
A Theoretical Basis of
Communication-Centred Concurrent

Programming

Marco Carbone1,2 Kohei Honda1 Nobuko Yoshida2

Robin Milner3 Gary Brown4 Steve Ross-Talbot4

1Queen Mary, University of London, UK
2 Imperial College, London, UK
3 University of Cambridge, UK
4 Pi4 Technologies Ltd

Abstract.

This document presents two different paradigms of description of communication behaviour,
one focussing on global message flows and another on end-point behaviours, as formal calculi based
on session types. The global calculus originates from Choreography Description Language, a web
service description language developed by W3C WS-CDL working group. The end-point calculus is
a typedπ-calculus. The global calculus describes an interaction scenario from a vantage viewpoint;
the endpoint calculus precisely identifies a local behaviour of each participant. After introducing the
static and dynamic semantics of these two calculi, we explore a theory of endpoint projection which
defines three principles for well-structured global description. The theory then defines a translation
under the three principles which is sound and complete in thesense that all and only behaviours speci-
fied in the global description are realised as communications among end-point processes. Throughout
the theory, underlying type structures play a fundamental role.

The document is divided in two parts: part I introduces the two descriptive frameworks using
simple but non-trivial examples; the second part establishes a theory of the global and end-point
formalisms.

iii

Contents

Abstract. iii

Part 1. Introductory Examples 1
1. Introduction to Part 1 3
2. Describing Communication Behaviour (1) 4
3. Describing Communication Behaviour (2) 8
4. Describing Communication Behaviour (3) 12
5. Correspondence with CDL 21

Part 2. A Formal Theory of Structured Global Programming 23
6. Introduction to Part 2 25
7. Informal Preview 25
8. Global Calculus (1): Syntax 28
9. Global Calculus (2): Reduction 32
10. Global Calculus (3): Typing 37
11. End-Point Calculus (1): Syntax and Reduction 46
12. End-Point Calculus (2): Typing 51
13. Theory of End-Point Projection (1): Connectedness 59
14. Theory of End-Point Projection (2): Well-Threadedness 65
15. Theory of End-Point Projection (3): Coherence 74
16. Main Results: EPP Theorems 83
17. Extension and Applications 89
18. Related Work 92

Bibliography 95

Appendix 97

Appendix A. Summary of Reduction and Typing Rules 99

Appendix B. Proofs for the global calculus type system 101

Appendix C. Proofs for the end-point calculus type system 105

v

Part 1

Introductory Examples

1. Introduction to Part 1

This paper introduces two different ways of describing communication-centred software in the
form of formal calculi and discusses their relationship. Two different frameworks of description, one
centring on global message flows and another centring on local (end-point) behaviours, share the
common feature,structured representation of communications. The global calculus originates from
Choreography Description Language (CDL) [48], a web service description language developed by
W3C’s WS-CDL Working Group. The local calculus is based on the π-calculus [31], one of the
representative calculi for communicating processes. We show any well-formed description (in a
technical sense we shall make clear) in the global calculus has a precise representation in the local
calculus.

Both calculi are based on a common notion of structured communication, calledsession. A
session binds a series of communications between two parties into one, distinguishing them from
communications belonging to other sessions. This is a standard practice in business protocols (where
an instance of a protocol should be distinguished from another instance of the same or other proto-
cols) and in distributed programming (where two interacting parties use multiple TCP connections
for performing a unit of conversation). As we shall explore in the present paper, the notion of session
can be cleanly integrated with such notions as branching, recursion (loop) and exceptions. We show,
through examples taken from simple but non-trivial business protocols, how concise structured de-
scription of non-trivial interactive behaviour is possible using sessions. From a practical viewpoint,
a session gives us the following merits.

• It offers a clean way to describe a complex sequence of communications with rigorous
operational semantics, allowing structured description of interactive behaviour.

• Session-based programs can use a simple, algorithmically efficient typing algorithm to
check its conformance to expected interaction structures.

• Sessions offer a high-level abstraction for communicationbehaviour upon which further
refined reasoning techniques, including type/transition/logic-based ones, can be built.

The presentation in this paper focusses the first point, and gives a formal basis for the second point.
A full discussion of the second point and exploration of the third point are left to a later version of
this paper and in its sequels.

An engineering background of the present work is the explosive growth of the Internet and
world-wide web which has given rise to, in the shape of de facto standards, an omnipresent naming
scheme (URI/URL), an omnipresent communication protocols(HTTP/TCP/IP) and an omnipresent
data format (XML). These three elements arguably offer the key infra-structural bases for application-
level distributed programming. This engineering background makes it feasible and advantageous to
develop applications which will be engaged in complex sequences of interactions among two or more
parties. Another background is maturing of theories of processes centring on theπ-calculus and its
types. Theπ-calculus and its theories of types are singular in that not only do they enable a study of
diverse ways for structuring communication but also they allow fruitful and often surprising connec-
tions to existing formalisms including process algebras (e.g. CSP and CCS), functional computation
(e.g. λ-calculus), logics (Linear Logic) and objects (e.g. Java).We believe a combination of strong
practical needs for interactional computation and rich theoretical foundations will lead to rich dia-
logues between practice and theories. The present work is intended to offer some of the technical
elements which may become useful in this dialogue.

This paper consists of two parts. In the first part, which are the first give sections including this
Introduction, we informally introduce two paradigms of describing interactions through incremen-
tally complex examples. These examples come from use-casesfor CDL found in CDL primer [41]
by Steve Ross-Talbot and Tony Fletcher, and those examples communicated by Gary Brown [12]
and Nickolas Kavanztas [25]. In the second part, which form the remaining sections, we introduce
formal semantics, type discipline, and the formal connection between the core parts of these two
formalisms.

3

Buyer ShipperSeller

QuoteAcceptance
Choice

{

QuoteResponse

RequestForQuote

QuoteReject

RequestDelDetails

DeliveryDetails

DeliveryDetails

OrderConfirmation

FIGURE 1. Graphical Representation of Simple Protocol
.

Structure of the paper. In the rest of this paper, Sections 2, 3 and 4 are devoted to informal
illustration of key technical elements through description of small but non-trivial use-cases in the
global and local calculi. The description starts from a simple example and reaches a fairly complex
one, illustrating the essence of each construct as well as the relationship between their respective
global descriptions and the corresponding local ones. Section 5 comments on the correspondence
and differences between our formal calculi and CDL. The second part (from Section 6 to Section 10)
formally introduces two calculi (operational semantics inSection 6 and type disciplines in Section
7), develops theories of end-point projections (in Sections 8 and 9), and concludes the paper with
related works and further topics (in Section 10). The appendix offers further technical details.

2. Describing Communication Behaviour (1)

2.1. A Simple Business Protocol.In this section and the next, we show how small, but in-
creasingly complex, business protocols can be accurately and concisely described in two small pro-
gramming languages, one based on global message flows and another based on local, or end-point,
behaviours. Along the way we also illustrate each constructof these mini programming languages
(whose formal semantics is discussed in the second part of the paper).

Our starting point is a simple business protocol for purchasing a good among a buyer, a seller
and a shipper, which we callSimple BSH Protocol. Informally the expected interaction is described
as follows.

(1) First, Buyer asks Seller, through a specified channel, tooffer a quote (we assume the good
to buy is fixed).

(2) Then Seller replies with a quote.
(3) Buyer then answers with eitherQuoteAcceptance or QuoteRejection. If the answer is

QuoteAcceptance, then Seller sends a confirmation to Buyer, and sends a channel of
Buyer to Shipper. Then Shipper sends the delivery details toBuyer, and the protocol
terminates. If the answer isQuoteRejection, then the interaction terminates.

Figure 1 presents an UML sequence diagram of this protocol. Observe that, in Figure 1, many details
are left unspecified: in real interaction, we need to specify, for example, the types of messages and the
information exchanged in interaction, etc. While the protocol does not include practically important

4

elements such as conditional and loops, its simplicity serves as a good starting point for introducing
two formalisms.

2.2. Assumption on Underlying Communication Mechanisms.We first outline the basic
assumptions common to both global and local formalisms. Below and henceforth we call the dramatis
personae of a protocol (Buyer, Seller and Shipper in the present case),participants.

• We assume each participant either communicates through channels or change the content
of variables local to it (two participants may have their ownlocal variables with the same
name but they are considered distinct).

• In communication:

(1) A sender participant sends a message and a receiver receives it, i.e. we only con-
sider a point-to-point communication. A communication is always done through a
channel. The message in a communication consists of an operator nameand, when
there is a value passing, a value. The value will be assigned to a local variable at the
receiver’s side upon the arrival of that message.

(2) Communication can be either anin-session communicationwhich belongs to a ses-
sion, orsession initiation channelswhich establishes a session (which may be liked
to establishing one or more fresh transport connections fora piece of conversation
between two distributed peers). In a session initiation communication, one or more
fresh session channels belonging to a session are declared,i.e. one session can use
multiple channels.

(3) A channel can be either asession channelwhich belongs to a specific session or
an session-initiating channelwhich is used for session-initiation. For a session-
initiating channel, we assume its sender and a receiver is pre-determined.

• We may or we may not demand:

(1) the order of messages from one participant to another through a specified channel is
preserved.

(2) each communication is synchronous, i.e. a sender immediately knows the arrival of
a message at a receiver.

(3) one party participating in a session can use a session-channel both for sending and
receiving.

The last three assumptions which we leave undermined do affect a way to formalise protocols, as well
as for understanding their formal properties. Nevertheless the existence or lack of these assumptions
do not substantially affect the informal discussions in this and the next section.

2.3. Representing Communication (1): Initiating Session.Buyer’s session-initiating com-
munication in Simple BSH Protocol is described in the globalcalculus as follows.

(1) Buyer → Seller : InitB2S(B2Sch) . I

which says:

Buyer initiates a session with Seller by communication through a session-
initiating channelINITB2S, declaring a fresh in-session channelB2Sch. Then
interaction moves toI .

Note “.” indicates sequencing, as in process calculi. A session initiation can specify more than one
session channels as needed, as the following example shows.

(2) Buyer → Seller : InitB2S(B2Sch, S2Bch) . I

which declares two (fresh) session channels, one from Buyerto Seller and another in the reverse
direction.

In local description, the behaviour is split into two, one for Buyer and another for Seller, using
the familiar notation from process algebras. For example (1) becomes:

(3) Buyer[InitB2S(B2Sch) .P1], Seller[InitB2S (B2Sch) .P2]

5

AboveBuyer[P] specifies a buyer’s behaviour, whileSeller[P] specifies a seller’s behaviour. The
over-lined channel indicates it is used for output (this follows the tradition of CCS/π-calculus: in
CSP, the same action is writtenInitB2S ! (B2Sch).

Note the behaviour of each participant is described rather than their interaction. When these
processes are combined, they engage in interaction as described in the scenario above.

2.4. Representing Communication (2): In-session Communication. An in-session commu-
nication specifies an operator and, as needed, a message content. First we present interaction without
communication of values.

(4) Buyer → Seller : B2Sch〈QuoteRequest〉 . I ′

whereB2Schis an in-session channel. It says:

Buyer sends aQuoteRequest-message to Seller, then the interactionI ′ ensues.

The same behaviour can be written down in the local calculus as:

(5) B2Sch〈QuoteRequest〉 .P1, B2Sch〈QuoteRequest〉 .P2

An in-session communication may involve value passing, as follows.

(6) Seller → Buyer : S2Bch〈QuoteResponse, 3,000, x〉 . I ′

which says:

Seller sends aQuoteRespons-message with value3,000to Buyer; Buyer, upon
reception, assigns the received value,3,000, to its local variable x.

This description can be translated into end-point behaviours as follows.

(7) S2Bch〈QuoteResponse, 3,000〉 .P1, S2Bch〈QuoteResponse, y〉 .P2

which describes precisely the same communication behaviour.

2.5. Representing Branching.In various high-level protocols, we often find the situation
where a sender invokes one of the options offered by a receiver. A method invocation in object-
oriented languages is a simplest such example. In a global calculus, we may write an in-session
communication which involves such a branching behaviour asfollows.

(8)
{Buyer → Seller : B2Sch〈QuoteAccept〉 . I1}

+
{Buyer → Seller : B2Sch〈QuoteReject〉 . I2}

which reads:

Through an in-session channelB2Sch, Buyer selects one of the two options
offered by Seller,QuoteAccept andQuoteReject, and respectively proceeds
to I1 andI2.

The same interaction can be written down in the local calculus as follows. First, Buyer’s side (the
one who selects) becomes:

(9)
{B2Sch〈QuoteAccept〉 . .P1}

⊕
{B2Sch〈QuoteReject〉 .P2}

Above⊕ indicates this agent may either behave asB2Sch〈QuoteAccept〉 . .P1 orB2Sch〈QuoteReject〉 .P2,
based on its own decision (this is so-calledinternal sum, whose nondeterminism comes from its in-
ternal behaviour).

In turn, Seller’s side (which waits with two options) becomes:

(10)
{B2Sch〈QuoteAccept〉 .Q1}

+
{B2Sch〈QuoteReject〉 .Q2}

Here+ indicates this agent may either behave asB2Sch〈QuoteAccept〉 .Q1 or asB2Sch〈QuoteReject〉 .Q2
depending on what the interacting party communicates throughB2Sch (this is so-calledexternal sum,

6

Buyer → Seller : InitB2S(B2Sch) .

Buyer → Seller : B2Sch〈QuoteRequest〉 .

Seller → Buyer : B2Sch〈QuoteResponse, vquote, xquote〉 .

{ Buyer → Seller : B2Sch〈QuoteAccept〉 .

Seller → Buyer : B2Sch〈OrderConfirmation〉 .

Seller → Shipper : InitS2H(S2Hch) .

Seller → Shipper : S2Hch〈RequestDeliveryDetails〉 .

Shipper → Seller : S2Hch〈DeliveryDetails, vdetails, xdetails〉 .

Seller → Buyer : B2Sch〈DeliverDetails, xdetails, ydetails〉 .0 }

+
{ Buyer → Seller : B2Sch〈QuoteReject〉 .0 }

FIGURE 2. Global Description of Simple Protocol

whose nondeterminism comes from the behaviour of an external process). Note both branches start
from input through the same channelB2Sch.

In the local descriptions, the original sum in the global description in (8) is decomposed into
the internal choice and the external choice. Similarly,I1 (resp.I2) may be considered as the result of
interactions betweenP1 andQ1 (resp.P2 andQ2).

2.6. Global Description of Simple BSH Protocol.We can now present the whole of a global
description of Simple BSH Protocol, in Figure 2. While its meaning should be clear from our fore-
going illustration, we illustrate the key aspects of the description in the following.

• Buyer initiates a session by invoking Seller through the session-initiating channelINITB2S,
declaring an in-session channelB2SCh. Next, Buyer sends another message to Seller with
the operation name “QuoteRequest” and without carried values (this message may as
well be combined with the first one in practice).

• Seller then sends (and Buyer receives) a reply “QuoteResponse” together with the quote
valuevquote. vquote is a variable local to Seller (its exact content is irrelevant here). This
received value will then be stored inxquote, local to Buyer.

• In the next step, Buyer decides whether the quote is acceptable or not. Accordingly:
(1) Buyer may sendQuoteAccept-message to Seller. Then Seller confirms the pur-

chase, and asks Shipper for details of a delivery; Shipper answers with the requested
details (say a delivery date), which Buyer forwards to Seller. Upon reception of this
message the protocol terminates (denoted by0, the inaction).

(2) Alternatively Buyer may sendQuoteReject-message to Seller, in which case the
protocol terminates without any further interactions.

Remark. The description could have used more than one channels: for example, the Buyer-Seller
interactions can useS2Bchin addition for communication from Seller to Buyer. The use of only
B2Schmay be considered as a way to describe “request-reply” mini-protocol inside a session, where
an initial sender sends a request through a channel, and a receiver in turn replies leaving the involved
channel implicit (which is a practice found in CDL, cf. [41]).

2.7. Local Description of Simple BSH Protocol.Figure 2 describes Simple BSH Protocol
from a vantage viewpoint, having all participants and theirinteraction flows in one view. The same
behaviour can be described focussing on behaviours of individual participants, as follows.

7

Buyer[InitB2S(B2Sch) .
B2Sch〈QuoteRequest〉 .
B2Sch〈QuoteResponse, xquote〉 .
{ B2Sch〈QuoteAccept〉 .

B2Sch〈OrderConfirmation〉 .
B2Sch〈DeliveryDetails, ydetails〉 .0 }

⊕
{ B2Sch〈QuoteReject〉 .0 }]

Seller[InitB2S (B2Sch) .
B2Sch〈QuoteRequest〉 .
B2Sch〈QuoteResponse, vquote〉 .
{ B2Sch〈QuoteAccept〉 .

B2Sch〈OrderConfirmation〉 .
InitS2H(S2Hch) .

S2Hch〈DeliveryDetails〉 .
S2Hch〈DeliveryDetails, xdetails〉 .

B2Sch〈DeliveryDetails, xdetails〉 .0 }
+

{ B2Sch〈QuoteReject〉 .0 }]

Shipper[InitS2H(S2Hch) .
S2Hch〈DeliveryDetails〉 .
S2Hch〈DeliveryDetails, vdetails〉 .0]

FIGURE 3. Local Description of Simple Protocol

The description is now divided into (1) Buyer’s interactivebehaviour, (2) Seller’s interactive be-
haviour, and (3) Shipper’s interactive behaviour. We focuson Buyer’s behaviour. One can intuitively
see two descriptions of the same protocol, a global version in Figure 2 and a local version in Figure 3,
represent the same software behaviours — we can extract the former from the latter and vice versa.
We shall later establish such compatibility as a formal result. However there is a basic difference
in the nature of descriptions: A global description allows us to see how messages are exchanged
between participants and how, as a whole, the interaction scenario proceeds; whereas, in the local
description, the behaviour of each party is made explicit, as seen in distinct forms of choices used in
Buyer and Seller.

3. Describing Communication Behaviour (2)

3.1. Conditional. In Simple BSH Protocol, we only specified that Buyer may choose either
QuoteAccept or QuoteReject nondeterministically. Suppose we wish to refine the description so
that Buyer would choose the former when the quote is bigger than a certain amount, otherwise if
else. For this purpose we can use a conditional.
The description now specifies the “reason” why each branch istaken. Notice the condition in the
conditional branch,x≤ 1000, is explicitlylocated: the description says this judgement takes place at
Buyer. The same scenario is described as follows using the end-point calculus. Other participants’
behaviours remain the same.

3.2. Recursion.Assume we wish to further refine the protocol with the following specification:

If the quote is too high, Buyer asks another quote until it receives a satisfactory
quote.

8

if xquote ≤ 1000@Buyer then

{ Buyer → Seller : B2Sch〈QuoteAccept〉 .

Seller → Buyer : B2Sch〈OrderConfirmation〉 .

Seller → Shipper : InitS2H(S2Hch) .

Seller → Shipper : S2Hch〈RequestDeliveryDetails〉 .

Shipper → Seller : S2Hch〈DeliveryDetails, vdetails, xdetails〉 .

Seller → Buyer : B2Sch〈DeliverDetails, xdetails, ydetails〉 .0 }

else

{ Buyer → Seller : B2Sch〈QuoteReject〉 .0 }

FIGURE 4. Global Description of Simple Protocol with Conditional

Buyer[InitB2S(B2Sch) .
B2Sch〈QuoteRequest〉 .
B2Sch〈QuoteResponse, xquote〉 .
if xquote ≤ 1000 then
{ B2Sch〈QuoteAccept〉 .

B2Sch〈OrderConfirmation〉 .
B2Sch〈DeliveryDetails, ydetails〉 .0 }

else
{ B2Sch〈QuoteReject〉 .0 }]

FIGURE 5. Local Description of Simple Protocol with Conditional (Buyer)

Such behaviour is easily described using a loop or, more generally, recursion. In Figure 6, we show
the global description of this enhanced protocol. There areonly two additional lines: in the second
line, rec X. indicates that, intuitively:

We name the following blockX. If X occurs inside that block, then we again
recur to the top of the block.

In the last line, which is the second branch,X recurs again. Thus, at this point, the description
recurs to a point immediately afterrec X (i.e. the third line). The significance of recursion is its
expressiveness (it can easily express various forms of loops) and its theoretical tractability. In the
description, it is assumed that the valuevquote will be updated appropriately by Seller, which is
omitted from the protocol description.

It is instructive to see how this recursion is translated into end-point behaviour. We present the
local counterpart of Figure 6 in Figure 7 (we omit Shipper’s behaviour which does not change).
Observe both Buyer and Seller use recursion, so that they cancollaboratively be engaged in recur-
sive interactions. No change is needed in Shipper’s local description, since it does not involve any
recursion.

