delegated
authority passed on downward
from the URI spec to scheme specs,
to ‘owners’ of DNS names and so
forth.

Constraint: Web software MUST NOT depend on the correctness
of metadata inferred from a URI, except as licensed by applicable
standards and specifications.

Such standards and specifications include pertinent Web and Internet RFCs
and Recommendations such as [URI], as well as documentation provided by
the URI assignment authority.

In this example, there is no normative specification that provides for
determination of a media-type from URI suffixes, and the assignment authority
has provided no documentation to license an inference of media-type from the
URI. Martin's browser is in error, because it relies on URI metadata that is not
covered by normative specifications and has not been documented by the
assignment authority. A correctly written browser would have shown the faulty
XML as text, or might conceivably have shown a warning about the apparent
mismatch between the type inferred from the URI and the returned Content-
Type. (Martin's browser is also ignoring TAG finding "Authoritative Metadata"
[AUTHMETA], which mandates that the Content-Type HTTP header takes
precedence even if type information had somehow been reliably encoded in
the URI.)

Note that the constraint refers to conclusions drawn by software, which must
be trustworthy, as opposed to guesses made by people. As discussed in 2.3
Guessing information from a URI, guessing is something that people using
the Web do quite often and for good reason. Software tends to be long lived
and widely distributed. Thus unlicensed metadata dependencies in software
result not only in buggy systems, but in inappropriate expectations that
authorities will constrain their URI assignment policies and representation
types to match the dependencies in the clients. For both of these reasons, the
constraint above requires that software must not have such unlicensed
dependencies.

There is certain metadata that Martin or his browser can reliably determine
from the URI. For example, the URI conveys that the http scheme has been
used, and that attempts to access the resource should be directed to the IP
address returned from the DNS resolution of the string "example.org". These
conclusions are licensed by normative specifications such as [URI] and
[HTTP].

2.2 Avoid depending on metadata

There is almost always a cost to peeking into a URI to get metadata. Even
when Web architecture and the guidelines above say that you may do so, you
should be reluctant, especially when constructing general purpose Web
software. Software that peeks is less likely to work with arbitrary resources
than software that doesn't. For example, software that works only with URIs in
the http scheme is less general than software that works for arbitrary URIs.
Software that attempts to act on "file extension" suffixes, such as .jpeg, is
likely to be doing so in violation of Web Architecture, and in any case such
software won't work with URIs that don't have the suffix. Even at the

Comment [skw4]: It is in error
because it construes that there is
metadata intentionally placed in
the URI when there is not.

Deleted: reaons

Comment [skw5]: Hmmmm I
have always found this tricky. Wrt
to say FTP URI scheme, the
scheme tells you (in an operational
style) what resource is identified –
it is the resource that would
provide the resulting
representation *if* you did a
particular bunch of things. The
HTTP spec is the same. However,
neither is a statement about HOW
the resource should be accessed,
only a statement of WHAT
resource is identified. Ok. Yes,
typically HTTP: would imply that
access using http ought to be
possible.

assignment authority, which has definitive knowledge of the metadata
encoded in its URIs, software that's dependent on such encodings will only be
usable for resources that obey the convention.

Good Practice

Good Practice: Avoid software dependencies on metadata in URIs.

2.3 Guessing information from a URI

Bob is walking down a street, and he sees an advertisement on the side of a
bus:

"For the best Chicago Weather information on the Web, visit
http://example.org/weather/Chicago."

Bob goes home, and types the URI into his browser, which does indeed
display for him a Chicago weather forecast. Bob then realizes that he'll be
visiting Boston, and he guesses that a Boston weather page might be
available at a similar URI:

Bob guesses the Boston weather might be found at
"http://example.org/weather/Boston".

He types that into his browser and reads the response that comes back.