3.3. Timeout. Let’s consider refining Simple BSH protocol as follows:

If Buyer does not reply in 30 seconds after Seller presents a quote, then Seller
will abort the transaction. Once Seller decides to do so, even if a confirmation
message arrives from Buyer later, it is deemed invalid.

9

Buyer → Seller : InitB2S(B2Sch) .

rec X.

{ Buyer → Seller : B2Sch〈QuoteRequest〉 .

Seller → Buyer : B2Sch〈QuoteResponse, vquote, xquote〉 .

if xquote ≤ 1000@Buyer then

{ Buyer → Seller : B2Sch〈QuoteAccept〉 .

Seller → Buyer : B2Sch〈OrderConfirmation〉 .

Seller → Shipper : InitS2H(S2Hch) .

Seller → Shipper : S2Hch〈RequestDeliveryDetails〉 .

Shipper → Seller : S2Hch〈DeliveryDetails, vdetails, xdetails〉 .

Seller → Buyer : B2Sch〈DeliverDetails, xdetails, ydetails〉 .0 }

else

{ Buyer → Seller : B2Sch〈QuoteReject〉 .X } }

FIGURE 6. Global Description of Simple Protocol with Conditional and Recursion

Buyer[InitB2S(B2Sch) .
rec X.

{ B2Sch〈QuoteRequest〉 .
B2Sch〈QuoteResponse, xquote〉 .
if xquote ≤ 1000 then
{ B2Sch〈QuoteAccept〉 .

B2Sch〈OrderConfirmation〉 .
B2Sch〈DeliveryDetails, ydetails〉 .0 }

else
{ B2Sch〈QuoteReject〉 .X } }]

Seller[InitB2S(B2Sch) .
rec X.
{ B2Sch〈QuoteRequest〉 .

B2Sch〈QuoteResponse, vquote〉 .
{ B2Sch〈QuoteAccept〉 .

B2Sch〈OrderConfirmation〉 .
InitS2H(S2Hch) .

S2Hch〈DeliveryDetails〉 .
S2Hch〈DeliveryDetails, xdetails〉 .

B2Sch〈DeliveryDetails, xdetails〉 .0 }
+

{ B2Sch〈QuoteReject〉 .X }]

FIGURE 7. Local Description of Simple Protocol with Recursion (Buyer/Seller)

10

Buyer → Seller : InitB2S(B2Sch, S2Babort) .

Buyer → Seller : B2Sch〈QuoteRequest〉 .

Seller → Buyer : B2Sch〈QuoteResponse, vquote, xquote〉 .

let t = timer(30)@Seller in {

{ Buyer → Seller : B2Sch〈QuoteAccept〉 timer(t) .

Seller → Buyer : B2Sch〈OrderConfirmation〉 .

Seller → Buyer : B2Sch〈DeliverDetails, xdetails, ydetails〉 .0 }

+
{ Buyer → Seller : B2Sch〈QuoteReject〉 timer(t) .0 }

catch (timeout(t))

{ Seller → Buyer : S2Babort〈Abort〉 .0 } }

FIGURE 8. Global Description of Simple Protocol with Timeout

For describing this refined behaviour, we first should have a means to describe a timeout. We consider
this mechanism consisting of (1) creating a timer with a timeout value; (2) starting a timer; and (3)
exception is thrown when a time out occurs. This exception isa local exception, in the sense that we
consider our abstract notion of exceptions on the basis of the following infra-structural support:

All exceptions are caught and handled within a participant locally (a participant
may interact with other parties as a result).

This is the standard, low-cost mechanism employed in many run-times such as those of Java and
C++.

Let us see how this can be realised in concrete syntax. We firstrefine the global description in
Figure 2. Some comments:

• In the first line (initiating a session), two session channels,B2Sch(for default communica-
tions) andS2Babort(for aborting a transaction), are communicated throughInitB2S. This
generalised form of a session, where participants can use multiple channels in a single
session, is useful for varied purposes.

• In the fourth line, a timert with timeout value 30 is initiated at Seller. This timer willbe
stopped if the input guard specifying that timer (Lines 6 and10) receives a message (the
two branches of a single choice have the same timer).

• In the second line to the last, an exception handler is given,which says: when the timer
fires,Seller will send an abort message toBuyer. It is omitted that, if Buyer’s message
arrives, Seller behaves as a sink, i.e. does nothing.

The same protocol can be described using the local formalismextended with timeout as follows.
As before, in the exception branch, that Seller is assumed tobehave as a sink to messages atB2Sch

(i.e. B2Sch〈QuoteAccept〉.0+ B2Sch〈QuoteReject〉.0 is omitted: it is possible it would behave
non-trivially after it is in the abort mode). On the other hand, in Buyer’s behaviour, we usepar which
indicates parallel composition. This behaviour is the sameas before except the reception at the abort
channel is added on parallel.

3.4. Combining Conditional, Recursion and Timeout.As a conclusion to this section, we
present the combination of all constructs we have introduced so far. Figure Figure 10 gives a global
description of the following behaviour:

(1) First, Buyer asks Seller, through a specified channel, tooffer a quote (we assume the good
to buy is fixed).

11

Seller[InitB2S(B2Sch, S2Babort) .
B2Sch〈QuoteRequest〉 .
B2Sch〈QuoteResponse, vquote〉 .
let t = timer(30) in {

{ B2Sch〈QuoteAccept〉 timer(t) .
B2Sch〈OrderConfirmation〉 .
B2Sch〈DeliveryDetails, xdetails〉 .0 }

+
{ B2Sch〈QuoteReject〉 timer(t) .0 }
catch (timeout(t))
{ S2Babort〈Abort〉abort .0 } }]

Buyer[InitB2S(B2Sch, S2Babort) .
{

B2Sch〈QuoteRequest〉 .
B2Sch〈QuoteResponse, xquote〉 .
{ B2Sch〈QuoteAccept〉 .

B2Sch〈OrderConfirmation〉 .
B2Sch〈DeliveryDetails, xdetails〉 .0 }

⊕
{ B2Sch〈QuoteReject〉 .0

}
par
{ S2Babort〈Abort〉abort .0 }

]

FIGURE 9. Local Description of Simple Protocol with Timeout

(2) Then Seller replies with a quote.
(3) Buyer then answers with either “I will buy” (if the price is cheap) or “I will not buy” (if

not) to Seller. S
(4) If the answer is “I will buy”, then Seller sends a confirmation to Buyer, and sends a

channel of Buyer to Shipper. Then Shipper sends the deliverydetails to Buyer, and the
protocol terminates.

(5) If the answer is “I will not buy”, then the interaction recurs to (1) above.
(6) If Buyer does not reply in time, Seller will abort the transaction.

The local description is given in Figure 11.

4. Describing Communication Behaviour (3)

4.1. Criss-Crossing of Actions: Proactive Quoting (1).In this section we treat behaviours
which involvecriss-crossing: between two participants, sayA andB, one message goes fromA to B
and another fromB to A in parallel, one of which often having a stronger priority. We use use-cases
contributed by Gary Brown [12] and Nickolas Kavanztas [25].

Brown’s use-case is a (simplified form of) one of the typical interaction patterns in Investment
Bank and other businesses. Its narrative description is extremely short, but the induced behaviour is
non-trivial to describe. We assume two participants,A andB.

(1) Initially, A sends a request for quote toB.
(2) ThenB sends an initial quote toA as a response.
(3) ThenB will enter a loop, sending pro-actively a new quote in a “RefreshQuote”-message

every 5 seconds untilA’s “AcceptQuote”-message arrives atB.

12

Buyer → Seller : InitB2S(B2Sch) .

rec X. {

Buyer → Seller : B2Sch〈QuoteRequest〉 .

Seller → Buyer : B2Sch〈QuoteResponse, vquote, xquote〉 .

let t = timer(30)@Seller in {

if (xquote ≤ 1000@Buyer) {

Buyer → Seller : B2Sch〈QuoteAccept〉 timer(t) .

Seller → Buyer : B2Sch〈OrderConfirmation〉 .

Seller → Shipper : InitS2H(S2Hch) .

Seller → Shipper : S2Hch〈RequestDeliveryDetails〉 .

Shipper → Seller : S2Hch〈DeliveryDetails, vdetails, xdetails〉 .

Seller → Buyer : B2Sch〈DeliverDetails, xdetails, ydetails〉 .

0

} else{

Buyer → Seller : B2Sch〈QuoteReject〉 timer(t) .X }

catch (timeout(t)) {

Seller → Buyer : S2Babort〈Abort〉 .0

}

}

FIGURE 10. Global Description of BSH Protocol with Conditional/Loop/Timeout

Thus the “AcceptQuote”-message fromA is in a race condition with a “RefreshQuote”-message from
B. Once the quote is accepted,B should terminate its loop. We leave unspecified in the use-case how
a quote is calculated, howA decides to accept a quote, and howA notifies which quoteA is agreeing
on (refinements are easy).

The repeated actions at each time interval can be cleanly modelled using the predicate-based
invocation mechanism [48], which is also useful for other purposes.

when (p@A) {I}

wherep is a predicate (an expression of a boolean type). It reads:

The interactionI does not start until the predicatep becomes true: when it
becomes so, thenI will be engaged in.

Its precise semantics is either (1) wheneverp becomes true,I should start; or (2) whenp becomes
true, I can start, but this “event” can be missed in which caseI may not start. The behaviour in (1)
tends to become more deterministic, while (2) is realisablethrough busy-waiting without additional
synchronisation mechanism.

We use this construct to describe the use-case. We first informally illustrate the underlying idea
(suggested by [12]): after the initial quote has arrived atA, we consider there are two independent
threads of interactions, in bothA andB.

• In one,A may decide to send the “AcceptQuote”-message; whenB receives it,B will set
its local variablepquoteAccepted to “truth” (which should be initially “false”).

13

Buyer[InitB2S (B2Sch, S2Babort) .
{

rec X.
{ B2Sch〈QuoteRequest〉 .

B2Sch〈QuoteResponse, xquote〉 .
if xquote ≤ 1000 then
{ B2Sch〈QuoteAccept〉 .

B2Sch〈OrderConfirmation〉 .
B2Sch〈DeliveryDetails, ydetails〉 .0 }

else
{ B2Sch〈QuoteReject〉 .X } }

par
S2Babort〈ABORT, xabort〉 .0

}
]

Seller[InitB2S(B2Sch) .
rec X.
{ B2Sch〈QuoteRequest〉 .

B2Sch〈QuoteResponse, vquote〉 .
let t = timer(30) in {
{ B2Sch〈QuoteAccept〉 timer(t) .

B2Sch〈OrderConfirmation〉 .
InitS2H(S2Hch) .

S2Hch〈DeliveryDetails〉 .
S2Hch〈DeliveryDetails, xdetails〉 .

B2Sch〈DeliveryDetails, xdetails〉 .0 }
+

{ B2Sch〈QuoteReject〉 timer .X }
catch (timeout(t))
{ S2Babort〈Abort, abort〉 .0 }

}
]

Shipper[InitS2H(S2Hch) .
S2Hch〈DeliveryDetails〉 .
S2Hch〈DeliveryDetails, vdetails〉 .0]

FIGURE 11. End-Point Description of BSH Protocol with Conditional/Loop/Timeout

• In another,A is always ready to receive “RefreshQuote”-message (with a new quote
value); On the other hand,as far as the local variable pquoteAccepted is false, B will
repeatedly send, at each 5 seconds, a fresh quote.

Note the variablepquoteAccepted is used for communication between two threads inB. WhenB
ceases to send new quotes,A also cease to react to new quotes fromB, thus both reaching a quiescent
state. The description in the global formalism (augmented with “when”-construct) follows.
Above, “τA” is the standardτ-action local toA, indicating passage of an unspecified duration of time.
Thus as a whole

τA . A→ B : A2Bch〈AcceptQuote〉 . pquoteAcceppted := tt@B. 0,

14

A → B : InitA2B(A2Bch) .

A → B : A2Bch〈RequestQuote〉 .

B → A : A2Bch〈Quote, yquote, xquote〉 .

pquoteAccepted = ff @ B.

{

τA . A → B : A2Bch〈AcceptQuote〉 . pquoteAcceppted := tt @ B. 0

par

rec X. {

let t = timer(5)@B in

when (expired(t)@B)

if(pquoteAccepted = ff@B) { B → A : A2Bch〈RefreshQuote, yquote, xquote〉 .X }

}

FIGURE 12. A Proactive Quoting with a Criss-Cross (global)

indicates that the sending of “AcceptQuote” (with a quote value at the time) may take place after
some duration of time, and whenB receives this message,B will assign “truth” to its local variable
pquoteAcceppted. One may as well refine the above part as follows, using the “when” construct.

when(satisfied)@A)
{ A → B : A2Bch〈AcceptQuote〉 . pquoteAcceppted := tt@B. 0 }

wheresatisfied is an unspecified predicate local toA, indicating the satisfaction ofA w.r.t., say,
the current quote value.

In the second thread,B is engaged in a loop: the timert expires at each 5 seconds and, when
expires(t) (which is a predicate rather than exception) becomes true, the body of “when” is exe-
cuted. IfpquoteAcceppted is false, it sends a quote and re-enters the loop: ifpquoteAcceppted is true, it
terminates the loop. The interaction

B → A : A2Bch〈RefreshQuote, yquote, xquote〉

not only indicatesB sends a “RefreshQuote”-message, but alsoA is ready to receive it and sets the
communicated quote into its variablexquote.

The protocol description invites us to diverse forms of refinement. For example, we may con-
sider the predicatesatisfied is a boolean variable set afterA receives a new quote (in the second
thread). We leave exploration of such refinements to the reader.
Next we consider the local version of Figure 12, using the end-point counterpart of the “when”-
construct. This is given in Figure 13. One may compare the presented behaviours with those in
Figure 12. The “when” construct is used inB, with the same semantics as in the global calculus.

In the local description ofA’s behaviour, the projection makes clear that, in one of its two
threads,A repeatedly gets ready to receive “RefreshQuote”-messagesfrom B, while, independently,
may move to the stage where it sends an “AcceptQuote”-message to B. Thus, when a criss-cross
of these messages take place,A will simply receives the message fromB while sending its own
message. As noted before, we may as well refineA’s behaviour, for example in its transition to the
quote acceptance state.

In the local description ofB, the first thread does not start from theτ-action (which isA’s local
action) but starts from the reception of “QuoteAcceptance”-message fromA. The second thread is
engaged with the timeout and loop using the “when” construct, using the variablepquoteAccepted.

15

A[InitA2B(A2Bch, B2Ach) .
A2Bch〈RequestQuote〉 .
B2Ach〈Quote, xquote〉 .
{ τ .A2Bch〈AcceptQuote, xquote〉 .0 par rec X.{ B2Ach〈RefreshQuote, xquote〉 .X } }

]

B[InitA2B(A2Bch, B2Ach) .
A2Bch〈RequestQuote〉 .
B2Ach〈RefreshQuote, yquote〉 .
pquoteAcceppted := ff.
{

A2Bch〈AcceptQuote〉 . pquoteAcceppted := tt . 0
par
rec X. {
let t = timer (5) in when (expired(t))
{ if (pquoteAccepted = ff) { B2Ach〈RefreshQuote, yquote〉 .X } }

}
]

FIGURE 13. A Proactive Quoting with a Criss-Cross (local)

A → B : InitA2B(A2Bch, B2Ach) .

A → B : A2Bch〈RequestQuote〉 .

B → A : B2Ach〈Quote, quote, xQuote〉 .

rec X.{

let t = timer(5)@B in

A → B : A2Bch〈AcceptQuote〉timer(t) .0

catch(timeout(t))

B → A : B2Ach〈RefreshQuote, newQuote, xQuote〉 .X }

FIGURE 14. A Proactive Quoting with a Criss-Cross (global, with
atomic interaction)

The local descriptions of the proactive quoting protocol inFigure 13 are directly related with
its global description in Figure 12 and vice versa, up to the treatment of criss-crossing. In particular,
it is not hard to imagine how we can project the description inFigure 12 to the one in Figure 13
following a simple principle. A natural question is whetherwe can do thereversetranslation in a
general way: can we integrate the local descriptions in Figure 13 to synthesize the global description
in Figure 12? What would be the general principle involved insuch projection? Part of this question
will be answered in Part II of the present paper.

4.2. Criss-Crossing of Actions: Proactive Quoting (2).In this subsection, we present an
alternative global description of the proactive quoting protocol. It is simple and understandable, even
though the description is only sound under a strong assumption about the underlying communication
on mechanism. The description follows.

16

The description in Figure 12 is terse and understandable. However its clarity has become possible
only by assuming a significant condition on the underlying messaging semantics: each interaction
is atomic. This assumption becomes essential inA → B : A2Bch〈AcceptQuote〉, which needs be
executed atomically: if not, it is possible thatA sends aAcceptQuote-message toB, but the time-out
in B is caught,B sendsRefreshQuote to A, andA should again sendsAcceptQuote-message again,
which is not the expected behaviour ofA. Rather it says thatA → B : A2Bch〈AcceptQuote〉 either
happens or not at all and moves to a timer, which is only realisable if this action is atomic. It may be
costly to realise such atomicity in general. At the same time, the description may suggest atomicity
of interaction can lead to terse specification of a complex behaviour.

Due to the assumption on atomicity and its interplay with timer, it is hard to devise local de-
scriptions directly corresponding to Figure 14. Even if we stipulate the same atomicity assumption
in local descriptions, it is hard to construct the projection ontoA: the problem is that the ’when’ loop
within A does not have an activity that it can observe to indicate thatB has exited the loop. A possi-
ble approach to this would be to model a guard condition forA to also include the ’quoteAccepted’
variable — but this guard condition would also have to include the aspect of duration, otherwise
(as a result of the ’when’ blocking semantics) the guard atA would simply block until the variable
’quoteAccepted’ was set to true, and it would not receive anyof the quote refresh messages. Fur-
ther, if both participants are required to use the same guardcondition, then it also assumes they have
synchronised clocks and evaluate the expressions at exactly the same time.

4.3. Criss-Crossing of Actions: A T-Shirts Procurement Protocol (1). Next we treat Ka-
vanztas’s use-case [25], which describes a protocol for purchase orders between a really big corpo-
ration (RBC) and a small T-shirts company (STC).

(1) RBC sends a purchase order (PO) to STC.
(2) STC acknowledges the PO and initiates a business processto handle the PO.
(3) After STC’s internal processes regarding the PO are completed, STC sends “PO-Completed”

to RBC in order for RBC to complete its own business process.
(4) RBC can send a Cancel Order message to abort STC’s business process (which can criss-

cross with a PO completed message), any time before RBC receives the PO Completed
message from STC

(5) If Cancel Order arrives at STC before PO Completed is sentfrom STC, then STC aborts
its business process and acknowledges this to RBC with PO Cancelled, in order for RBC
to abort its own business process. Otherwise, if STC has already sent PO Completed, it
ignores the Cancel Order because RBC has agreed it will honorPOs when cancellations
are not sent out within an agreed-upon time-frame.

(6) If RBC has already sent the Cancel Order message and then it receives the PO Completed
message, then instead of aborting, RBC completes it.

Figure 15 presents a global description of this protocol.
Above, RBC first initialises a session channel R2Sch throughInitR2S, then sends an order, which
STC acknowledges. RBC then starts a timer, i.e. the longest time T it is willing to wait before
the PO confirmation arrives. The timer is frozen upon the PO confirmation. Alternatively if the
time-out occurs, it is handled by the catch part: RBC sends anabort message to STC, and either
STC acknowledges it or its PO-confirmation arrives. Note we have made a timer explicit in this
description: we later show a description which does not relyon the use of a timer.

An acute reader may observe that this description again assumes atomicity of communication,
as in the previous subsection, in the sense that: the execution of an interactionA→B : ch〈Op〉 means
the two things at the same time:A sends a message andB has received that message.

Next we give an end-point counterpart of the same description, in Figure 16.
In STC’s description, we use the following predicate-basedexception mechanism. The syntax for
this exception handling is:

try {P} catch (p) {Q}

17

RBC → STC : InitR2S(R2Sch) .

RBC → STC : R2Sch〈CreateOrder〉 .

STC → RBC : R2Sch〈OrderAck〉 .

let t = timer (T)@RBC in

{STC → RBC : R2Sch〈POCompleted〉 timer(t) .0}

catch timeout(t) {

RBC → STC : S2Rabort〈Abort〉 .{

STC → RBC : R2Sabort〈ConfirmAbort〉 .0

+

STC → RBC : R2Sch〈POConfirmation〉 .0 }

FIGURE 15. A Global Description of T-Shirts Procurement

RBC[InitR2S(R2Sch) .
R2Sch〈CreateOrder〉 .
S2Rch〈OrderAck〉 .
let t = timer(T) in {

S2Rch〈POCompleted〉timer (t) .0
}

catch timeout(t) {

S2Babort〈Abort, true〉 .
S2Babort〈ConfirmAbort〉 .0
+
S2Rch〈POCompleted〉 .0}]

STC[InitR2S(R2Sch) .
R2Sch〈CreateOrder〉 .
xAbort := false.
S2Rch〈OrderAck〉 .
try
{ τ .S2Rch〈POCompleted〉 .0}
catch (¬xAbort)
{S2Babort〈ConfirmAbort〉 .0
+

S2Rch〈POCompleted〉 .0}
par
S2Babort〈Abort, xabort〉 .0]

FIGURE 16. A Local Description of T-Shirts Procurement

whose semantics is, informally: to execute the interactionP unless the predicate (a boolean-valued
expression)p is satisfied (notep is treated as an event). In the latter case,Q would be executed. This
construct is feasibly implemented if the “catch” part is an exception such as timeout or explicitly
thrown exceptions. However its implementation becomes more involved if, as here, a predicate is
used for invocation since in that case a mechanism is necessary to watch the update of relevant

18

variables. Note this construct is similar to the “when” construct: the same underlying mechanism
can realise both. As an alternative, one may realise a similar behaviour using either a busy-waiting
or a “sleep” construct, though these alternatives may not befaithful to intended semantics when we
use arbitrary predicates for invocation.

We illustrate the behaviour of RBC and STC in this end-point description. First, RBC’s local
behaviour is as follows.

• The first three actions (session init, order request and acknowledgement) are obviously
implemented;

• RBC sets a timer and waits for T time-units to receive the PO confirmation from STC;
• If the time-out is triggered, RBC will send an abort to STC, and then wait for the abort

confirmation or for the PO confirmation.

The local behaviour of STC may be illustrated thus.

• As in the RBC part, the first three actions need no description, apart the fact that STC
has a variable for checking whether RBC has requested an abort or not. This variable is
initialised to false;

• At this point STC checks the abort variable, and if it is not true it decides to perform a tau
action and then send the PO confirmation.

• if the abort variable is true it then confirms the abort;
• in parallel with the described thread, there is another thread which just waits for an abort

message from RBC.

Note the end-point description makes it explicit how timeout is done and how criss-crossing occurs in
terms of two distributed end-point behaviours. We believe it faithfully realises the global behaviour
described in Figure 15 under the assumption of atomicity of interactions: at the same time, one may
observe that the given end-point description doesnot automatically get extracted from the global
description. In fact, as far as the initial protocol description goes, the local description arguably
realises a correct behaviour even if we do not stipulate the atomicity assumption for communication
actions (it is notable that CDL [48] does not stipulate such atomicity).

4.4. Criss-Crossing of Actions: A T-Shirts Procurement Protocol (2). The descriptions so
far depend on the explicit use of timer and exception (timeout) which a timer engenders. However
the nondeterminism and criss-crossing of message exchanges themselves may not be directly related
with local use of timers. Indeed, a description of the overall exchange of interactions is possible
without using timers, as we shall discuss below.

The protocol uses two (local) variables, AbortRequested atSTC and ConfArrived at RBC, both
initialised to be false. The timing of update of these variables is the key underlying idea of this
protocol. The protocol description follows.
Let us offer an informal illustration of the protocol.

• The initial three interactions remain the same as before, i.e. sending a purchase order
from RBC to STC after a session initiation, then an acknowledgement from STC to RBC.

• At this stage the interactions are divided into the parallelcomposition of two behaviours.
In one thread of interaction, we have:
(1) STC will, at some point, check AbortRequested is true (i.e. RBC’s abort request has

arrived) or false (i.e. RBC’s abort request has not arrived).
(2) If AbortRequested is false, then STC will send a PO confirmation message. When

RBC receives it, it will set its ConfArrived to be true, and STC moves to the com-
pletion of PO processing.

(3) If AbortRequested is true, then STC will send a AbortConfirmed message. RBC
receives it, and in both sites the PO process aborts.

In another thread of interaction, we have:
(1) At some point RBC will check ConfArrived.
(2) If it is false (i.e. a PO confirmation has not arrived), then sends AbortRequest-

message to STC.

19

RBC → STC : InitR2S(R2Sch) .

RBC → STC : R2Sch〈CreateOrder〉 .

STC → RBC : R2Sch〈OrderAck〉 .

{

xAbortRequested@STC:= false.

τSTC.

if ¬xAbortRequested@STC{

STC → RBC : R2Sch〈POConfirmation〉 .

xConfArrived@RBC:= true .0}

else

STC → RBC : R2Sabort〈ConfirmAbort〉 .0

}

par

{

xConfArrived@RBC:= false.

τRBC.

if ¬xConfArrived@RBC{

RBC → STC : S2Rabort〈Abort〉 .

xAbortRequested := true .0 }

}

FIGURE 17. A Global Description of T-Shirts Procurement without
Timer

(3) If it is true (i.e. a PO confirmation has arrived), then RBCmoves to the completion
of PO processing.

In Figure 17,τSTC (resp. τRBC) indicates aτ-action in STC (resp. in RBC), which may take an
unspecified amount of time. We can check that this protocol never moves to:

• The situation where STC sends a PO confirmation but an RBC aborts (since, for an RBC
to abort, it needs to obtain AbortConfirm message from STC).

• The situation where RBC receives both a PO-confirmation and AbortConfirm (for the
same reason).

Note however it is possible STC may receive, in one thread, AbortRequest message at timet but, for
some reason, this has not been propagated to anther thread intime, so that, at timet + t0, STC sends
a PO-confirmation message to RBC. However this does not contradicts the initial specification (we
also believe this is consistent with the standard business convention).

The end-point projection of this example is not to hard, which we leave to the reader. We
also note Kavanztas [25] presents a different description in CDL using the “when” construct with
distributed predicates.

4.5. Further Note. In this section we have explored various ways to describe twobusiness
protocols (though the presented ones are far from the only ways to describe them). The purpose of
these formal representations of business protocols in the calculi is not only to analyse the behaviours
of these protocols themselves and to reason about them, but also to understand the correspondence

20

feature CDL formalism
session channels located at input no restriction
session initiation implicit explicit

general co-relation yes by adding “polyadic sync”
typing by-name (informal) by-structure (formal)

type checking no yes
local exception none yes

repetition loop recursion
sequencing imperative prefix

predicate-based invocation yes by adding “when”
EPP implemented proved

global variable lookup yes no
global completion yes no

TABLE 1. Correspondence and Differences

between various constructs and their expressiveness. By having a precise operational semantics, we
can discuss diverse aspects of the constructs needed to represent a large class of communication
behaviours with precision. Further analyses of these and other complex business protocols in these
formalisms would be an important and stimulating future research topic.

5. Correspondence with CDL

In this section, we briefly outline relationship between CDLand the global/local calculi we have
used in the previous sections. The correspondence/differences are summarised in Table 1.
Some comments:

• Channels are one of the fundamental elements in communication-based languages as well
as in security engineering, arising in diverse forms (such as sockets, remote object IDs,
and URLs). Even though an informal global description may not mention channels (this is
because the names of participants play the role of channels), they become essential when
exception and channel passing are involved. In fact, in standard distributed programming,
we may use multiple channels (often in the shape of transportconnections) in one unit of
conversation.

• CDL channels are located at the inputting side, representing the ports where the sender
writes to. Formalisms are more general, using channels bothfor input and for output.

• Concerning session initiation, this is done implicitly in CDL. In our calculi, we place the
explicit session initiation which makes the underlying operational and type structure more
explicit and more amenable to analyses. This does not prevent us from using the calculus
to represent practical business protocols since we may regard the session initiation and
the subsequent action to be combined into a single message inimplementation.

• Co-relation is one of the significant features of CDL. Co-relation can be considered as a
way to collectively treat multiple sessions as one conversation unit. Though we have not
been treated in this work, this feature can be cleanly represented in formal calculi. One
method is to use the so-called polyadic synchronisation.

• CDL does not have a proper notion of type checking nor type inference. However it is
equipped with such notions as relationship, roles and participants, whose specifications
are related with each other through XML schemas. These constructs play an important
role as part of documentation. These data will be usable as a basis of typing, using the
so-called by-name approach (as found in Java).

• In the current CDL specification, type checking (i.e. verifying if a particular choreogra-
phy is well typed) is not part of the specification. Such type checking may as well be
partly complemented by type inference (i.e. elaborating untyped phrases with appropriate
types). These verifications can be done formally in the calculus, i.e. we can provide an

21

algorithm which, given an interactionI and a typet, checks whether thet is a good type
for I . Transporting this facility into a CDL development tool will be one of the significant
future topics.

• As we saw above, exception are indispensable for managing many interesting real applica-
tion situations. One thing missing in WS-CDL would be the ability of handling exceptions
locally, with a standard local scoping rule. This topic may deserve further consideration.

• Repetition of instructions is usually dealt with while loops. In the calculus we use recur-
sion, another mechanism which can faithfully emulate the standard loop operation as well
as many forms of recursive calls. They also enjoy many theoretical features. This does
not mean it is better to replace loops with recursion: when a loop behaviour is intended,
writing it with a loop often leads to a more understandable program.

• Sequencing of interactions can be treated in two different ways, i.e. the way it is done
in CDL and the way it is done inπ-calculus. In CDL, a standard imperative language
construct “;” is adopted. In our formalisms, we are using thesimple prefixing opera-
tor. Superficially, the latter construct is less powerful than the former, mainly because it
assumes only very simple operations are allowed before the “.”. On the contrary, when
using “;” we can combine complex expressions such as those combined by the parallel
operator. Again there is a precise embedding of “;” into the prefixing in combination with
other constructs, so we lose no generality in using “.” whileallowing easier analysis.

• CDL is equipped with the predicate-based invocation mechanism (for which we used
the constructwhen). This mechanism is powerful for various specifications, but it also
demands a heavy implementation mechanism. Exploration of cases where this construct
becomes indispensable would become important for understanding its status in structured
concurrent programming.

• Various globalised features of CDL are incorporated because they often naturally arise
in business protocols. Their semantic content however may not be precisely understood.
Note globalised behaviour has to be, in effect, realised by interactions among distributed
peers. Therefore, at least at the level of formalisms, the understanding of how a certain
global construct may be realised by interactions is a prerequisite for their proper inclu-
sion in formalisms. Precise appreciation of what high-level global abstraction would be
suitable for describing communication-centred software behaviour, and how they relate
to their local (communication-based) realisation, is an important topic for future study.

22

Part 2

A Formal Theory of Structured Global
Programming

6. Introduction to Part 2

Part II develops a theory ofend-point projection (EPP), which gives an exact condition and
framework by which we can relate the global description of communication-centric software to its
local description. The theory is intended to offer one of thecentral formal underpinnings of W3C’s
web service choreography description language, WS-CDL [47]. The development of the theory has
benefitted greatly from the dialogue between the invited scientists of W3C WS-CDL Working Group
and WG’s members: in fact, without this dialogue, this theory may not have been developed, at least
at this moment and in its current shape.

The presented theory may be considered as offering a formal substrate for designing, imple-
menting and using distributed applications written in WS-CDL and related languages, by establish-
ing principles by which applications’ global description and their local description are naturally and
precisely related. In particular, the theory may be usable,in combination with results from other
research threads, as a mathematical underpinning of various tools and infrastructural support for web
services, including those for static and dynamic verification. One such effort is underway, using an
open-source reference implementation of WS-CDL [35].

In the rest of the paper, Section 2 informally motivates the idea of end-point projection and
its theory, and summarises key technical results and their engineering relevance. Sections 3, 4 and
5 formally introduce the global calculus, centring on its dynamic semantics (reduction) and static
semantics (type disciplines). Section 6 and 7 does the same for the local calculus. 8 introduces key
descriptive principles for the global calculus which form abasis of the theory. Section 9 establishes
the main results of the paper, the exact correspondence in type structures and dynamics between
descriptions in the global calculus and those in the local one, through an end-point projection. Section
10 positions the presented ideas in a historical context, compares the present work with existing work,
and discuss further topics. Some of the auxiliary proofs anddefinitions are left to Appendix.

7. Informal Preview

What is end-point projection? End-point projection, or EPP for short, is a concept frequently
discussed throughout the development of CDL in the W3C WS-CDL working group. Its basic idea
is simple, and may be summarised as follows.

Let’s write down a communication-centred concurrent program (in this case a
business protocol) globally, then project it to each end-point so that we can ob-
tain a local description which realises the original globaldescription through
their interaction.

As a simple example, consider an interaction:

(11) Buyer→Seller : B2Sch〈QuoteAccept, 100, x〉 .0

which is an interaction between a Buyer and a Seller, the former communicating it accepts
the quote with price 100 pounds (or dollars or whatever currency you like). This simple global
description is projected onto two end-point (local) descriptions:

(12) Buyer[B2Sch〈100〉.0]

and

(13) Seller[B2Sch(x).0]

Here description of an “interaction” in (11) (in which both sending and receiving of information are
one thing) is decomposed into its local communication actions (in which a sending action of (12)
and a receiving action of (13) are separate). We can see that,if Buyer does the specified sending and
Seller the receiving, then precisely the interaction as specified in (11) takes place. So we can regard
(12) and (13) as how local agents should behave if we wish realise the global interaction as described
in (11). As such, they can be regarded as local programs implementing original global description,
or alternatively as local monitors which constrain the behaviour of each agent.

25

Why EPP matters.Why does EPP matter? First, without EPP, a global description cannot be
executed, and, in fact, its computational meaning is never clear: a central idea of web services, or
in general communication-centred programs and services, is that independently running1 concurrent
agents achieve their application goals through their communication with each other. Thus a global
description should be considered as describing behaviour of distributed communicating processes:
the latter is the meaning of the former. In this sense, it is only when a uniform notion of EPP is given
that the computational content of global descriptions is determined.

Second and relatedly, EPP is an essential basis for diverse engineering applications of global
descriptions. Once we have a clear notion of EPP, it offers, for each end-point, what local behaviour
a given global description specifies: if we wish to monitor whether an independently developed end-
point program behaves in a way specified by a global description, then we can compare the former
with the EPP of the latter. Or if we wish to develop a program refining a given global description,
we can start from the EPP of the latter: and after developing afully specified program, one can
check whether it conforms to the original global description with respect to its communication be-
haviour (such validation, which we may callconformance validation, will be particularly useful in
collaborative program development). Or we can even developa global description language which
can specify full algorithmic details specification at each-end point in which case the result of per-
formaing an EPP on a detailed global specification onto all the end-points offers directly executable
distributed programs whose behaviour is by definition conformant to the original global specification.

Thirdly, EPP offer a central underpinning for the theoretical understanding of the structures of
global description and their use. In this context the foremost importance is that, through EPP, we
have a foundation to relate the rich results from theories ofprocesses to the present engineering con-
text. This connection (as our subsequent inquiries make clear) leads to a deep structural analysis
of global descriptions. Further the connection enables application of algebras, logics and types of
theories of process calculi in the present engineering context. Effective web service engineering may
as well demand a language for global description of interaction such as WS-CDL, which often offers
far more understabable description of communication-centric application than a collection of local
behaviours. One of the key merits EPP offers to this engineering medium is the use of a rich theory
of process algebras and other concurrency formalisms such as Petri Net as a theoretical foundations.
Web service engineering demands theoretical foundations because it is about interoperability among
disparate agents inhabiting distinct protection domains (or, in a more wordly term, organisations with
possibly conflicting interests and complex trust relationships). In such a context, different organisa-
tions may as well need a clear shared understanding on how they are to interact with each other in a
given business protocol. As an example, consider a businessprotocol which is about transaction of
stocks and which need be bound by regulations. We need a clearcriteria as to whether each end-point
(organisation) is acting conforming to the protool. In fact, conformance of the protocol itself to a
regulation should initially be clarified, for which we need clear engineering understanding preferably
backed up by a theoretical basis. We expect many key elementsof theories of processes will offer
critical engineering tools in this context.

Criteria for EPP.. An ad-hoc EPP framework may not work: in fact, it never works.This is
for simple reasons. First, we wish to implement EPP as an algorithm which can once and for all
map a large class of global descriptions to their local counterparts. Thus we need a general way to
relate global descriptions to local ones. Second, in relating global description to local description,
we wish to avoid the situation where generated local description by different notions of EPP are not
compatible with each other. This is especially true when a global description serves as areference
descriptionof software infrastructure in an organisation or a social domain, used as a key reference
for various business decisions, interoperability and infrastructural development (this is in fact one of
the stated goals of WS-CDL [47]).

1Here “independence” indicates primarily about synchronisation boundaries, which can also indicate pro-
tection domain boundaries, see Section?? for further discussions.

26

So we need a general framework for EPP, which can uniformly map a general class of global
descriptions onto their end-point counterparts. But how can we know a given EPP is correctly pro-
jecting a global description to a local description? An informal, but important, engineering criteria
is that the resulting local descriptions haveintuitively a clear and direct connection to the original
global description. That is, a designer who specifies software behaviour by a global description
should not have surprises when the real computation is realised by communications among projected
local processes. From the viewpoint of interoperatbility,it is also important that we have a general
and uniform scheme which can be applied to a large class of global descriptions (note that, assuming
we use a public standard for global descriptions, if we have asufficiently general and satisfactory
EPP mapping, this gives us a firm basis for interoperatbility). Apart from these two informal criteria,
the following three are natural formal criteria by which we can measure the effectiveness of an EPP
scheme (which are in fact closely related to the two informalcriteria we just noted).

• Mapping preserves types and other well-formedness conditions.
• The projected local description implements all behavioursexpected from the original

global description. Concretely, actions expected from a global description should be
faithfully realised by communication among a collection ofprojected end-points. This
property may be calledcompleteness of EPP.

• In the reverse direction, locally projected communicatingprocesses should not exhibit
observable behaviour not prescribed in global description, as far as its predefined interface
goes.2 Concretely, communications among projected peers should not go beyond actions
stipulated in the original global description. This may be calledsoundness of EPP.

For these criteria (especially the latter two) to make sensein practice, we should have a precise
way to say, among others, what course of actions (their kindsand structures) are stipulated in a
global description, and what course of interactions (theirkinds and structures) are expected from
a collection from local descriptions. To do so, we can followthe standard framework in process
algebras [7, 19, 28, ?] and programming language semantics [17, 36, 49], defining formal syntax,
well-formedness (type disciplines) and evolution of behaviour (dynamic semantics). By mathemati-
cally defining these ideas, we can now formulate correctnesscriteria without ambiguity as well as a
means to prove (or refute) whether a framework of an EPP satisfies the given criteria (of course the
use of formal definitions of semantics of process languages go beyond its use in end-point projec-
tions, including a reference for concrete implementation,a formal basis for developing diverse forms
of verification technologies, and deeper inquiries into mathematical properties of these descriptive
frameworks themselves, cf. [32]).

The aim of the rest of the present note is nothing but carryingout the program just outlined:
formalising central notions of global/local languages in their distilled form; presenting formal criteria
for correctness of EPP; and study a general framework of EPP including formal arguments for its
correctness, including three natural descriptive principles under which the presented EPP results in
sound and complete local descriptions. In particular we shall present:

• Formal definition of static and dynamic semantics of the global and local calculi, which
distills respective descriptive paradigms/languages (static semantics specifies a type dis-
cipline for description, dynamic semantics specifies how computation proceeds in a given
description). Type disciplines in respective formalisms act as a basis of the whole techni-
cal development in the paper.

• A theory of end-point projection, which maps a global description to local description, as
well as offering a means to examine its properties. We first present three basic principles
for global descriptions which defines a notion of “well-formedness” of description. Then
we introduce a simple inductive algorithm which maps each well-formed global descrip-
tion onto a collection of local descriptions (one for each end-point), and present formal
arguments that this map is both sound and complete, with respect to static and dynamic
semantics of respective formalisms.

2Local programs may as well need to engage in actions outside of those prescribed even just for implement-
ing those prescribed actions.

27

The theoretical development focusses on key elements of global/local formalisms without such fea-
tures as timeout and exception. We believe there are no unsurmountable technical obstacles to extend
the present theory to these additional features.

8. Global Calculus (1): Syntax

In this section and the next, we introduce the syntax and dynamic/static semantics of the global
calculus. Thedynamic semanticsspecifies an abstract notion of “computation” underlying a formal-
ism. In the case of Turing Machine, this is a move of a head and read/write of each slot of a tape. In
the case of theλ-calculus, this is an application of a lambda term to an argument and a subsequent
substitution (for example,(λx. f x)3→ f 3 indicates that, when the function(λx. f x) is applied to an
argument 3, the result is another applicationf 3). In the case of a global calculus, this is represented
as a transition from a global description to another global description, carrying out each step of in-
teraction (exchange of a message). Since each participant may own its own local variables, such
transition can also involve collection of local variables of the participants involved.