Bob is using the original URI for more than its intended purpose, which is to
identify the Chicago weather page. Instead, he's inferring from it information
about the structure of a Web site that, he guesses, might use a uniform
naming convention for the weather in lots of cities. So, when Bob tries the
Boston URI, he has to be prepared for the possibility that his guess will prove
wrong: Web architecture does not guarantee that the retrieved page, if there
is one, has the weather for Boston, or indeed that it contains any weather
report at all. Even if it does, there is no assurance that it is current weather,
that it is intended for reliable use by consumers, etc. Bob has seen an
advertisement listing just the Chicago URI, and that is the only one for which
the URI authority has taken specific responsibility.

Still, the ability to explore the Web informally and experimentally is very
valuable, and Web users act on guesses about URIs all the time. Many
authorities facilitate such flexible use of the Web by assigning URIs in an
orderly and predictable manner. Nonetheless, in the example above, Bob is
responsible for determining whether the information returned is indeed what
he needs.

Good Practice

Good Practice: Guess information from URIs only when the
consequences of an incorrect guess are acceptable.

Comment [skw6]: The tone of
this seems to me to have a
presumption that metadata *is*
embedded in URIs, as opposed to
“in some cases there happens to be
metadata embedded in URIs”.

I find myself not wanting to allow
that the things being cited here as
metadata are infact metadata. I see
them mostly as ‘distinguishing’
characteristics which have been
encoded into URIs principally for
the purpose of generating unique,
transcribable URIs, rather than
with the intent that metadata be
recoverable from the URI.

Comment [skw7]:
Hmmm… I might argue that the
same assignment authority is
equally *responsible* for both
URIs, however they have set no
particular expectation wrt to the
second URI (at least in the vicinity
of Chicago – though who knows
what might happen to be painted
on the side of busses in Boston).

Comment [skw8]:
Alternative formulation: “When
guessing information from URIs
be robust to unexpected results.”

2.4 HTML Forms, and Documenting Metadata Assignment
Policies

Bob would not have had to guess the Boston weather URI if the authority had
documented its URI assignment policy. Assignment authorities have no
obligation to provide such documentation, but it can be a useful way of
advertising in bulk the URIs for a collection of related resources. For example,
the advertisement might have read:

"For the best weather information for your city, visit
http://example.org/weather/your-city-name-here."

Reading that advertisement, Bob can reasonably assume that weather reports
are available by substituting specific city names into the URI pattern
http://example.org/weather/your-city-name-here. Moreover, the
advertisement claims that the weather information obtainable at those URIs is
"the best", so Bob can assume that the weather reports are trustworthy and
current.

HTML forms [HTMLForms] and now XForms [XFORMS] each provide a
means by which an authority can assert its support for a class of
parameterized URIs, while simultaneously programming Web clients to
prompt for the necessary parameters. For example, a Web site
http://example.org/weatherfinder might offer a city lookup page containing
the following HTML form fragment:

<FORM ACTION="http://example.org/cityweather" METHOD="GET">
For what city would you like a weather report: <INPUT TYPE="TEXT"

NAME="city">?
<INPUT TYPE="SUBMIT" VALUE="Get the weather">

</FORM>

A browser receiving this form, or Bob if he views the source of the form, is
assured that the assigning authority is supporting an entire class of URIs of
the form:

http://example.org/cityweather?city=CityName

The same HTML Form is also a computer program, executable by the
browser, that prompts for and retrieves representations for all such URIs, and
the English text in the form assures Bob that these are indeed for weather
reports. Bob is not guessing the encoding of the URI or the nature of the
resources referenced — he is acting on authoritative information provided by
the assigner of the URIs. He can assume not just that he will get weather
reports for certain cities, but that no URIs in the class correspond to anything
other than weather reports (though some may correspond to no resource at

all). Bob could, with this assurance, write his own software to construct and
use such URIs to retrieve weather reports. Of course, the typical Web user
would neither directly inspect the URIs nor write software to build them, but
would instead type in city names and push the handy "Get the weather"
button on his or her browser screen.

Note that the example carefully specifies that the HTML form is sourced from
the same authority as the individual weather URIs that the form queries. In
fact, it is also common for the ACTION attributes in HTML forms to refer to URIs
from other authorities. In such cases, it is the provider of the form rather than
the assigning authority for the queried URIs that is responsible for the claims
made in the form. In particular, users (and software) should check the origin of
HTML forms before depending on the URI assignment patterns that they
appear to imply. Of course, you can always use such a form to perform a
query and see what comes back; what you can't do is blame the assignment
authority if the generated URIs either don't resolve (status code 404) or return
representations that don't match the expectations established when reading
the form (you got a football score instead of a weather report).