From an engineering viewpoint, the dynamic semantics pins down a mathematical notion which
designers, implementors and users can refer to when they wish to discuss about dynamic behaviour
of description with rigour. For example, this would allow usto state with precision whether an
implemented program conforms to the description or not. Thedynamic semantics is defined using
an intuitive notation,

(σ, I) → (σ′I)

which says a global descriptionI in a stateσ (which is the collection of all local states of the par-
ticipants) will be changed intoI ′ in a new configurationσ′. This idea comes from the small-step
semantics given to imperative languages [?].

The description of interactions in the global calculus centres on a notion ofsession, in which
two interacting parties first establish a private connection and do a series of interactions through
that private connection, possibly interleaved with other sessions. More concretely, processes first
exchange fresh session channels for a newly created session, then use them for interactions belonging
to the session (this is equivalent to the more implicit framework where identity tokens in message
content are used for signifying a session). This idea has a natural association with a simple type
discipline, where we represent a structured sequence of interactions between two parties as an type.
Here “types” mean syntactic annotation on descriptions of interactions: this annotation describes an
abstract notion of interface of a service (or a shared service channel), and is inferred by typing rules
for each description following its syntactic structure. For example, consider an interaction:

(14)
Buyer→Seller : s〈RequestQuote, productName, x〉.
Seller→Buyer : s〈ReplyQuote, productPrice, y〉

In (14), a Buyer requests a quote for a product, specifying the product name, through a session
channels: then, through the same channel, a Seller replies with the quote value (one may consider
ch to be a socket connection). This interaction ats can be abstracted by the following session type:

(15) s↑ RequestQuote(String). s↓ ReplyQuote(Int)

The session type in (15) abstracts a sequence of actions performed atch, specifying the following
abstract behaviour:

First sends (“↑”) a string with operation nameRequestQuote, then receives
(“ ↓”) an integer with operation nameReplyQuote.

Note this abstraction is given from the Buyer’s viewpoint: we can equally present the abstraction for
the Seller’s action:

(16) s↓ RequestQuote(String). s↑ ReplyQuote(Int)

which simply reverses the direction of information flows. Note that, in this way, there is a natural
notion ofduality associated with session types.

Section 3 and Section 4 complete the presentation of the global calculus. The first introduces the
formal syntax of the global calculus, with many illustrations. In Section 4 we present the dynamic

28

semantics of the calculus, followed by its static semantics. We then show a basic relationship be-
tween the dynamic semantics and the static semantics: when acomputation happens in a well-typed
description, the result is always well-typed again.

8.1. Formal Syntax. The formal syntax of the global calculus is given by the standard BNF.
Below symbolsI , I ′, . . . denotetermsof the global calculus, also calledinteractions. Terms describe
a course of information exchange among two ore more parties from a global viewpoint.

I ::= A→ B : ch(ννν s̃) . I (init)

| A→B : s〈op, e, y〉 . I (com)

| x@A := e. I (assign)

| if e@A then I1 else I2 (ifthenelse)

| I1 + I2 (sum)

| I1 | I2 (par)

| (νννs) I (new)

| XA (recVar)

| rec XA . I (rec)

| 0 (inaction)

The grammar above uses the following symbols.3

• a,b,c,ch, . . . range over a collectionChof service channels(also calledsession initiating
channels). They may be considered as shared channels of web services.

• s,s′, . . . range over a collectionS of session channels. Session channels designate commu-
nication channels freshly generated for each session. Theycan be implemented in various
ways: in TCP, the same concept is realised by so-calledconnection(also calledsession).
In web services, they are realised by sending freshly generated identity information as
part of messages.

• A,B,C, . . . range over a collectionP of participants. Participants are those who are en-
gaged in communications with others, each equipped with itsown local state. Each par-
ticipant may have more than one threads of interactions using multiple channels.

• x,y,z, . . . range over a collection ofvariables, which are close to variables in the traditional
programming languages such as Pascal and C, in that their content is updatable.

• X,Y,Z, . . . range over a collection ofterm variables, which are used for representing recur-
rence (loop) in combination with recursionrec X.I . Note term variables occur annotated
with participants.

• e,e′, . . . range overexpressions, given by the grammar:

e ::= x | v | f (e1, . . . ,ek).

where f ranges over an appropriate set of function symbols (including standard arith-
metic/boolean operators). Abovev,w, . . . range over atomic values such as natural num-
bers and booleans.

Each construct in the above grammar is illustrated in the next subsection.

8.2. Illustration of Syntax. The initial two constructs represent communications. First,

A→ B : b(ννν s̃) . I

indicates thatA invokes a service channelb atBand initiating a new session that will use fresh session
channels ˜s, followed by interactionI . Subsequent communications inI belonging to this session are
done through ˜s (I can have other communications belonging to different sessions). We assumeA and

3As is standard, we assume there is an unbounded supply of distinct symbols in each syntactic category.

29

B are distinct.4 As s̃ should be local to the session (i.e. unknown outside), we seteachsi ∈ s̃ to be
bound inI . Second,

A→B : s〈op, e, y〉

expresses the sending action byA whose message consists of a selected operatorop, with the receiver
B. The value of the expressione(which can only use variables located atA) is assigned to the variable
y (which must be located atB). Third, another primitive operation isassignment, which is the typical
basic operation in imperative languages.

x@A := e. I .

The assignment is a local operation at the specified participant (A above), where a variable atA is
updated with the result of evaluatinge, also located atA.

We can use conditional to branch the course of actions:

if e@A then I1 else I2

which will evaluatee once and, if it evaluates to true, the branchI1 will be executed, else branchI2.
Note the conditione is located atA. Or, instead of explicitly selecting one of the branches, wecan
choose one nondeterministically:

I1 + I2
which either behaves asI1 or asI2. The summation operator+ is commutative and associative, so
that we often writeΣi Ii for then-fold sum of interactions.

We can also launch two threads of interactions in parallel:

I1 | I2

denotes the parallel composition. However, unlike the standard process calculi, there is no com-
munication betweenI1 and I2: I1|I2 just means two independent threads of interactions. Another
construction:

(νννs) I

is the restriction (or hiding) of a session channel, where(νννs) binds free occurrences ofs in I . This
is used for designating newly created session channels whena session is initiated.(ννν s̃) I stands for
a sequence of restrictions. Since restriction is only addedwhen an outermost initialisation prefix
reduces, it is natural to stipulate:

CONVENTION 1. Henceforth we only consider terms in which restrictions never occur under
prefixes (initiation, communication and assignment) nor dothey occur in a summand of a summation.

Interaction which can be repeated unboundedly is realised by recursion. We start from a re-
cursion variableXA which has an annotation of a participant name (this annotation is later used in
end-point projection: in brief, it indicates the principalparticipant who determines whether to recur
or not). Then the term

rec XA . I

is the standard recursion construct, whererec XA is calledrecursor, with X binding its free occur-
rences inI . We assume that wheneverX occurs free inI of rec XA . I , X should always be annotated
with A (the type discipline we present later automatically guarantees this property). This annotation
plays an essential role in our typing later. However, when they are irrelevant (especially in examples),
we often omit these annotations. Finally,

0

is the inaction, representing the lack of actions (it may be considered empty parallel composition or
the empty/inactive choreography).

For expressions, we assume variables, first-order atomic values such as integers, and first-order
operators such as arithmetic and boolean operations. We donot include channels and session chan-
nels as expressions for the present inquiry (cf. Section??).

4This is a natural constraint if we wish to describe inter-participants interactions, and is used in the typing
rules we discuss later. By annotating participant names with additional indices, the typing rules can be easily
adapted so that we allow intra-participant interaction.

30

8.3. Examples.We illustrate the syntax through simple examples. These examples will be
used throughout the paper as running examples.

EXAMPLE 1. (Syntax, 1) The following example is from Part I.

(17)
{Buyer→Seller : B2Sch〈QuoteAccept, 100, x〉 . I1}

+
{Buyer→Seller : B2Sch〈QuoteReject, xAbortNo, y〉 . I2}

This example, as others, uses easy-to-read strings for channel/operator/variable names.Buyer and
Seller are participants (which we writeA,B, . . . in the formal syntax);B2Schis a session channel
name (which we writes,s′, . . . in the grammar); andQuoteAccept and QuoteReject are operation
names (which areop,op′, . . . in the grammar). Thus, as a whole, (17) can be read as follows:

Through a session channelB2Sch, Buyer selects one of the two options offered
by Seller,QuoteAccept andQuoteReject. If the first option is selected, Buyer
sends the quote “100” which will be stored in x by Seller and proceeds to I1.
In the other case, Seller sends the abort number stored in thevariable xAbortNo

which will be stored in y by the Seller and proceeds to I2.

Note the sum+ is informally interpreted asinternal sumfor Buyer (i.e. Buyer initiates this choice)
and asexternal sumfor Seller (i.e. Seller passively waits for one of the branches (operators) to be
chosen by the environment). This reading will become formalised when we consider its end-point
projection.

EXAMPLE 2. (Syntax, 2) A refinement of the description above follows.

(18)

if xquote ≤ 1000@Buyer then
{ Buyer→Seller : B2Sch〈QuoteAccept,100,x, ., I〉1 }

else
{ Buyer→Seller : B2Sch〈QuoteReject,xAbortNo,y, ., I〉2 }

The description now specifies the “reason” why each branch istaken. Notice the condition in the
conditional branch,x ≤ 1000, is explicitlylocated: the description says this judgement takes place
atBuyer. Note also the description is still the external choice for Seller: it is Buyer who selects one
of the options, which Seller waits for passively. The description becomes self-contained by adding
an initial session invocation at a service channel, saych, and a request for a quote.

(19)

Buyer → Seller : ch(νννB2Sch,S2Bch) .
Seller→Buyer : S2Bch〈Quote, 100, y〉 . .
if xquote ≤ 1000@Buyer then

{ Buyer→Seller : B2Sch〈QuoteAccept,100,x, ., I〉1 }
else

{ Buyer→Seller : B2Sch〈QuoteReject,xAbortNo,y, ., I〉2 }

Initially Buyer invokes Seller to initiate a session with two session channels,B2SchandS2Bch. The
rest is the same with the previous description.

EXAMPLE 3. (Syntax, 3) A session can have multiple session names for communication. This is
the standard practice in business protocols and other interaction-centric applications, and is essential
to have multiple parallel interactions inside a single session. As an example, suppose that the buyer
wants to start a session at a channelacc in which it communicates acceptance of a quote on a session
nameOpand, in parallel, sends its address on a session nameData. This can be expressed as:

(20)

Buyer → Seller : ch(νννOp,Data) .
{

Buyer→Seller : Op〈QuoteAccept, 100, x〉 .0 |
Buyer→Seller : Data〈QuoteAccept, Address, y〉 .0

}

Here, two session channels,Op and Data, are communicated at the time of session initiation at
channelch. Using these two channels, we reach

31

Examples of other constructs, such as recursion and hiding,will be given in later sections.

8.4. Comments on Syntax.The syntactic constructs we have presented above only include
the core part of the global calculus. This is to present theory of end-point projection in a simplest
possible form. Below we discuss basic extensions and alternatives of the syntax.

8.4.1. Channel/session passing.Values may as well include channels and session channels.
When session channels are passed around, we need to obey a certain linearity constraint, as discussed
in [21].

8.4.2. Variables and binding.We may as well use logical variables rather than imperative vari-
ables as receptors of communicated values, so that the result of communication is instantiation of
values rather than assignment. Even in this case we may include imperative variables and its assign-
ment, so that we can represent the notion of local states cleanly.

8.4.3. Operators. Operatorsf (. . .) in expressions can become more complex. Among others,
WS-CDL includes operators which query current time and other data, which can involve reference
to distributed states.

8.4.4. Mutual exclusion and atomicity.An important role is played by a mutual exclusion op-
erator. The introduction of amutex operation would incur issues of deadlock which can be taken
care of with a type system. Introducing mutual exclusion would also imply changing the operational
semantics as we would need to take care of variables access, which may be blocked by amutex. We
may also introduce a transactional “atomic” statement which guarantees atomicity (noninterference)
of a block from local read and writes by other threads inside the same participant. This may be im-
plemented using two-phrase locking or more optimisticallyusing software transaction (however note
interactional nature of concerned descriptions makes rollbacks more subtle than simple imperative
programs: this issue parallels treatment of input/output in software transactional memories studied
by Harris and others).

8.4.5. Exception, timeout and predicate-based invocation.Part I discusses how exception, time-
out and predicate-based invocation (writtenwhen e@A do I , which waits for the guarde to become
true and executesI , unlike the conditional) can become useful for representing advanced forms of
interactions.

8.4.6. Loop and other imperative constructs.The standard while operator can be easily en-
coded in the formalism. The term:

while e@A do I

is encoded into:

rec X . if e@A then I ⇒ X else 0

whereI ⇒ X is a syntactic operation which attaches the variableX to the leaves (ends) of abstract
syntax trees inI . Similarly the sequencingI ; I ′ can be encoded using sequencing (there is a non-trivial
interplay with the parallel construct). Considering thesefeatures as explicit syntax will be useful
when we need to directly treat practical descriptive languages such as WS-CDL in an extension of
the present theory.

9. Global Calculus (2): Reduction

9.1. Basic ideas of Reduction.Computation in the global calculus is represented by a step-
by-step transition, each step consisting of:

(1) Execution of a primitive operation, which can be communication, assignment and condi-
tional.

(2) Effects the execution above has on the local state of an involved participant.

To formalise this idea, we use aconfigurationwhich is a pair of astate(a collection of the local
states of all participants involved) and an interaction, written (σ, I). Formally astate, ranged over
by σ,σ′, . . ., is a function fromVar×P to Val, i.e. a variable at each participant is assigned a value
in a store. We shall writeσ@A to denote the portion ofσ local toA, andσ[y@A 7→ v] to denote a

32

new state which is identical withσ except thatσ′(y,A) is equal tov. The dynamics is then defined in
the form:

(σ, I) → (σ′, I ′)

which saysI in the configurationσ performs one-step computation (which can be assignment, in-
teraction, etc.) and becomesI ′ with the new configurationσ′. The relation→ is calledreduction
or reduction relation.5 For example, communication action will change both the state and the term
shape:

(σ, A→B : s〈send, 3, x〉.I) → (σ[x@B 7→ 3], I)

which indicates:

“A sends a messagesend and a value3, which is received by B and3 is as-
signed to a variable x at B as the result, with the residual interaction I”.

Note communication action happens automatically, withoutfirst having sending and receiving ac-
tions separately and then having their synchronisation. Assignment is treated similarly.

(σ, x@B := 3.I) → (σ[x@B 7→ 3], I)

Since an assignment is located, onlyx atB is updated, and the next interactionI is unfolded. Interac-
tion can involve choice, where one of the branches is chosen nondeterministically, i.e. we can have
either:

(σ, (A→B : s〈ok, 3, x〉.I1)+(A→B : s〈no, 0, y〉.I2) → (σ[x@B 7→ 3], I1)

or
(σ, (A→B : s〈ok, 3, x〉.I1)+(A→B : s〈no, 0, y〉.I2) → (σ[y@B 7→ 0], I2)

will take place: both are legitimate reductions.
The conditional depends on how an expression evaluates. Forexample, ifx at A stores 0, then

we have

(σ, if x@A = 0 then A→B : s〈ok, 3, x〉.I1 else ...) → (σ[x@B 7→ 3], I1)

But if x atA stores say 1, then the second branch will be selected.
For recursion, we expect a recurring behaviour. For example, the following is a silly behaviour

which just continues to assign 1 to a variable. In this case wemay as well have:

(σ, rec XB.x@B := 1.XB) → (σ[x@B 7→ 3], rec XB.x@B := 1.XB)

We shall realise such recurrence through the use of structural rules. Other constructs such as condi-
tionals and choice are standard.

In the following subsection, we illustrate the notion of reduction for each construct one by one.

9.2. Reduction Rules.Reduction relation is defined by having one rule for each construct,
together with associated rules. First we have a rule for session-initiating communication:

(INIT)
−

(σ, A→ B : b(ννν s̃) . I) → (σ,(ννν s̃) I)

where s̃ is a vector of one or more pairwise distinct session channels. The rule says that, afterA
communicates withB for session initiation with fresh session channels ˜s, A andB share ˜s locacally
(indicated byν-binding), and the nextI is unfolded. The stateσ stays as it is since no communication
of values takes place.

We have already seen an example of reduction representing communication through a session
channel: the formal rule follows.

(COMM)
σ ⊢ e@A⇓ v

(σ, A→B : s〈op, e, x〉 . I) → (σ[x@B 7→ v], I)

5The term “reduction” originally came from theλ-calculus, where the sole purpose of computation is to
reduce to a final answer of calculation. While it is not entirely suitable for interaction computation, we use the
term from convention and from our respect to the basic formalism which started semantics studies.

33

The premise of the rule above uses the judgement (calledevaluation judgement):

σ ⊢ e@A⇓ v

which says:

Expression e is evaluated into the value v in the A-portion ofthe stateσ.

For example, ifσ saysx at A stores 3, then we haveσ ⊢ (x+ x)@A ⇓ 6. Thus the expression to be
communicated is evaluated in thesourcepart of the state: and the value communicated is assigned
in the targetpart of the state.

The formal rule for assignment is given as:

(ASSIGN)
σ ⊢ e@A⇓ v

(σ,x@A := e. I) → (σ[x@A 7→ v], I)

which updates the state at the participantA and unfolds the next interaction.
The rules for conditional assumes, again using the evaluation judgement, that the conditional

expression evaluates to eithertt (for truth) orff (for falsity). In the former:

(IFTRUE)
σ ⊢ e@A⇓ tt

(σ, if e@A then I else 1I2) → (σ, I1)

Symmetrically, when the condition evaluates to the falsity:

(IFFALSE)
σ ⊢ e@A⇓ ff

(σ, if e@A then I else 1I2) → (σ, I2)

The rule for summation is standard:

(SUM)
−

(σ, I1 + I2) → (σ′, Ii)
(i = 1,2)

For parallel composition, the rule is defined just by considering interleaving of two components.
Thus we define:

(PAR)
(σ, I1) → (σ′, I ′1)

(σ, I1 | I2) → (σ′, I ′1 | I2)

where we reduce the left-hand side. The symmetric rule is defined similarly (which is again sub-
sumed by the use of the structural rules we stipulate later).

For restriction we have:

(RES)
(σ, I) → (σ′, I ′)

(σ,(ννν s̃) I) → (σ′, (ννν s̃) I ′)

which says restriction does not affect reduction. For recursion, we use the standard unfolding rule.

(REC)
(σ, I [rec XA.I/XA]) → (σ′, I ′)

(σ, rec XA.I) → (σ′, I ′)

The rule says that:

If the unfolding ofrec XA.I, I [rec XA.I/XA] (which substitutesrec XA.I for
each free XA in I) under σ reduces to I′ with the resulting stateσ′, then
rec XA.I itself underσ will reach (σ′, I ′).

Note the participant annotation plays no role in the rule. Aswe shall discuss later, we can use the
structural rule instead to obtain essentially the same reduction. Finally the inaction0 does not have
any reduction. We also use the following rule, which says that when we reduce we take terms up to
a certain equality, following [8, 29].

(STRUCT)
I ≡ I ′′ (σ, I) → (σ, I ′) I ′ ≡ I ′′′

(σ, I ′′) → (σ′, I ′′′)

34

(COMM)
σ ⊢ e@A⇓ v

(σ, A→B : s〈op, e, x〉 . I) → (σ[x@B 7→ v], I)

(INIT)
−

(σ, A→ B : b(ννν s̃) . I) → (σ,(ννν s̃) I)
(ASSIGN)

σ ⊢ e@A⇓ v
(σ,x@A := e. I) → (σ[x@A 7→ v], I)

(IFTRUE)
σ ⊢ e@A⇓ tt

(σ, if e@A then I else 1I2) → (σ, I1)
(PAR)

(σ, I1) → (σ′, I ′1)

(σ, I1 | I2) → (σ′, I ′1 | I2)

(IFFALSE)
σ ⊢ e@A⇓ ff

(σ, if e@A then I else 1I2) → (σ, I2)
(SUM)

−

(σ, I1 + I2) → (σ′, Ii)
(i = 1,2)

(RES)
(σ, I) → (σ′, I ′)

(σ,(ννν s̃) I) → (σ′, (ννν s̃) I ′)
(REC)

(σ, I [rec XA.I/XA]) → (σ′, I ′)

(σ, rec XA.I) → (σ′, I ′)

(STRUCT)
I ≡ I ′′ (σ, I) → (σ, I ′) I ′ ≡ I ′′′

(σ, I ′′) → (σ′, I ′′′)

FIGURE 18. Semantics of Global Calculus

where the structural equality≡ is defined by the following rules:

I ≡ I ′ (I ≡α I ′)
I + I ≡ I

I1 + I2 ≡ I2 + I1
(I1 + I2)+ I3 ≡ I1 +(I2 + I3)

I |0 ≡ I
I1|I2 ≡ I2|I1

(I1|I2)|I3 ≡ I1|(I2|I3)
((νννs) I1)|I2 ≡ (νννs) (I1|I2) (s 6∈ fn(I2))

In the last rule,fn(I) denotes the free names (including variables, channels and session channels)
occurring inI . The relation≡ is the least congruence on terms including the above equations. While
the benefit of the use of structural rules in reduction rules is limited in the present context (in com-
parison with standard process calculi), considering termsup to≡ is often natural and adds clarity in
practice. We may also use a structural rule for recursion,

rec XA.I ≡ I [rec XA.I/XA]

to dispense with(REC) rule given above. Just as(REC) does, this rule says the recursion and its
unfolding have identical behaviour. The resulting reduction is identical up to≡. In Table 18 we
report the rules all together.

9.3. Examples of Reduction.

EXAMPLE 4. (Reduction: Communication) Recall the following term from Example 1

(21) I0
def
=

{Buyer→Seller : B2Sch〈QuoteAccept, 100, x〉 . I1} +
{Buyer→Seller : B2Sch〈QuoteReject, xAbortNo, y〉 . I2}

We infer the reductions ofI0. There is one reduction for each branch. For the first summand, we note
σ ⊢ 100@Buyer ⇓ 100 and infer, using (COMM):

(22) (σ, I0) → (σ[x@Seller 7→ 100], I1)

35

Similarly we have the following reduction for the second branch. AssumexAbortNo stores (say) 28
atBuyer in σ, henceσ ⊢ xAbortNo@Buyer ⇓ 28.

(23) (σ, O0) → (σ[y@Seller 7→ 28], I2)

These are the all reductionsI0 has up to≡.

EXAMPLE 5. (Reduction: Conditional) We deduce reduction for the conditional, using Exam-
ple 2. First we reproduce the term.

(24) I ′0
def
=

if xquote ≤ 1000@Buyer then
{ Buyer→Seller : B2Sch〈QuoteAccept, 100, x〉 . I ′1 }

else
{ Buyer→Seller : B2Sch〈QuoteReject, xAbortNo, y〉 . I ′2 }

If we assumeσ@Buyer(xquote) = 800 then we can infer:

(25) (IFTRUE)
σ ⊢ (800≤ 1000)@Buyer ⇓ tt

(σ, I ′0) → (σ, Buyer→Seller : B2Sch〈QuoteAccept, 100, x〉 . I ′1)

Further applying(COMM) to the resulting configuration, we conclude:

(σ, I ′0) → (σ, Buyer→Seller : B2Sch〈QuoteAccept, 100, x〉 . I ′1)

→ (σ[x@Seller 7→ 100], I ′1)

which is the only reduction sequences from(σ, I ′0) in this case. Assume on the other handσ@Buyer(xquote)=
1200. Then we have

(26) (IFFALSE)
σ ⊢ (1200≤ 1000)@Buyer ⇓ ff

(σ, I ′0) → (σ, Buyer→Seller : B2Sch〈QuoteReject, xAbortNo, y〉 . I ′2)

Hence in this case we have:

(σ, I ′0) → (σ, Buyer→Seller : B2Sch〈QuoteReject, xAbortNo, y〉 . I ′2)

→ (σ[y@Seller 7→ 28], I2)

which is again the only possible reduction sequence under the assumption.

EXAMPLE 6. (Reduction: Init, Par and Struct) We next consider Example 3:

(27) J0
def
=

Buyer → Seller : acc(νννOp,Data) .
{

Buyer→Seller : Op〈QuoteAccept, 100, x〉 .0 |
Buyer→Seller : Data〈QuoteAccept, wAddress, y〉 .0

}

Call two components of the parallel composition,J1 andJ2. Then by(INIT) we obtain:

(28) (σ, J0) → (σ, (νννOp,Data) (J1 | J2))

By (COMM) we have:(σ, J1) → (σ[x@Seller 7→ 100], 0), hence by(PAR) we arrive at:

(29) (σ, J1|J2) → (σ[x@Seller 7→ 100], 0|J2)

For the symmetric case, assumeσ@Buyer(wAddress) = adr (whereadr is a string standing for an
address) Then by(COMM) we have(σ, J2) → (σ[y@Seller 7→ adr], 0), hence by(PAR) we arrive
at:

(30) (σ, J2 | J1) → (σ[y@Seller 7→ adr], 0 | J1)

NotingJ1 | J2 ≡ J2 | J1, we can now apply((STRUCT)) to obtain:

(31) (σ, J1 | J2) → (σ[y@Seller 7→ adr], J1)

Note we also simplified the resulting term. In summary, we have two sequences of reductions up to
≡:

(σ, J0) → (σ, (νννOp,Data)(J1|J2)) → (σ[x@Seller 7→ 100], (νννData) J2) → (σ′, 0)

36

and

(σ, J0) → (σ, (νννOp,Data) (J1|J2)) → (σ[y@Seller 7→ adr], (νννOp) J1) → (σ′, 0)

where we setσ′ def
= σ[x@Seller 7→ 100][y@Seller 7→ adr].

EXAMPLE 7. (Reduction: Recursion) Finally we show an example of recursion, taking the
“silly” example rec XB.(x@B := 1.XB) before. Noting:

(x@B := 1.XB)[rec XB.x@B := 1.XB/XB]
def
= x@B := 1; rec XB.x@B := 1.XB

hence we have:

(σ, rec XB.x@B := 1.XB) → (σ[x@B 7→ 1], rec XB.x@B := 1.XB)

→ (σ[x@B 7→ 1], rec XB.x@B := 1.XB)

→

as expected.

10. Global Calculus (3): Typing

10.1. Session Types.As briefly mentioned at the outset of Section 3, we use sessiontypes [21]
as the type structures for the global calculus. In advanced web services and business protocols, the
structures of interaction in which a service/participant is engaged in may not be restricted to one-way
messages or RPC-like request-replies. This is why their type abstraction needs to capture a complex
interaction structure of services, leading to the use of session types. The grammar of types follow.

θ ::= bool | int | . . .

α ::= Σis↓ opi(θi) .αi | Σis↑ opi(θi) .αi | α1 | α2 | t | rec t.α | end

Above θ,θ′, . . . range overvalue types, which in the present case only includes atomic data types.
α,α′, . . . aresession types. Note session channelss,s′, . . . occur free in session types (this is necessary
because of multiple session channels in a single session, cf. [21]). We take| to be commutative and
associative, with the identityend. Recursive types are regarded as regular trees in the standard way
[36]. Brief illustration of each construct follows.

• Σis↓ opi(θi) .αi is abranching input type at s, indicating possibilities for receiving any
of the operators from{opi} (which should be pairwise distinct) with a value of typeθi .

• Σis↑ opi(θi) .αi , abranching output type at s, is the exact dual of the above.
• α1 | α2 is a parallel composition ofα1 and α2, abstracting parallel composition of two

sessions. We demand session channels inα1 and those inα2 are disjoint.
• t is a type variable, while rec t.α is a recursive type, whererec t binds free occurrences

of t in α. A recursive type represents a session with a loop. We assumeeach recursion is
guarded, i.e., inrec t.α, the typeα should be either an input/output type orn-ary parallel
composition of input/output types.

• end is theinaction type, indicating termination of a session.end is often omitted.

Each time a session occurs at a shared service channel, session channels are freshly generated and
exchanged. Thus the interface of a service should indicate avector of session channels to be ex-
changed, in addition to how they are used. This is represented by abstract session type, or service
type, in which concrete instances of session channels in a session type are abstracted, written:

(s̃) α

wheres̃ is a vector of pairwise distinct session channels which should cover all session channels in
α, andα does not contain free type variables.(s̃) binds occurrences of session channels in ˜s in α,
which induces the standard alpha-equality.

37

Before illustrating these types with examples, we introduce a natural notion of duality. The
co-type, or dual, of α, writtenα, is given as follows.

Σisi ↑ opi(θi) .αi = Σisi ↓ opi(θi) .αi

Σisi ↓ opi(θi) .αi = Σisi ↑ opi(θi) .αi
rec t .α = rec t .α

t = t
end = end

For example, the co-type ofs↓QuoteReq(string).end is s↑QuoteReq(string).end, exchanging
input and output. The duality plays an essential role in the subsequent technical development.

10.2. Examples of Session Types.

EXAMPLE 8. (Session Type: basics) Consider the following interaction (cf. Example 1), as-
sumingadr andprd are variables ofstring type, located at both Buyer and Seller.

(32)
Buyer→Seller : s1〈QuoteReq, prd, prd〉.
Seller→Buyer : s2〈QuoteRep, 100, y〉.
Buyer→Seller : s1〈Purchase, adr, adr〉.0

The interface which Seller offers (as far as this interaction goes) can be described by the following
session type:

(33) s1↓ QuoteReq(string). s2↑ QuoteRep(int). s1↓ Purchase(string). end

the same interaction can be type-abstracted from the viewpoint of Buyer:

(34) s1↑ QuoteReq(string). s2↓ QuoteRep(int). s1↑ Purchase(string). end

which is nothing but the co-type of (33). Now let us add a session initiation to (33):

(35)

Buyer → Seller : ch(s1s2).
Buyer→Seller : s1〈QuoteReq, prd, prd〉.
Seller→Buyer : s2〈QuoteRep, 100, y〉.
Buyer→Seller : s1〈QuoteAcc, adr, adr〉.0

Then the service type of Seller at channelsh is given as:

(36) (s1s2) s1↓ QuoteReq(string). s2↑ QuoteRep(int). s1↓ Purchase(string). end

which says: firstly, two fresh session channelss1s2 (in this order) are exchanged; then, using these
two channels, communication of the represented shape takesplace. Thus the service type (36) de-
scribes the whole of the behaviour starting fromch, albeit abstractly.

EXAMPLE 9. (Session Type: branching) Let us refine (32) with branching.

(37)

Buyer→Seller : s1〈QuoteReq, prd, prd〉.
Seller→Buyer : s2〈QuoteRep, 100, y〉.

Buyer→Seller : s1〈Purchase, adr, adr〉.0
+

Buyer→Seller : s1〈Nothanks〉.0

This can be abstracted, from the viewpoint of Seller:

(38)
s1↓ QuoteReq(string). s2↑ QuoteRep(int).

(s1↓ Purchase(string).end + s1↓ Nothanks().end)

Note the sum+ in (38) means the inputting party (here Seller) waits with two options,Purchase and
Nothanks: on the other hand, the co-type of (38) (seen from Buyer’s side) becomes:

(39)
s1↑ QuoteReq(string). s2↓ QuoteRep(int).

(s1↑ Purchase(string).end + s1↑ Nothanks().end)

in which the sum+ in (38) means that the outputting party (here Buyer) may select one ofPurchase

andNothanks from the two options.

38

EXAMPLE 10. (Session Type: recursion) Consider the following behaviour, in whichB contin-
uously greetsA.

(40) rec XB.B→A : s〈Greeting, “hello′′, x〉. XB

We can then abstract this behaviour as, fromB’s viewpoint:

(41) rec Y. s ↑ Greetings(string). Y

whereas forA the same interaction is abstracted as:

(42) rec Y. s ↓ Greetings(string). Y

which states thatA repeatedly receives greetings. As a more meaningful recursion, consider the
following refinement of (37):

(43) rec XBuyer.

Buyer→Seller : s1〈QuoteReq, prd, prd〉.
Seller→Buyer : s2〈QuoteRep, 100, y〉.

Buyer→Seller : s1〈Purchase, adr, adr〉.0
+

Buyer→Seller : s1〈Nothanks〉. XBuyer

This behaviour, seen from the viewpoint of Seller, can be abstracted as the following session type:

(44) rec Y.

s1 ↓ QuoteReq(string).
s2 ↑ QuoteRep(int).

s1 ↓ Purchase(string).end
+

s1 ↓ Nothanks().Y

It may be notable that the following conditional has the samesession type as (44).

(45) rec XBuyer.

Buyer→Seller : s1〈QuoteReq, prd, prd〉.
Seller→Buyer : s2〈QuoteRep, 100, y〉.
if reasonable(y)@Buyer then

Buyer→Seller : s1〈Purchase, adr, adr〉.0
else

Buyer→Seller : s1〈Nothanks〉. XBuyer

One can further prefix (45) with a session initiation, for example withBuyer → Seller : ch(s1s2), in
which case we obtain the service type forch:

(46) (s1s2) rec Y.

s1 ↓ QuoteReq(string).
s2 ↑ QuoteRep(int).

s1 ↓ Purchase(string).end
+

s1 ↓ Nothanks().Y

which says that, after initialisation request exchanging two fresh session channels (designated ass1
ands2), it first waits for aQuoteReq message ats1, to which it replies withQuoteRep via s2, then it
waits for two optionsPurchase andNothanks at s1: in the former case it finishes this session while
in the latter it recurs to the initial state, waiting for anotherQuoteReq message.

10.3. Typing Rules.A typed termis a term annotated with types following a set of typing
rules. There are two kinds of types we use.Session typesare assigned to session channels, while
service typesare assigned to service channels. A typed term, which we alsocall typing judgement,
has the shape:

(47) Γ ⊢ I ⊲ ∆

whereΓ assigns service types to located service channels, and∆ session types to located session
channels. The former is calledservice typing, the lattersession typing(Γ can also include other

39

forms of assignments). The grammar of service/session typings are given by (˜s consists of pairwise
distinct session channels):

Γ ::= /0 | Γ, ch@A : (s̃)α | Γ, x@A : Var(θ) | Γ, XA : ∆
∆ ::= /0 | ∆, s̃[A,B] : α | ∆, s̃ : ⊥

In a service typing, three forms of assignments are used.

(1) First,ch@A : (s̃)α says:
A service channel ch is located at A, and ch offers a service interface repre-
sented by a service type(s̃)α.

Above “located atA” means the service is offered byA throughch, waiting for an invo-
cation by other participants. In “(s̃)α”, “ (s̃)” act as a binder, binding the occurrences of
“ s̃” in α. Hence(s̃)α is taken up toα-convertibility. From the above reading, we regard
ch@A : (s̃)α as mappingch to a pair ofA and(s̃)α.

(2) The next assignmentx@A : Var(θ) says:
A variable x located at A may store values of typeθ.

Unlike service channels, the same variable (sayx) can be located at different participants,
so thatx@A andx@B are distinct variables. Thus we regardx@A : Var(θ) as mapping
x@A (a pair of a channel and a principal) to its typeVar(θ).

(3) The third assignmentXA : ∆ says:
When the interaction recurs to XA, it has a session typing∆.

Assignment to a term variable becomes necessary when we typerecursive behaviour.
Each term variable is assigned a unique principal name, so that we regardXA : ∆ as map-
pingX to a pair ofA and∆.

We stipulate:

CONVENTION 2. We hereafter assume a service typing defines a function following the above
reading. We writeΓ(ch) for a pair of a principal and a service type assigned toch; Γ(x@A) for a
variable type assigned tox@A; andΓ(X) for a pair of a principal and a session typing assigned toX.

Next. a session typing uses the following primary form of assignment, ˜s[A,B] : α, which says:

A vector of session channelss̃, all belonging to a same session which is be-
tween A and B, has the session typeα when seen from the viewpoint of A.

We regard ˜s[A,B] : α as mapping ˜s to a direction[A,B] as well asα. As we shall see later, this is the
same thing as mapping ˜s to the reverse direction[B,A] and the dualα of α. We stipulate:

CONVENTION 3. We hereafter assume a session typing defines a function following the above
reading. We write∆(s̃) for a pair of[A,B] and a session typeα. Further we assume that the domain of
a session typing∆ is disjoint, i.e. whenever ˜s1, s̃2 ∈ dom(∆) such that ˜s1 6= s̃2, we have{s̃1}∩{s̃2}=
/0.

As an example of a session typing, given the following interaction:

(48) Buyer→Seller : s1〈Req, prd, prd〉.Seller→Buyer : s2〈Rep, price, price〉.0

one possible assignment is:

(49) s1s2 [Buyer,Seller] : s1↓ Req(string). s2↑ Rep(int). end

which states, simultaneously:

(1) s1 ands2 belong to a same session;
(2) that session is betweenBuyer andSeller: and
(3) it has the given session type when seen fromBuyer’s point of view.

The other form of assignment, ˜s : ⊥, is used when we know the session type at ˜s will never be
abstracted by session initiation (this is known for sure when one or more of channels in ˜sare hidden,
see(TRES-1,2) later).

40

We are ready to introduce typing rules. We start from the typing of session initiation.

(TINIT)
Γ, ch@B : (s̃)α ⊢ I ⊲ ∆ · s̃[B,A] : α

Γ, ch@B : (s̃)α ⊢ A→ B : ch(s̃) . I ⊲ ∆

The conclusion (the lower-half) introduces a session initialisation prefixch(ννν s̃) in the term. Since ˜s
is to be abstracted as session channels belonging to a singlesession, we demand that, in the premise
(the upper-half), that there is a session type assignment which assigns ˜s to a session type. Since ˜s is
directed fromB to A, α designates a session type seen fromB’s viewpoint: hence we can safely have
ch@B : (s̃)α in the service typing of the conclusion (ch@B : (s̃)α is also assumed in the premise since
ch may have already been used inI , based on the assumption that a service channel can be shared,
just as the standard URL). BothA andB need be mentioned in ˜s[B,A] : α in the premise since a
session is always between two parties: however the information onA should be erased inch@B : (s̃)
sincechcan be used by multiple users (participants).

We next type communication.

(TCOMM)
Γ ⊢ I ⊲ ∆ · s̃[A,B] : α j Γ ⊢ e@A : θ j Γ ⊢ x@B : θ j s∈ {s̃} j ∈ J A 6= B

Γ ⊢ A→B : s〈opj, e, x〉 . I ⊲ ∆ · s̃[A,B] : Σ j∈Js↑ opj (θ j) .α j
.

In (TCOMM), our purpose is to type the term in the conclusion,

(50) A→B : s〈opj, ej , x j 〉 . I j .

To type this,I should contain a session type betweenA andB such that its session channels contain
s. This session type,α j , is to be combined with the type for the communication in the conclusion.
The remaining session types inΘ will remain unchanged. The communicated valuee is typed in the
source (A) while the variablex is typed in the target (B), with the same typeθ. In the conclusion, we
use a branching type which should include the operatoropi whose value type isθi , and possibly (and
usually) adding other operator names and communicated value types. The rule uses the an auxiliary
judgement:

Γ ⊢ e@A : θ

which sayseatA has typeθ (the judgement is derived in the standard way, starting fromΓ ⊢ x@A : θ
whenx@A : Var(θ) is in Γ, and e.g.Γ ⊢ 1@A : int regardless ofΓ andA).

In (TCOMM), the session type in focus is given with the direction fromA to B, i.e. it abstracts
the structure of the interaction in this session from the viewpoint ofA. While this is consistent, there
is no reason we should view this session from the viewpoint ofA: we may as well regard it from the
viewpoint of a receiver,B. Thus we have the following symmetric variant of(TCOMM).

(TCOMM INV)
Γ ⊢ I ⊲ ∆ · s̃[B,A] : α j Γ ⊢ e@A : θ j Γ ⊢ x@B : θ j s∈ {s̃} j ∈ J

Γ ⊢ A→B : s〈opj, e, x〉 . I ⊲ ∆ · s̃[B,A] : Σ j∈Js↓ opj (θ j) .α j
.

The typing of the assignment rule follows.

(TASSIGN)
Γ ⊢ x@A : θ Γ ⊢ e@A : θ Γ ⊢ I ⊲ ∆

Γ ⊢ x := e@A. I ⊲ ∆
In this rule, there is no change in the session typing∆ (as well as in the service typingΓ) since
assignment does not change interaction structure. Note thetypes ofx ande are taken at locationA.
For conditionals:

(TIF)
Γ ⊢ e@A : bool Γ ⊢ I1 ⊲ ∆ Γ ⊢ I2 ⊲ ∆

Γ ⊢ if e@A then I1 else I2 ⊲ ∆

In the premise of this rule, we demandI1 and I2 has an identical session typing and an identical
service typing. Thus either branch is taken, the type abstraction remains identical. Similarly we type
the summation:

(TSUM)
Γ ⊢ I1 ⊲ ∆ Γ ⊢ I2 ⊲ ∆

Γ ⊢ I1 + I2 ⊲ ∆

41

The following rule is worth presenting, which is derivable by applying (TCOMM) and (TSUM)
repeatedly. We use the notation for then-fold summation.