2.5 Authority use of URI metadata

In the examples above, resource metadata (I.e. the city associated with each
resource) was encoded into URIs primarily for the benefit of users such as
Bob, or to facilitate use of the HTML Forms or XForms acting on those users'
behalf.

Often, metadata is encoded into a URI not primarily for the benefit of users,
but to facilitate management of the resources themselves. For example,
assume that the administrators at example.org have established a policy of
assigning URIs based on the media types of representations: all GIF images
are named with URIs ending in ".gif", and all JPEG images are named with
URIs ending in ".jpeg", and so on. Although 2.1 Reliability of URI metadata
warned that users of a resource cannot rely on undocumented naming
conventions to determine media types and other information about a resource,
the owner of a resource controls such naming and can depend on it.
Example.org may therefore rely on their policy in an Apache Web
Server .htaccess file, which causes the correct media type to be served
automatically for each resource:

<Files ~ ".*\.gif">
ForceType 'image/gif'

</Files>
<Files ~ ".*\.jpg">
ForceType 'image/jpeg'

</Files>

Even if it does not document this policy publicly, example.org's own Web
servers can safely depend on it.

Good Practice

Comment [skw9]: Ok… but
Bob’s software is also vulnerable
to change *if* example.org change
the way that they organise their
URI space (modulo or not “Cool
URIs…”). I think that this risks
overstating the assurance that Bob
has.

Good Practice: URI assignment authorities and the Web servers
deployed for them may benefit from an orderly mapping from
resource metadata into URIs.

In addition to filename-based conventions, authorities may choose to base
URIs on database keys, customer identifiers, or other information that makes
it easy to associate a URI with information pertinent to the corresponding
resource. Such encodings are both useful and common on the Web, but there
can also be drawbacks to including such information in URIs. Some of those
problems are discussed in the three sections immediately below.

2.6 URIs that are convenient for people to use

URIs optimized for use by the assignment authority may sometimes be
inconvenient for resource users. Consider Mary who is walking down the
street, and who sees the same weather advertisement as Bob:

"For the best Chicago Weather information on the Web, visit
http://example.org/weather/Chicago."

Like Bob, Mary is pleased to learn about a valuable Web site, and she finds
that the URI itself is quite easy to both to remember and to type into her
browser. This is because, in addition to the required scheme and authority
components, the URI is based on the word weather and the city name
Chicago, both of which fit her expectations for this resource.

The next day, Mary sees another advertisement reading:

"For the best Atlanta Weather information on the Web, visit
http://example.org/123Hx67v4gZ5234Bq5rZ."

Mary is annoyed, because the URI is both difficult to remember and hard to
transcribe accurately. She guesses that the authority has assigned this URI
for its own convenience (see 2.5 Authority use of URI metadata) rather than
for hers. Although Web architecture does not require that URIs be easy to
understand or suggestive of the resource named, it's handy if those intended
for direct use by people are.

Good Practice

Good Practice: URIs intended for direct use by people should be
easy to understand, and should be suggestive of the resource
actually named.

Note that the second URI might be based on a database key that facilitates
efficient access to the weather data at the server (see 2.5 Authority use of
URI metadata); such a URI might have been a good choice if it were intended
only for use in HTML hyperlinks, rather than in an advertisement on the side
of a bus.

2.7 Changing metadata

URIs should generally not encode metadata that will change, regardless of
whether the encoding policy is established to benefit URI assignment
authorities, resource users, or both. Consider a web site that organizes
document URIs according to the documents' lead author or editor. Thus, the
documents:

http://example.org/documents/editor/BobSmith/document1
http://example.org/documents/editor/BobSmith/document2

are named for their editor, Bob Smith. Bob retires, and Mary Jones takes over
as editor for document1. If the URI is changed to encode her name, then
existing links break, but if the URI is not changed, the naming policy is
violated. By encoding into the URI metadata that will change, the authority
has put itself in a difficult position.