(TBRA)
Γ ⊢ I j ⊲ ∆ · s̃[A,B] : α j Γ ⊢ ej@A : θ j Γ ⊢ x j@B : θ j s∈ {s̃} J ⊆ K

Γ ⊢ Σ j∈JA→B : s〈opj, ej , x j 〉 . I j ⊲ ∆ · s̃[A,B] : Σk∈Ksk ↑ opk(θk) .αk
.

In the premise of(TBRA), it is implicit from indice symbols thatj ranges overJ. In (TBRA), our
purpose is to type the term in the conclusion,

(51) Σ j∈JA→B : s〈opj, ej , x j 〉 . I j .

To type this, eachI j needs to have a session type betweenA andB such that its session channels
contains. Each of these session types,α j , can be distinct, but they should have the same vector of
session channels, so that we can combine them into a single type in the conclusion. Other session
types (Θ) should remain common in all branches in the premise. In the conclusion, we can combine
session types for different branches into a single session type, adding operator names and communi-
cated value types. Note the value type ofej is typed in the source (A) while the variablex j is typed in
the target (B). Note(TCOMM) is a special case of(TBRA), when then-fold branching is a singleton.
The rule has its inverse variant, corresponding to(TCOMM INV).

(TBRAINV)
Γ ⊢ I j ⊲ ∆ · s̃[B,A] : α j Γ ⊢ ej@A : θ j Γ ⊢ x j@B : θ j s∈ {s̃} J ⊆ K

Γ ⊢ Σ j∈JA→B : s〈opj, ej , x j 〉 . I j ⊲ ∆ · s̃[B,A] : Σk∈Ksk ↓ opk(θk) .αk
.

To type parallel composition, we use the standard linearitycondition [?].

(TPAR)
Γ ⊢ I1 ⊲ ∆1 Γ ⊢ I2 ⊲ ∆2 fc(∆1)∩ fc(∆2) = /0

Γ ⊢ I1 | I2 ⊲ ∆1∪∆2

In the premise, the notationfc(∆) denotes the set of free service/session channels in∆. Thus the
conditionfc(∆1)∩ fc(∆2) = /0 says session channels are not shared betweenI1 andI2. This effectively
entails each session channel is used linearly at each point,preventing mix-up of communications.
Note different session channels can be used in parallel, while service channels can be shared by
multiple threads of interactions.

For restriction we have three rules. The first one is when we first hide a session channel in a
session type assignment.

(TRES-1)
Γ ⊢ I ⊲ ∆, s̃1ss̃2[A,B] : α
Γ ⊢ (νννs) I ⊲ ∆, s̃1s̃2 : ⊥

To understand the rule, note the hiding is introduced after the session initiation takes place (see(INIT)
in Section 9.2). Once this is done, there is no possibility that these session channels are abstracted
by (TINIT). Hence the session typeα is no longer necessary, so that we replace it with⊥. After
this, we take off a hidden session channel one by one, and whenthis is empty, takes it away (below
ε denotes the empty vector):

(TRES-2)
Γ ⊢ I ⊲ ∆, s̃1ss̃2 : ⊥

Γ ⊢ (νννs) I ⊲ ∆, s̃1s̃2 : ⊥
(TRES-3)

Γ ⊢ I ⊲ ∆, ε : ⊥
Γ ⊢ (νννs) I ⊲ ∆

Next we treat the typing rule for a term variable.

(TVAR)
Γ, XA :∆ ⊢ XA ⊲ ∆

This is one of the two base cases (another is the inaction treated below), introducing a service typing
on the left-hand side of the turnstile. This typing should follow Conventions above, and, moreover, it
should contain the assignment for the term variable of interest (aboveX), with the same participant
annotation (aboveA). Since the assumptionXA :∆ says the behaviour ofXA should have the session
typing ∆, and becauseXA is indeed introduced as a term, we safely introduce∆ as the session typing
of XA in the conclusion.

The recursion rule is symmetric to(TVAR):

(TREC)
Γ ·XA : ∆ ⊢ I ⊲ ∆
Γ ⊢ rec XA . I ⊲ ∆

42

(TCOMM)
Γ ⊢ I ⊲ ∆ · s̃[A,B] : α j Γ ⊢ e@A : θ j Γ ⊢ x@B : θ j s∈ {s̃} j ∈ J

Γ ⊢ A→B : s〈opj, e, x〉 . I ⊲ ∆ · s̃[A,B] : Σ j∈Js↑ opj(θ j) .α j

(TCOMM INV)
Γ ⊢ I ⊲ ∆ · s̃[B,A] : α j Γ ⊢ e@A : θ j Γ ⊢ x@B : θ j s∈ {s̃} j ∈ J

Γ ⊢ A→B : s〈opj, e, x〉 . I ⊲ ∆ · s̃[B,A] : Σ j∈Js↓ opj(θ j) .α j

(TINIT)
Γ, ch@B : (s̃)α ⊢ I ⊲ ∆ · s̃[B,A] : α

Γ, ch@B : (s̃)α ⊢ A→ B : ch(ννν s̃) . I ⊲ ∆
(TRES-1)

Γ ⊢ I ⊲ ∆, s̃1ss̃2[A,B] : α
Γ ⊢ (νννs) I ⊲ ∆, s̃1s̃2 : ⊥

(TIF)
Γ ⊢ e@A : bool Γ ⊢ I1 ⊲ ∆ Γ ⊢ I2 ⊲ ∆

Γ ⊢ if e@A then I1 else I2 ⊲ ∆
(TRES-2)

Γ ⊢ I ⊲ ∆, s̃1ss̃2 : ⊥
Γ ⊢ (νννs) I ⊲ ∆, s̃1s̃2 : ⊥

(TZERO)
∀i 6= j . {s̃i}∩{s̃j} = /0
Γ ⊢ 0⊲

S

i s̃i [Ai ,Bi]end
(TRES-3)

Γ ⊢ I ⊲ ∆, ε : ⊥
Γ ⊢ (νννs) I ⊲ ∆

(TASSIGN)
Γ ⊢ x@A : θ Γ ⊢ e@A : θ Γ ⊢ I ⊲ ∆

Γ ⊢ x := e@A. I ⊲ ∆
(TSUM)

Γ ⊢ I1 ⊲ ∆ Γ ⊢ I2 ⊲ ∆
Γ ⊢ I1 + I2 ⊲ ∆

(TVAR)
Γ, XA :∆ ⊢ XA ⊲ ∆

(TREC)
Γ ·XA : ∆ ⊢ I ⊲ ∆
Γ ⊢ rec XA . I ⊲ ∆

(TPAR)
Γ ⊢ I1 ⊲ ∆1 Γ ⊢ I2 ⊲ ∆2 fsc(∆1)∩ fsc(∆2) = /0

Γ ⊢ I1 | I2 ⊲ ∆1∪∆2

FIGURE 19. Typing Rules for Global Calculus

Here our purpose is to typerec XA . I , with the session typing∆. For this purpose it suffices thatI
has session typing∆ under the assumptionXA has that same session typing, following the standard
treatment of recursion.

Finally the typing rule for the inaction follows.

(TZERO)
∀i 6= j . {s̃i}∩{s̃j} = /0
Γ ⊢ 0⊲

S

i s̃i [Ai ,Bi]end

In the premise, we demand each session typing used in the conclusion is for distinct vector of session
channels. Further, in the conclusion, all of these distinctvectors of session channels are givenend,
which is intuitively natural since there is no interaction started yet. In Figure 19 we report the rules
all together.

10.3.1. Properties of Type Discipline.The type discipline we have introduced has several basic
properties, which we discuss below. First, standard syntactic properties of typing rules follow. Below
we write e.g.Γ·Γ′ etc. to indicate a disjoint union.

PROPOSITION1.

(1) (weakening) Γ ⊢ I ⊲ ∆ impliesΓ·Γ′ ⊢ I ⊲ ∆. With s̃ be fresh.Γ ⊢ I ⊲ ∆ implies
Γ ⊢ I ⊲ ∆·s̃[A,B]end.

(2) (thinning) Assumefc(Γ′)∩ fc(I) = /0. ThenΓ·Γ′ ⊢ I ⊲ ∆ impliesΓ ⊢ I ⊲ ∆.
(3) (co-type) Γ ⊢ I ⊲ ∆·s̃[A,B]α impliesΓ ⊢ I ⊲ ∆·s̃[B,A]α.

Proof. Each by mechanical induction. A full proof is in Appendix B. �

43

The type discipline has a minimal typing (which is also a principal typing in the sense that all provable
typings can be deduced from it): this is closely related withautomatic type inference a la ML in the
present typing system. To formulate minimality, we use the following ordering.

DEFINITION 1 (inclusion ordering). Theinclusion orderingon session types,≪, is generated
by:

J ⊂ J′ ∀i ∈ J. αi ≪ α′
i

Σi∈Js↓opi(θi) .αi ≪ Σi∈J′s↓opi(θi) .α′
i

J ⊂ J′ ∀i ∈ J. αi ≪ α′
i

Σi∈Js↑opi (θi) .αi ≪ Σi∈J′s↑opi(θi) .α′
i

α1 ≪ α′
1 α2 ≪ α′

2
α1|α2 ≪ α′

1|α
′
2

−
end≪ α

−
t ≪ t

α ≪ α′

rec t.α ≪ rec t.α′

We extend≪ to well-formed session typings by:

∆ ⊂ ∆′

∆ ≪ ∆′

∆ ≪ ∆′ α ≪ α′

∆·s̃[A,B] : α ≪ ∆′·s̃[A,B] : α′

Similarly we define:

Γ ⊂ Γ′

Γ ≪ Γ′

Γ ≪ Γ′ α ≪ α′

Γ·ch@A : (s̃)α ≪ Γ′·ch@A : (s̃)α′

In brief, α≪α′ meansα is the result of cutting off some branches fromα′ at zero or more points. We
can check≪ is a partial order (up to alpha-conversion). This ordering is also used in our technical
development in Section?? later.

We now establish the existence of minimal (principal) typing. Below in (2) we writeΓ ⊢ I for
Γ ⊢ I ⊲ /0.

PROPOSITION2.

(1) (preorder)The relation≪ is a preorder.
(2) (subsumption)LetΓ ≪ Γ′ and∆ ≪ ∆′. ThenΓ ⊢ I ⊲ ∆ impliesΓ′ ⊢ I ⊲ ∆′.
(3) (existence of minimal typing)Let Γ ⊢ I for someΓ. Then there existsΓ0 such that (1)

Γ0 ⊢ I and (2) wheneverΓ′ ⊢ I we haveΓ0 ≪Γ′. Moreover suchΓ0 can be algorithmically
calculable from I. We callΓ0 theminimum service typing ofI.

Proof. A full proof is in Appendix B. �

We now establish subject reduction. A basic lemma follows. Below and henceforth we write
Γ ⊢ σ when the typing ofσ conforms toΓ.

LEMMA 1.

(1) (substitution, 1)If Γ,XA : ∆ ⊢ I ⊲ ∆′ andΓ ⊢ I ′ ⊲ ∆ thenΓ ⊢ I [I ′/XA] ⊲ ∆′.
(2) (substitution, 2)If Γ ⊢ σ, Γ ⊢ σ(x@A) : θ andΓ ⊢ v : θ, thenΓ ⊢ σ[x@A 7→ v].

Proof. The complete proof is in Appendix B. �

We can now establish the main theorem for this section.

THEOREM1.

(1) (Subject Congruence)If Γ ⊢ I ⊲ ∆ and I≡ I ′ thenΓ ⊢ I ′ ⊲ ∆ (up to alpha-renaming).
(2) (Subject Reduction, 1)AssumeΓ ⊢ σ. ThenΓ ⊢ I ⊲ ∆ and(σ, I) → (σ′, I ′) imply Γ ⊢ σ′

andΓ ⊢ I ⊲ ∆′ for some∆′.
(3) (Subject Reduction, 2)AssumeΓ ⊢ σ. ThenΓ ⊢ I and (σ, I) → (σ′, I ′) imply Γ ⊢ σ′ and

Γ ⊢ I ′.

Proof. The proof is in Appendix B. �

44

10.4. Examples of Typing.

EXAMPLE 11. We conclude the section, by showing how it is possible to type an example:
consider the buyer-seller case with the following interaction described in the global calculus.

Buyer→ Seller : B2SCh(s) .Buyer→ Seller : s[RequestForQuote] .

Seller→Buyer : s〈QuoteResponse, vquote, xquote〉 .

(Buyer→ Seller : s[QuoteReject] +

Buyer→ Seller : s[QuoteAcceptance] .

Seller→Buyer : s〈OrderConfirmation〉 .Seller→ Shipper : S2ShCh(s′) .

Seller→Shipper : s′〈RequestDelDetails, Buyer, xClient〉 .

Shipper→ Seller : s′[DeliveryDetails,DD,xDD] .

Seller→ Buyer : s[DeliveryDetails,xDD,xDD])

Above there are two sessions: the one between the buyer and the seller, and the one between the
seller and the shipper. Note that both are initialised by a session “init” operation and we have also
included the choice. Another notable thing is that in the last two interactions, the variablexDD is
involved three times: the first two times it is indeed the samevariable located at the seller and as-
signed with the delivery detailsDD, but the third one is another variable located at the buyer which
just happen to have the same name, but completely distinguished by the semantics of mini-CDL.
But what are the types for channelsB2SCh and S2ShCh? It can be verified by the rules in Ap-
pendix that the the interactions above can be typed by∆ = B2SCh@Seller(s)[Buyer,Seller] :
α ·S2ShCh@Shipper[Seller,Shipper] : α′ where

α =s↑ RequestForQuote() .s↓ QuoteResponse(QuoteType) .(s↑ QuoteReject()+

s↑ QuoteAcceptance() .s↓ OrderConfirmation() .

s↓ DeliveryDetails(DDType))

andα′ = s′ ↑ RequestDelDetails(PType) .s′ ↓ DeliveryDetails(DDType).

EXAMPLE 12. In the last example of this section, we give a typing for 20. Wewould simply
have thatΓ ⊢ comm@Seller(B2Sch,Data) : B2Sch↑ (String) | Data↑ (String).

45

11. End-Point Calculus (1): Syntax and Reduction

The end-point calculus, an applied variant of theπ-calculus [30], specifies local behaviours of
end-points and their composition. For example consider thefollowing term in the global calculus
(cf. Example 1):

(52) Buyer→Seller : s〈QuoteAccept,100,x, ., 0〉.

This global description says that Buyer sends aQuoteAccept message with value 100 to Seller, that
Seller receives it, and that Seller saves this value in its local variablex. The end-point calculus
describes the same situation as combination of local behaviour, located at each end-point. First there
is Buyer’s behaviour:

(53) Buyer[s⊳QuoteAccept〈100〉.0]σB

whereσB is Buyer’s local state. Similarly we have Seller’s local behaviour:

(54) Seller[s⊲QuoteAccept〈x〉.0]σS

whereσS is Seller’s local state. Interaction takes place when (53) and (54) are concurrently com-
posed, as follows.

(55) Seller[s⊲QuoteAccept〈x〉.0]σS | Buyer[s⊳QuoteAccept〈100〉.0]σB

Let this term be writtenM. Then the communication event is represented using the following one-
step reduction:

(56) M → Seller[0]σS[x7→10] | Buyer[0]σB

Note the state at Seller is updated as a result of communication. In correspondence with the global
calculus, communication in the end-point calculus is organised in the unit of session, where session
initiation is done by communicating fresh channels while ordinary, in-session communication is done
via session channels involving operator selection and value passing, as described above. The formal
syntax and reduction rules of the end-point calculus are presented in the present section.

Since an input and an output are separately described in the end-point calculus, it is possible
that there is a communication mismatch between two interacting parties. For example, instead of
(55), we may have:

(57) Seller[s⊲QuoteAccept〈x〉.0]σS | Buyer[s⊳QuoteReject.0]σB

Here Seller is expecting a QuoteAccept message with one integer value, while Buyer is sending a
nullary QuoteReject message. To avoid such a situation, we use type discipline. We use the same
syntax of types as in the global calculus. For example, Seller’s interface ats in (57) is represented by
the following session type:

(58) s@Seller : s↓ QuoteAccept(int).end

while that of Buyer is abstracted as:

(59) s@Buyer : s↑ QuoteReject().end

Since two signatures, (58) and (59), are clearly incompatible, we conclude the composition (57) is
not well-typed. The session types for the end-point calculus use a notion of subtyping which plays a
central role in the theory of end-point projection. The session typing for the end-point calculus and
its basic properties are studied in Section??.

11.1. Formal Syntax. The end-point calculus is an applied form of theπ-calculus [31] aug-
mented with the notion of participants and their local state(cf.[2, 14, 18]). Session initiation uses

46

bound name passing, while in-session communication uses variables at a local store, in the spirit of
[14]. The following grammar defineprocesses, ranged over byP,Q,R,

P ::= !ch(s̃).P (init-In)

| ch(ννν s̃).P (init-Out)

| s⊲ Σiopi(xi).Pi (input)

| s⊳ op〈e〉P (output)

| x := e.P (assignment)

| if e then P else Q (conditional)

| P⊕Q (internal sum)

| P|Q (parallel)

| (νννs) P (res)

| X (variable)

| rec X.P (recursion)

| 0 (inaction)

As in the global calculus (cf. Section??), a,b,ch, . . . above denote service channels,s,s′, . . . session
channels,x,y, . . . variables, andX, . . . term variables. The symbol “!” in “!ch(s̃).P” (the first line)
indicatesreplication [29], which says that the input channel (herech) is available for unbounded
number of invocations.

Processes are located in participants. Participants and their composition are callednetworks
(writtenN,M, . . .), whose grammar is given by:

N ::= A[P]σ (participant)

| N|M (parallel-nw)

| (νννs) N (res-nw)

| ε (inaction-nw)

Again as in the global calculus,A,B, . . . denoteparticipant names, which are often simply called
participants. σ, . . . denote local states, each mapping a finite set of variables toa finite set of values.6

11.2. Illustration of Syntax. For session initiation, we use a pair of mutually complementary
input and output:

(60) !ch(s̃).P ch(ννν s̃).Q

In the context of web services, the process !ch(s̃).P may be considered as embodying a repeatedly
available service accessible via a certain URL (here denoted by channelch): after invocation, it offers
interaction described inP through session channels ˜s it has just received. The processch(ννν s̃).Q in
turn may be considered as an invoker of a service located atch, which communicate fresh session
channels and use them for its subsequent interaction, described inQ. The structure of communication
within a session will later be abstracted by a session type. In practice, session initiation may as well
be combined with ordinary communication.

In-session communications use operator names, analogous to methods in objects.

(61) s⊲ Σiopi(xi).Pi s⊳ op〈e〉.Q

The inputs⊲ Σiopi(xi).Pi says that it has one or more finite branches (indexed byi) which can
be invoked. Operatorsopi should be pairwise distinct. Whenopi is invoked, then it instantiates a
communicated value in its local variablexi , and subsequently behaves as described inPi. Herexi does

6Note the same symbol denotes a distributed state in the global calculus:σ in the end-point calculus corre-
sponds to local projection of such a distributed state.

47

notbind its occurrences inP. In turn,s⊳op〈e〉.Q invokes an input with operatorop, communicating
the result of evaluating an expressione, then behaves asQ.

Another prefix operator is assignment:

(62) x := e.P

which assigns the result of evaluatinge to a local variablex (of the enclosing participant), and then
behaves asP.

There are two constructs which represent internal choice. First, the standard conditional is
written as:

(63) if e then P else Q

whereeshould evaluate to a boolean value. In this case, oncee is evaluated, we can deterministically
choose betweenP or Q. A more nondeterministic behaviour is embodied by the standard internal
sum:

(64) P⊕Q

which chooses nondeterministicallyP or Q and, once chosen, behaves as such. Then-fold composi-
tion by⊕ is written⊕iPi.

Combining multiple outputs at the same channel but with distinct operator names through the
n-fold internal sum, we can construct an output prefix which isdual to the branching input prefix.
Since such a sum is often useful, we introduce the following notation for denoting it.

(65) s⊳ Σiopi〈ei〉.Pi

Above we assume eachopi is pairwise distinct. Note neither input branching or output branching
above have mixed choice, i.e. all the components have to be either outputs or inputs (via a common
session channel), but never both. They offer a structured form of choice which is easily imple-
mentable, even though some form of mixed choice is useful forrepresenting complex interaction, as
we discussed in Part I.

The syntax for parallel composition is standard:

(66) P|Q

As in the standard process algebras, and unlike parallel composition in the global calculus,P and
Q may as well be engaged in communication between them. The restriction also uses the standard
syntax:

(67) (νννs) P

which indicatess is local toP. In the present paper we do not consider restriction of service channels,
whose addition does not pose any technical problem.

For representing recursive behaviour, we start from a term variableX and, after forming a
processP in whichX may occur free, we introduce:

(68) rec X.P

where, inrec X.P, free occurrences ofX in P (if any) are bound byrec X. Behaviourally, each free
X in P denotes a recurring point (i.e. it recurs torec X.P again). In contrast to the global calculus,
cf. Section 8.1, variables need no principal annotation. Finally the inaction:

(69) 0

denotes the lack of action, and is the unit for parallel composition.
Processes are located in a participant as follows:

(70) A[P]σ

which says a participant namedA is equipped with a behaviourP and a local stateσ. Such partici-
pants can be combined by parallel composition:

(71) N|M

48

By the typing rules discussed in the next section, in one network, two participants never have the
same participant names. Since a session channels can be shared between two participants, we also
need restriction:

(72) (νννs) N

Finally for technical convenience we also introduce the inaction for networks, denoting the lack of
network.

(73) ε

which acts as the unit of parallel composition of networks.

11.3. Examples.

EXAMPLE 13. Example 1 (page 31) of a global description would be represented in the end-
point formalism as a network of the shape:

(74) Buyer[P]σ(Buyer) | Seller[Q]σ(Seller)

where the processesP andQ together realise the behaviour that we expressed in the global calculus.
As for the Buyer, its behaviour would be represented by the following

P = B2SCh⊳ (QuoteAccept〈“100′′〉 .P1⊕QuoteReject〈xAbortNo〉 .P2)

whereas the Seller would behave as:

Q = B2SCh⊲ (QuoteAccept(x) .Q1 +QuoteReject(y) .Q2)

We elaborateP andQ in the next example.

EXAMPLE 14. Example 2 (page 31) presents the if-then-else construct, in which case we can
elaborateP andQ above as follows.

P = if (xQuote ≤ 1000)

then B2SCh⊳ QuoteAccept〈“100′′〉 .P1,

else B2SCh⊳ QuoteReject〈xAbortNo〉 .P2)

Q = B2SCh⊲ [QuoteAccept(x) .Q1 +QuoteReject(y) .Q2]

Note thatQ has kept the same shape as before: choice because the conditional guard is located where
at the Buyer side, i.e. it is Buyer who choses between two branches. We can further consider the
result of adding session initiation, which is given as the second description in Example 2, we can
further elaborateP andQ as follows.

P
def
= ch(νννB2SCh,S2BCh).

S2BCh(xQuote).

if (xQuote ≤ 1000)

then B2SCh⊳ QuoteAccept〈“100′′〉 .P1

else B2SCh⊳ QuoteReject〈xAbortNo〉 .P2)

Q
def
= !ch(B2SCh,S2BCh).

S2BCh〈100〉.

B2SCh⊲ [QuoteAccept(x) .Q1 +QuoteReject(y) .Q2]

Note an input is compensated with an output and vice versa, similarly a branching with a selection.

49

EXAMPLE 15. Example 3 (page 31) presents the use of parallel in-session communications
inside a single session. Using the same skeledon (74) as above, we defineP andQ as follows:

P
def
= ch(νννOp,Data).

(Op⊳QuoteAcc〈100〉.P1 | Data⊳QuoteAcc〈adr〉.P2)

Q
def
= !ch(Op,Data).

(Op⊲QuoteAcc(x).Q1 | Data⊲QuoteAcc(y).Q2)

in which Buyer offers two parallel outputs while Seller receives them with their dual inputs.

11.4. Reduction Rules.Reduction indicates evolution of processes and networks via commu-
nication and other actions. It is given as a binary relation over networks, writtenN → M. The first
rule is for initiation of a session via invocation of a sharedservice channel.

(INIT)
−

A[!ch(s̃).P | P′]σ | B[ch(ννν s̃).Q | Q′]σ′ → (ννν s̃) (A[!ch(s̃).P | P | P′]σ | B[Q | Q′]σ′)

Since a service can be invoked from within the same participant, we also have:

(INIT-LOC)
−

A[!ch(s̃).P|ch(ννν s̃).Q|R]σ → A[!ch(s̃).P|(ννν s̃) (P | Q)|R]σ
For in-session communication, we have:

(COM)
σ ⊢ e⇓ v

A[s⊲ Σiopi(xi).Pi |P′]σ|B[s⊳ opj〈e〉Q|Q′]σ′ → A[Pj | P′]σ[x7→v j]
| B[Q | Q′]σ′

As before, the rule has its local version, which we omit.
Assignment only affects local store:

(ASSIGN)
σ ⊢ e⇓ v

A[x := e.P|P′]σ → A[P | P′]σ[x7→v]

In conditional, we first evaluates the guard expression, then, depending on its value, decides which
branch should be chosen.

(IFTRUE)
σ ⊢ e⇓ tt

A[if e then P1 else P2 |P′]σ → A[P1 | P′]σ

(IFFALSE)
σ ⊢ e⇓ ff

A[if e then P1 else P2 |P′]σ → A[P2 | P′]σ
The internal sumP⊕Q has the following standard reduction.

(SUM)
−

A[P1⊕P2|R]σ → A[Pi|R]σ (i = 1,2)

The rule saysP1⊕P2 can behave as eitherP1 or P2.
For parallel composition of processes, we have:

(PAR)
A[P1 |R]σ → A[P′

1 |R]σ′

A[P1 |P2 |R]σ → A[P′
1 |P2 |R]σ

(RES)
A[P]σ → A[P′]σ′

A[(νννs) P]σ → A[(νννs) P′]σ
We list the corresponding contextual rules for networks.

(PAR-NW)
M → M′

M|N → M′|N
(RES-NW)

M → M′

(νννs) M → (νννs) M′

For recursion, we set:

(REC)
P[rec X.P/X] → P′

rec X.P → P′

Finally the following rule says we take the reduction up to the structural rules:

(STRUCT-NW)
M ≡ M′ M′ → N′ N′ ≡ N

M → N

50

where≡ is the least congruence on networks generated from:

P|0 ≡ P
P|Q ≡ Q|P

(P|Q)|R ≡ P|(Q|R)
P⊕P ≡ P
P⊕Q ≡ Q⊕P

(P⊕Q)⊕R ≡ P⊕ (Q⊕R)
(νννs) 0 ≡ 0

(νννs1) (νννs2) P ≡ (νννs2) (νννs1) P
((νννs) P)|Q ≡ (νννs) (P|Q) (s 6∈ fn(Q))

Note the equations for⊕ allows us to write then-fold sum⊕iPi which reduces as, withC[·] being a
reduction context,C[⊕iPi] →C[Pi] for eachi. For networks we stipulate:

A[P]σ ≡ A[Q]σ (P≡ Q)
A[(νννs) P]σ ≡ (νννs) (A[P]σ)

M|ε ≡ M
M|N ≡ N|M

(L|M)|N ≡ L|(M|N)
(νννs) ε ≡ ε

(νννs1) (νννs2) M ≡ (νννs2) (νννs1) M
((νννs) M)|N ≡ (νννs) (M|N) (s 6∈ fn(N))

In Table 20 we report all the reduction rules presented above. This concludes the presentation
of reduction rules.

11.5. Examples of Reduction.

EXAMPLE 16. The dynamic semantics of the end-point calculus mainly differs on the fact that
the information contained inσ in the global calculus is projected and stored, syntactically, at each
participants. If we consider the example shown for the global calculus and its translation shown
before, we would have that for a genericσ, there would be an interaction applying rule (RCOM), and
we would end up into one of the following networks

N1 = Buyer[P1]σ(Buyer) | Seller[Q1]σ(Seller)[x7→“100′′]

N2 = Buyer[P2]σ(Buyer) | Seller[Q2]σ(Seller)[y 7→σ(Buyer)(xAbortNo)]

Note that the state of the Buyer does not change in both cases.

12. End-Point Calculus (2): Typing

12.1. Types and Subtyping.As we did for the global calculus, we use session types [?], i.e.
the typing for controlling the flow of operations and data through channels. We use the same set of
types as the global calculus, whose grammar is reproduced below for convenience.

θ ::= bool | int | . . .

α ::= Σis↓ opi(θi) .αi | Σis↑ opi(θi) .αi | α1 | α2 | t | rec t.α | end

Above, as before,α,β, . . . are calledsession types. Again as before we take| to be commutative and
associative, with the identityend. Recursive types are regarded as regular trees in the standard way
[36]. We also useservice types, ranged over byγ,γ′, . . ., given by:

γ ::= !(s̃)α@A | ?(s̃)α@A

Above, !(s̃)α@A indicates the service located atA which is invoked with fresh session channels ˜s
and offers service of the shapeα, while ?(s̃)α@A indicates the type abstraction for the dual invoca-
tion, i.e. a client of anA’s service which invokes with fresh channels ˜s and engages in interactions
abstracted asα. Note @A indicates the location of aservicein both forms.

51

(INIT)
−

A[!ch(s̃).P | P′]σ | B[ch(ννν s̃).Q | Q′]σ′ → (ννν s̃) (A[!ch(s̃).P | P | P′]σ | B[Q | Q′]σ′)

(INIT-LOC)
−

A[ch(s̃).P|ch(ννν s̃).Q|R]σ → A[(ννν s̃) (P | Q)|R]σ

(COM)
σ ⊢ e⇓ v

A[s⊲ Σiopi(xi).Pi |P′]σ|B[s⊳ opj〈e〉Q|Q′]σ′ → A[Pj | P′]σ[x7→v j]
| B[Q | Q′]σ′

(COM-LOC)
σ ⊢ e⇓ v

A[s⊲ Σiopi(xi).Pi |s⊳ opj〈e〉Q|P′]σ → A[Pj | Q | P′]σ[x7→v j]

(IFTRUE)
σ ⊢ e⇓ tt

A[if e then P1 else P2 |P′]σ → A[P1 | P′]σ
(PAR-NW)

M → M′

M|N → M′|N

(IFFALSE)
σ ⊢ e⇓ ff

A[if e then P1 else P2 |P′]σ → A[P2 | P′]σ
(RES-NW)

M → M′

(νννs) M → (νννs) M′

(ASSIGN)
σ ⊢ e⇓ v

A[x := e.P|P′]σ → A[P | P′]σ[x7→v]
(RES)

A[P]σ → A[P′]σ′

A[(νννs) P]σ → A[(νννs) P′]σ

(SUM)
−

A[P1⊕P2|R]σ → A[Pi|R]σ
i ∈ {1,2} (PAR)

A[P1 |R]σ → A[P′
1 |R]σ′

A[P1 |P2 |R]σ → A[P′
1 |P2 |R]σ

(STRUCT-NW)
M ≡ M′ M′ → N′ N′ ≡ N

M → N
(REC)

P[rec X.P/X] → P′

rec X.P → P′

FIGURE 20. Reduction Rules of the End-Point Calculus

As before, ˜s should be a vector of pairwise distinct session channels which should cover all
session channels inα, andα does not contain free type variables.(s̃) binds occurrences of session
channels in ˜s in α, which induces the standard alpha-equality. We define the duality as:

!(s̃)α@A = ?(s̃)α@A ?(s̃)α@A = !(s̃)α@A

where the notion of dualityα of α remains the same.
In the end-point calculus, it is useful to consider a subtyping relation on session types following

[16]. The subtyping is writtenα � β. 7, Intuitively, α � β indicatesα is more gentle, or duallyβ is
less constrained, in behaviour.

We generate the subtyping using simple inference rules, which is enough for our present pur-
pose. The first rule is:

(SUB-IN)
I ⊃ J α j � β j

Σi∈I s↓ opi(θi) .αi � Σ j∈Js↓ opj (θ j) .β j

which says that if subsequent behaviours of an input are moregentle, and if it offers more options,
then it is indeed more gentle. As the precise dual, we have:

(SUB-OUT)
I ⊂ J αi � βi

Σi∈I s↑ opi(θi) .αi � Σ j∈Js↑ opj (θ j) .β j

7The symbol in [16] is used dually, with the same formal content.

52

The remaining cases close the relation under type constructors covariantly.

(SUB-PAR)
α � α′ β � β′

α | β � α′ | β′
(SUB-END)

−

end � end

For recursion we use two simple rules (a more general treatment is presented by Amadio and
Cardelli).

(SUB-REC)
α � β

rec t.α � rec t.β
(SUB-VAR)

−

t � t
Above we treating recursive types up to their standard unfoldings. We can easily check� is the
partial order on types.

12.2. Typing Rules.The typing judgement in the local calculus has the form:

Γ ⊢A P ⊲ ∆

which mentions a participant name to be inhabited byP; and

Γ ⊢ M ⊲ ∆.

which is for a network.Γ (service typing) and∆ (session typing) above are given by the following
grammar.

Γ ::= /0 | Γ, ch : γ | Γ, x@A : Var(θ) | Γ, X : ∆
∆ ::= /0 | ∆, s̃@A : α | ∆, s̃ : ⊥

As before, we stipulate that both service and session typings define appropriate functions. In par-
ticular, whenever we write e.g.Γ1,Γ2, there areno free channels/session channels/variables shared
between two typings. Some observations:

(1) One basic difference in the grammar above from the one forthe global calculus (see
Section??) is that the session type assignment for the local calculus is given to the vector
of names at asingleparticipant. This is because a session type is now assigned to end-
point behaviour, so that one end of a channel should have one end of a session type, rather
than two sides coming together.

(2) When two sides of a session are compatible, we compose them and leave the assignment
of ⊥ to s̃ in the typing. Since⊥ is composable with no other types, thiseffectively makes
s̃ unusable in further composition. This is the standard linear typing in theπ-calculus.

(3) In the service typing,ch : !(s̃)α@A is the same thing as(s̃)α@A in the global calculus
(hence we often identity these two). It is calledserver type assignment. ch : ?(s̃)α@A
is calledclient type assignment. As we stipulate below, the composition ofch : !(s̃)α@A
andch : ?(s̃)α@A becomesch : !(s̃)α@A, since a service can be usable not only once but
also many times. This is from the standard replicated lineartype discipline.

The types control composition of processes and networks through the following partial algebras.
They say, in brief, session types are treated as linearly, while service types are treated as server-client
types.

DEFINITION 2. Writeγ! or γ? to indicateγ is a server or client type. Then we set:

γ?⊙ γ? = γ?

γ! ⊙ γ? = γ!

γ?⊙ γ! = γ!

Otherwiseγ1⊙ γ2 is undefined. Then we writeΓ1 ≍ Γ2 when

(1) Γ1(ch)⊙Γ2(ch) is defined for eachch∈ fn(Γ1,2).
(2) Γ1(x) = Γ2(x) for eachx∈ fn(Γ1,2).
(3) Γ1(X) = Γ2(X) for eachX ∈ fn(Γ1,2).

Finally whenΓ1 ≍ Γ2 we setΓ1⊙Γ2 as the union ofΓ1 andΓ2 except, for each channelchsuch that
ch∈ fn(Γ1,2), the type newly assigned toch is Γ1(ch)⊙Γ2(ch). Similarly we set:

α⊙α = ⊥
α⊙β = α|β (fc(α)∩ fc(β) = /0)

53

Otherwiseα1⊙α2 is undefined. As above we define∆1⊙∆2 and∆1 ≍ ∆2.

We can now introduce the typing rules. The first rule is for typing the inputting side of initiali-
sation.

(TINIT-IN)
Γ ⊢A P ⊲ s̃@A:α

Γ,ch: !(s̃)α@A ⊢A !ch(s̃).P ⊲ /0
Note that, in the premise, we do not allow those session channels other than the target of initialisation
to be present in the session typing, nor another server typing in Γ. The former preventsfreesession
channels to be under the replicated input, guaranteeing their linear usage: the latter prevents another
service channel to be underch.

The outputting side of initialisation is analogous, exceptthe linearity constraint needs not be
specified.

(TINIT-OUT)
Γ, ch:?(s̃)α@B ⊢A P ⊲ ∆ · s̃@A : α
Γ, ch:?(s̃)α@B ⊢A ch(ννν s̃).P ⊲ ∆

Above A and B can be identical. The fact we allowch@B : (s̃)α to occur in the premise means
(together with (Par) rule) an invocation to a service can be done as many times as needed (as far as it
is type correct).

Next we present typing for in-session communication, starting from input (which involves
branching with distinct operators).

(TBRANCH)
K ⊆ J s∈ t̃ Γ ⊢ x j : θ j Γ ⊢A Pj ⊲ ∆ · s̃@A : α j

Γ ⊢ s⊲ Σ jop j(x j).Pj ⊲ ∆ · s̃@A : Σk∈Ksk!opk(θk) .αk

In the rule above, the typing can have less branches than the real process, so that the process is
prepared to receive (get invoked at) any operation specifiedin the type. Dually we have:

(TSEL)
j ∈ J ⊆ K Γ ⊢ e : Var(θi) Γ ⊢A P ⊲ ∆ · s̃@A : α j

Γ ⊢A s⊳ opj〈e〉.P ⊲ ∆ · s̃@A : Σk∈Ks↑ opk(θk) .αk

Here the typing can have more branches than the real process,so that the process invokes with
operators at most those specified in types. Combining(TBRANCH) and (TSEL), an output never
tries to invoke a non-existent option in its matching input.

The rules for assignment is standard.

(TASSIGN)
Γ ⊢A x : θ Γ ⊢ e : θ Γ ⊢A P⊲ ∆

Γ ⊢A x := e.P⊲ ∆
The conditional is also standard.

(TIF)
Γ ⊢ e : bool Γ ⊢A P⊲ ∆ Γ ⊢A Q⊲ ∆

Γ ⊢A if e then P else Q⊲ ∆
Note the session typings are identical forP and forQ in the premise: this is essentially a linearity
constraint, ensuring a linear name (session channel) is used precisely once in each branch. Practical
ramifications are possible: in particular, we can easily refine the linear typing into the affine one. The
typing of a sum is similar to conditional.

(TSUM)
Γ ⊢A P⊲ ∆ Γ ⊢A Q⊲ ∆

Γ ⊢A P⊕Q⊲ ∆
The rule for parallel composition reads:

(TPAR)
Γ ⊢A P⊲ ∆1 Γ ⊢A Q⊲ ∆2 ∆1 ≍ ∆2

Γ ⊢A P | Q⊲ ∆1⊙∆2

The introduced⊥-types are eliminated by restriction.

(TRES,1)
Γ ⊢A P ⊲ ∆, s̃1ss̃2 : ⊥

Γ ⊢A (νννs) P ⊲ ∆, s̃1s̃2 : ⊥
(TRES,2)

Γ ⊢A P ⊲ ∆, ε : ⊥
Γ ⊢A (νννs) P ⊲ ∆

In (TRES,2), ε denotes the empty vector. The next two rules are for term variables and recursion,
and is standard.

(TVAR)
−

Γ,X : ∆ ⊢A X ⊲ ∆
(TREC)

Γ, X : ∆ ⊢A P ⊲ ∆
Γ ⊢A rec X.P ⊲ ∆

54

The rule for inaction introduces the empty session typing.

(TINACT)
Γ ⊢A 0⊲ /0

We may further constrainΓ so that it only contains assignments to term variables, imperative vari-
ables and client channels (i.e. of the formch@A : (s̃)α). If we add this constraint to this rule as
well as to(TVAR), we have a property that the existence of an input channel typing in Γ implies its
existence in the subject process/network.

To start session typing, we need to introduce inaction types(which represent a terminal point of
a session type together with a recursive variable, which is introduced in (TVar)).

(WEAK-end)
Γ ⊢A P⊲ ∆ {s̃}∩ fn(∆) = /0

Γ ⊢A P⊲ ∆·s̃@A : end
(WEAK-⊥)

Γ ⊢A P⊲ ∆ {s̃}∩ fn(∆) = /0
Γ ⊢A P⊲ ∆·s̃ : ⊥

The next rule links process typing to the typing of a network.

(TPARTICIPANT)
Γ ⊢A P ⊲ ∆ Γ ⊢ σ@A

Γ ⊢ A[P]σ⊲ ∆
Composition and inaction rules for networks follow.

(TPAR-NW)
Γ ⊢ N1 ⊲ ∆1 Γ ⊢ N2 ⊲ ∆2 ∆1 ≍ ∆2

Γ ⊢ N1 | N2 ⊲ ∆1⊙∆2
(TINACT-NW)

Γ ⊢ ε⊲ /0
Restriction rules are also a precise copy of the corresponding rules for processes.