Good Practice

Good Practice: Resource metadata that will change SHOULD NOT
be encoded in a URI.

Indeed, RDF statements about the resource, headers returned with
representations (e.g. Content-Type) or metadata embedded in the
representations themselves (e.g. HTML <META> tags) are all better
alternatives for conveying such volatile metadata about the resource.

2.8 Hiding metadata for security reasons

A bank establishes a URI assignment policy in which account numbers are
encoded directly in the URI. For example, the URI
http://example.org/customeraccounts/456123 accesses information for
account number 456123. A malicious worker at an Internet Service Provider
notices these URIs in his traffic logs, and determines the bank account
numbers for his Internet customers. Furthermore, if access controls are not
properly in place, he might be able to guess the URIs for other accounts, and
to attempt to access them.

Good Practice

Good Practice: URI assignment authorities should not put into
URIs metadata that is to be kept confidential.

3 Conclusions
The principle conclusions of this finding are:

• It is legitimate for assignment authorities to encode static identifying
properties of a resource, e.g. author, version, or creation date, within
the URIs they assign. This may contribute to the unique assignment of
URIs. It may also contribute to the use of efficient mechanisms for
dereferencing resources within origin servers e.g. use of database keys
within URIs.

• Assignment authorities may publish specifications detailing the
structure and semantics of the URIs they assign. Other users of those
URIs may use such specifications to infer information about resources
identified by URI assigned by that authority.

• The ability to explore and experiment is important to Web users. Users
therefore benefit from the ability to infer either the nature of the named
resource, or the likely identity of other resources, from inspection of a
URI. Such inferences are reliable only when supported by normative
specifications or by documentation from the assignment authorities. In
other cases, users are responsible for the consequences of any
incorrect inferences.

• People and software using URIs assigned outside of their own
authority should make as few inferences as possible about a resource
based on its identity. The more dependencies a piece of software has
on particular constraints and inferences, the more fragile it becomes to
change and the lower its generic utility.

4 References
AUTHMETA

"Authoritative Metadata"; W3C; TAG Finding; R.T. Fielding, I.Jacobs;
April 2006 (See http://www.w3.org/2001/tag/doc/mime-respect.)

HTTP
"Hypertext Transfer Protocol - HTTP/1.1"; IETF; RFC 2616; R. Fielding,
J. Gettys, J. Mogul, H. Frystyk, P. Leach, L. Masinter, T. Berners-Lee;
June 1999 (See http://www.iana.org/rfc/rfc2616.)

HTMLFORMS
"HTML 4.01 Specification (Forms Chapter)"; W3C; D. Raggett, A. Le
Hors, I. Jacobs; December 1999 (See
http://www.w3.org/TR/html4/interact/forms.html.)

RFC2119
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels.
IETF. March, 1997. (See http://www.ietf.org/rfc/rfc2119.txt.)

URI
"Uniform Resource Identifiers (URI): Generic Syntax"; RFC3986; IETF;
T. Berners-Lee, R. Fielding, L. Masinter; August 1998 (See
http://www.ietf.org/rfc/rfc3986.)

XFORMS
"XForms 1.0"; W3C; J.M. Boyer, D. Landwehr, R. Merrick, T. V. Raman,
M. Dubinko, L. Klotz ; 2006 (2nd Edition) (See
http://www.w3.org/TR/xforms/.)

Formatted: Bullets and
Numbering

Comment [skw10]:
I think that the generation of
unique identifiers is the more
likely reason for embedding so-
called metadata in a URI. I suspect
that in general it is rarely the intent
that the URI be parsed to extract
what some construe as embedded
‘metadata’.

I think the uniqueness driver
should be introduced earlier, where
sufficient static distinguishing
characteristics are encoded into a
URI in order to make it unique.

Comment [skw11]: I think
that given that such specifications
may be subject to change, there
should be some caution suggested
wrt the permanence of any implied
commitment on the part of the
assignment authority.