(TRES-NW,1)
Γ ⊢ M ⊲ ∆, s̃1ss̃2 : ⊥

Γ ⊢ (νννs) M ⊲ ∆, s̃1s̃2 : ⊥
(TRES-NW,2)

Γ ⊢ M ⊲ ∆, ε : ⊥
Γ ⊢ M ⊲ ∆

We also have an exact copy of the two weakening rules, listed below for reference:

(WEAK-end-NW)
Γ ⊢ M ⊲ ∆ {s̃}∩ fn(∆) = /0

Γ ⊢ M ⊲ ∆·s̃@A : end
(WEAK-⊥-NW)

Γ ⊢ M ⊲ ∆ {s̃}∩ fn(∆) = /0
Γ ⊢ M ⊲ ∆·s̃ : ⊥

The list of all the typing rules are given in Figure 21
The standard syntactic properties follow. Below in (4),fn(Γ) denotes all names inΓ, which

include term variables, standard variables and channels.

PROPOSITION3.

(1) (weakening) Γ ⊢ M ⊲ ∆ impliesΓ·Γ′ ⊢ M ⊲ ∆. With s̃ fresh,Γ ⊢ M ⊲ ∆ implies
Γ ⊢ M ⊲ ∆·s̃ : ⊥.

(2) (thinning) Assumefc(Γ′)∩ fn(M) = /0. ThenΓ·Γ′ ⊢ M ⊲ ∆ impliesΓ ⊢ M ⊲ ∆.
(3) (subsumption)If Γ,ch@A : (s̃)α ⊢ M ⊲ ∆ and α � β then Γ,ch@A : (s̃)β ⊢ M ⊲ ∆.

Similarly, if Γ ⊢ M ⊲ ∆·s̃@A : α andα � β thenΓ ⊢ M ⊲ ∆·s̃@A : β.

Proof. In Appendix C. �

REMARK 1 (subsumption at service channels). The subsumption for the service typing at input
channels does not hold in the present system. Howeversemanticallysuch service typing is in fact
sound. Thus we may as well add the following rule:

(SUBS-SERVICE)
Γ,ch@A : (s̃)α ⊢ M ⊲ ∆ α � β

Γ,ch@A : (s̃)β ⊢ M ⊲ ∆
A basic consequence of adding this rule is that we have not only the minimal typing but also the
principal typing, see Remark 2 below.

The following result says that we can always find a representative typing for a given process, and,
moreover, we can do so effectively. Such a type is minimum among all assignable typings w.r.t. the
subtyping relation, so that we call it theminimal typingof a given term.

CONVENTION 4. A typingΓ ⊢ M ⊲ ∆ is strict if all free identifiers inΓ and∆ occur in M. We
also writeΓ ⊢ M for Γ ⊢ M ⊲ /0, similarly Γ ⊢A P stands forΓ ⊢A P⊲ /0. Further we writeΓ0 ≺ Γ
and∆0 ≺ ∆ by extending≺ point-wise at their service/session channels (for variables typing should
coincide).

55

(TINIT-IN)
Γ ⊢A P ⊲ s̃@A:α

Γ,ch: !(s̃)α@A ⊢A !ch(s̃).P ⊲ /0

(TINIT-OUT)
Γ, ch:(s̃)α@B ⊢A P ⊲ ∆ · s̃@A : α
Γ, ch:(s̃)α@B ⊢A ch(ννν s̃).P ⊲ ∆

(TBRANCH)
K ⊆ J s∈ t̃ Γ ⊢ x j : θ j Γ ⊢A Pj ⊲ ∆ · s̃@A : α j

Γ ⊢ s⊲ Σ jop j (x j).Pj ⊲ ∆ · s̃@A : Σk∈Ksk!opk(θk) .αk

(TSEL)
j ∈ J ⊆ K Γ ⊢ e : Var(θi) Γ ⊢A P ⊲ ∆ · s̃@A : α j

Γ ⊢A s⊳ opj〈e〉.P ⊲ ∆ · s̃@A : Σk∈Ks↑ opk(θk) .αk

(TASSIGN)
Γ ⊢A x : θ Γ ⊢ e : θ Γ ⊢A P⊲ ∆

Γ ⊢A x := e.P⊲ ∆

(TIF)
Γ ⊢ e : bool Γ ⊢A P⊲ ∆ Γ ⊢A Q⊲ ∆

Γ ⊢A if e then P else Q⊲ ∆
(TSUM)

Γ ⊢A P⊲ ∆ Γ ⊢A Q⊲ ∆
Γ ⊢A P⊕Q⊲ ∆

(TPAR)
Γ ⊢A P⊲ ∆1 Γ ⊢A Q⊲ ∆2 ∆1 ≍ ∆2

Γ ⊢A P | Q⊲ ∆1⊙∆2

(TRES,1)
Γ ⊢A P ⊲ ∆, s̃1ss̃2 : ⊥

Γ ⊢A (νννs) P ⊲ ∆, s̃1s̃2 : ⊥
(TRES,2)

Γ ⊢A P ⊲ ∆, ε : ⊥
Γ ⊢A (νννs) P ⊲ ∆

(TVAR)
−

Γ,X : ∆ ⊢A X ⊲ ∆
(TREC)

Γ, X : ∆ ⊢A P ⊲ ∆
Γ ⊢A rec X.P ⊲ ∆

(TINACT)
Γ ⊢A 0⊲ /0

(WEAK-end)
Γ ⊢A P⊲ ∆ {s̃}∩ fn(∆) = /0

Γ ⊢A P⊲ ∆·s̃@A : end
(WEAK-⊥)

Γ ⊢A P⊲ ∆ {s̃}∩ fn(∆) = /0
Γ ⊢A P⊲ ∆·s̃ : ⊥

(TPARTICIPANT)
Γ ⊢A P ⊲ ∆ Γ ⊢ σ@A

Γ ⊢ A[P]σ⊲ ∆

(TPAR-NW)
Γ ⊢ N1 ⊲ ∆1 Γ ⊢ N2 ⊲ ∆2 ∆1 ≍ ∆2

Γ ⊢ N1 | N2 ⊲ ∆1⊙∆2
(TINACT-NW)

Γ ⊢ ε⊲ /0

(TRES-NW,1)
Γ ⊢ M ⊲ ∆, s̃1ss̃2 : ⊥

Γ ⊢ (νννs) M ⊲ ∆, s̃1s̃2 : ⊥
(TRES-NW,2)

Γ ⊢ M ⊲ ∆, ε : ⊥
Γ ⊢ M ⊲ ∆

(WEAK-end-NW)
Γ ⊢ M ⊲ ∆ {s̃}∩ fn(∆) = /0

Γ ⊢ M ⊲ ∆·s̃@A : end

(WEAK-⊥-NW)
Γ ⊢ M ⊲ ∆ {s̃}∩ fn(∆) = /0

Γ ⊢ M ⊲ ∆·s̃ : ⊥

FIGURE 21. Typing Rules for End-Point Calculus

DEFINITION 3 (Minimal Typing). Assume M is typable. ThenΓ0 ⊢ M ⊲ ∆0 is theminimal
typing of M if, wheneverΓ ⊢ M ⊲ ∆ is strict, we haveΓ0 ≺ Γ and∆0 ≺ ∆.

PROPOSITION4. (existence of minimal typing)Let Γ0 ⊢ M ⊲ ∆0 be the minimal typing of M.
ThenΓ0 and∆0 are algorithmically calculable from M.

56

Proof. This is the standard result in session typing systems. For reference, Figure 22 gives the
derivation rules. In the rules,∨ denotes taking the join with respect to the subtyping ordering. ≍ is
taken so that an output typeα and an input typeβ can be coherent in the following way:

α↓ ≍ β↑ ⇐⇒ α � β

(note this meansα has more branches thanβ at each input point). Similarly for the service typing.
Composition⊙ at service typing then always preserves the input side of thetyping, i.e. assuming
α↓ ≍ β↑, we have

!(s̃)α⊙?(s̃)β def
= !(s̃)α (α ≍ β)

That the rules derive the minimal typing is by induction on the typing rules, comparing each rule
with the corresponding one in Figure 21. �

REMARK 2 (principal typing). The minimal typing of a typable network/process is determined
uniquely up to the standard isomorphism on recursive types.However this minimal typing maynot
be a principal typing, in the sense that even if we haveΓ ⊢ M such thatΓ is minimal, and if we have
Γ � Γ′, it may not be the case we haveΓ ⊢ M. This is because of the lack of syntactic subtyping at
service (replicated) channels, as discussed in Remark 1, page 55, By adding(SUBS-SERVICE) noted
in Remark 1, each typable term has a principal typing.

We next prove the central property of the typing rules, the subject reduction.

LEMMA 2. (substitution)

(1) If Γ ⊢ A[P]σ ⊲ ∆, Γ ⊢ x@A : θ andΓ ⊢ v : θ, thenΓ ⊢ A[P]σ[x7→v] ⊲ ∆.

(2) If Γ,X : ∆ ⊢A P ⊲ ∆′ andΓ ⊢A Q ⊲ ∆, thenΓ ⊢ P[Q/X] ⊲ ∆.

Proof. Standard. See Appendix C. �

LEMMA 3. (subject congruence)If Γ ⊢ M ⊲ ∆ and M≡ N thenΓ ⊢ N ⊲ ∆.

Proof. Standard. See Appendix C. �

THEOREM2. (Subject Reduction)If Γ ⊢ N⊲ ∆ and N→ N′ thenΓ ⊢ N′ ⊲ ∆.

Proof. By Lemmas 2 and 3. See Appendix C. �

Let us sayM has acommunication errorif either:

M ≡C[s⊲ Σiopi(xi).Pi|s⊳ op〈.〉Q] s.t. op 6∈ {opi}

or
M ≡C[A[s⊲ Σiopi(xi).Pi|R]σ|B[s⊳ op〈.〉Q|S]σ′] s.t. op 6∈ {opi}.

whereC[] is a reduction context (i.e. a context whose hole is not undera prefix). That is,M has a
communication error when it contains an input and an output at a common channel which however do
not match in operator names (we can further add mismatch in types of evaluation). A basic corollary
of Theorem 2 follows.

COROLLARY 1. (Lack of Communication Error)If Γ ⊢ N ⊲ ∆ and N→∗ M, then M never
contains a communication error.

Proof. By Lemma 3 and by noting an incompatible redex is not typable. �

Thus once a process/network is well-typed, it never go into acommunication mismatch.

12.3. Examples of Typed Terms.

57

(TINIT-IN)
Γ ⊢min

A P ⊲ s̃@A:α
Γ,ch: !(s̃)α@A ⊢min

A !ch(s̃).P ⊲ /0

(TINIT-OUT)
Γ, ch:?(s̃)α@B ⊢min

A P ⊲ ∆ · s̃@A : β
Γ, ch:?(s̃)(α∨β)@B ⊢min

A ch(ννν s̃).P ⊲ ∆

(TBRANCH)
s∈ t̃ Γ ⊢ x j : θ j Γ ⊢min

A Pj ⊲ ∆ · s̃@A : α j

Γ ⊢min s⊲ Σ jop j (x j).Pj ⊲ ∆ · s̃@A : Σ j∈Jsk!opj (θ j) .α j

(TSEL)
Γ ⊢ e : Var(θi) Γ ⊢min

A P ⊲ ∆ · s̃@A : α j

Γ ⊢min
A s⊳ opj〈e〉.P ⊲ ∆ · s̃@A : Σ j∈Js↑ opj (θ j) .α j

(TASSIGN)
Γ ⊢A x : θ Γ ⊢ e : θ Γ ⊢min

A P ⊲ ∆
Γ ⊢min

A x := e.P ⊲ ∆

(TIF)
Γi ⊢ e : bool Γ1 ⊢min

A P ⊲ ∆1 Γ2 ⊢min
A Q ⊲ ∆2

Γ1∨Γ2 ⊢min
A if e then P else Q ⊲ ∆1∨∆2

(TSUM)
Γ1 ⊢min

A P ⊲ ∆1 Γ2 ⊢min
A Q ⊲ ∆2

Γ1∨Γ2 ⊢min
A P⊕Q ⊲ ∆1∨∆2

(TPAR)
Γ ⊢min

A P ⊲ ∆1 Γ ⊢min
A Q ⊲ ∆2 ∆1 ≍ ∆2

Γ1∨Γ2 ⊢min
A P|Q ⊲ ∆1⊕∆2

(TRES,1)
Γ ⊢min

A P ⊲ ∆, s̃1ss̃2 : ⊥

Γ ⊢min
A (νννs) P ⊲ ∆, s̃1s̃2 : ⊥

(TRES,2)
Γ ⊢min

A P ⊲ ∆, ε : ⊥

Γ ⊢min
A (νννs) P ⊲ ∆

(TVAR)
Γ,X : ∆ ⊢min

A X ⊲ ∆
(TREC)

Γ, X : ∆ ⊢min
A P ⊲ ∆

Γ ⊢min
A rec X.P ⊲ ∆

(TINACT)
Γ ⊢min

A 0 ⊲ /0
(TPARTICIPANT)

Γ ⊢min
A P ⊲ ∆ Γ ⊢ σ@A

Γ ⊢min A[P]σ ⊲ ∆

(TPAR-NW)
Γ ⊢min N1 ⊲ ∆1 Γ ⊢min N2 ⊲ ∆2 ∆1 ≍ ∆2

Γ ⊢min N1 | N2 ⊲ ∆1⊙∆2
(TINACT-NW)

Γ ⊢min ε ⊲ /0

(TRES-NW,1)
Γ ⊢min M ⊲ ∆, s̃1ss̃2 : ⊥

Γ ⊢min (νννs) M ⊲ ∆, s̃1s̃2 : ⊥
(TRES-NW,2)

Γ ⊢min M ⊲ ∆, ε : ⊥
Γ ⊢min M ⊲ ∆

FIGURE 22. Minimal Typing Rules for End-Point Calculus

EXAMPLE 17. We can now give a possible end-point version of what we showed in Example 11:

Buyer[B2SCh〈s〉 .s⊳ RequestForQuote .s⊲ QuoteResponse(xquote) .

s⊳ (QuoteReject +

QuoteAccept .s⊲ OrderConfirmation .s⊳ DeliveryDetails)]α |

Seller[B2SCh(s) .s⊲ RequestForQuote .s⊳ QuoteResponse〈vquote〉 .

s⊲ (QuoteReject +

QuoteAccept .s⊳ OrderConfirmation .S2ShCh〈s′〉 .

s′ ⊳ RequestDelDetails〈Buyer〉 .s⊳ DeliveryDetails(xDD)

s⊲ DeliveryDetails)]β |

Shipper [S2ShCh(s′) .s′ ⊲ RequestDelDetails(xClient) .s⊳ DeliveryDetails(DD)]γ

58

It is simple to verify that the typing we gave in the previous section for the global view of this protocol
is just good enough for typing the network above.

13. Theory of End-Point Projection (1): Connectedness

In preceding sections, We have presented many example specifications both as a global view
in the global calculus and as a local view written in the end-point calculus. In doing so, we always
introduced a global description first, and from that one we recovered the corresponding end-point
processes.

From an engineering viewpoint, these two steps — start from aglobal description, then extract
out of it a local description for each end-point — offer one ofthe effective methods for designing and
coding communication-centric programs. It is often simplyapain to design, implement and validate
an application that involves complex interactions among processes and whichtogether work cor-
rectly, if we are to solely rely on descriptions of local behaviours. This is why such tools as message
sequence charts and sequence diagrams have been used as a primary way to design communication
behaviour. In fact, the primary concern of the design/requirement of communication behaviour of an
application would in general be how global information exchange among processes will take place
and how these interactions lead to desired effects: the local behaviour of individual components only
matter to realise this global scenario. Thus, in designing and implementing communication-centric
software, one may as well start from a global description of expected behaviour, then translate it into
local descriptions. How this can be done generally and uniformly with a formal foundation is the
theme of this section, studied in the distilled setting of the two calculi of interaction.

Translating a global description to its end-point counterpart, the process calledend-point pro-
jection, can however be tricky, because we can easily produce a global description which does not
correspond to any reasonable local counterpart. In other words, if you do not follow good principles,
our global description doesnot in fact describe realisable interaction. But are there general princi-
ples for global descriptions which guarantee any global description be uniformly mapped to correct
end-point behaviour as far as it follows them? Such principles should not be too restrictive, allowing
projection of a large class of global descriptions onto their efficient local realisations.

In the context of the core calculi we presented in this paper,we have identified three simple
descriptive principles, whose technical examination is the purpose of the present section. These are:

• Connectedness, which says a basic local causality principle is obeyed in a global descrip-
tion.

• Well-threadedness, which says a stronger locality principle based on session types.
• Coherence, which says a refined criterion on the basis of well-threadedness, specifying

consistency of description for each “service”.

All these principles are stipulated incrementally on the basis of well-typedness: well-threadedness
does not make sense without an interaction being connected;and coherence can only be defined
for well-threaded interactions. These three conditions not only offer natural disciplines for well-
structured description, but also they offer gradually deeper analysis of operational aspects of global
description. Connectedness uncovers causal relationshipamong actions, on whose basis well-threadedness
dissects how we can extract atomic chunks of local activities (calledthreads) from a global interac-
tion, crucially using the underlying type structure. Coherence stipulates the condition under which
these threads can be formed and combined to produce a whole behaviour of each participant. The
resulting participants can now realise, when combined together, all and only interactions prescribed
in the original global description. Thus by way of offering aprecise analysis of the conditions for
local projectability of a global description, these three principles let us arrive at the construction of a
formally founded end-point projection. Descriptive principles are by themselves structural analysis
of the operational content of global descriptions, leadingto the function which maps them to the
corresponding local descriptions.

13.1. Connectedness.Connectedness dictates a local causality principle in interaction — if
A initiates any action (say sending messages, assignment, ..) as a result of a previous event (e.g.

59

reception of a message), then that preceding event should take place atA. For example, consider:

(75) A→B : s〈op1, e1, y1〉 .C→D : s′〈op2, e2, y2〉.0.

According to the dynamic semantics of the global calculus, there is first an execution of the interac-
tion between participantsA andB and then an interaction between participantsC andD takes place.
For implementing such a sequence of interactions in a distributed setting, we need a hidden notifi-
cation message fromB to C. That is. (75) does not describe all of the communication sequences
needed to realise the demanded sequencing. So (75) is an incomplete description of communication
behaviour. This is why we wish to avoid e descriptions violating the local causality principle such as
(75).8

To formalise the local causality principle informally discussed above, we need to say which
participant initiates an action inI : this participant should be the place where the preceding event
happens. This notion is defined as follows.

DEFINITION 4 (initiating participants). Given an interactionI in which hiding does not occur,
its initiating participants, denotedtop(I), is inductively given as follows.

top(I)
def
=

{A} if I
def
= A→ B : ch(ννν s̃) . I ′

{A} if I
def
= A→B : s〈op, e, x〉 . I

{A} if I
def
= if e@A then I1 else I2

{A} if x@A := e. I ′

{A} if I
def
= XA

/0 if I
def
= 0

top(I ′) if I
def
= rec XA . I ′

top(I1)∪ top(I2) if I
def
= I1 | I2

top(I1)∪ top(I2) if I
def
= I1 + I2

If A∈ top(I), we sayA is aninitiating participant of I.

REMARK 3. By Convention 1 (cf. page 30), it is natural to restrict concerned interactions to
terms without restriction.

GivenI , the functiontop generates a set of participant. The generated set contains the participants that
initiates the first action ofI (note we count “sending” actions, which are session initiation and sending
a message, as “initiating” actions, but we don’t do so for thecorresponding receiving actions: as we
shall analyse later in Section 13.2-13.3, this is the most robust option, though there are alternatives).
The annotation for a term variable,A for XA, has now revealed its role, as a signifier of the initiating
participant of the behaviour embodied byX. We discuss how this allows validation of connectedness
in the presence of recursion. We now present the inductive definition of connectedness.

CONVENTION 5 (well-typedness). Henceforth we only consider well-typed terms for both
global and local calculi, unless otherwise specified.

DEFINITION 5 (Strong Connectedness).The collection ofstrongly connected interactionsare
inductively generated as follows (considering only well-typed terms, cf. Convention 5).

(1) A→ B : ch(νννs) . I ′ is strongly connected when I′ is strongly connected andtop(I ′) = {B}.
(2) A→B : s〈op, e, x〉 . I is strongly connected when I is strongly connected andtop(I) = {B}.
(3) if e@A then I1 else I2 is strongly connected when I1, I2 are both strongly connected and

{A} = top(I1) = top(I2).
(4) I1+ I2 is strongly connected when I1, I2 are both strongly connected and{A} = top(I1) =

top(I2).
(5) rec XA . I ′ is strongly connected when{A} = top(I ′).

8We can of course insert additional communication missing from (75). But this is precisely we need a
principle dictating when such an insertion is necessary andhow this may be done.

60

(6) XA is always strongly connected.
(7) x@A := e. I ′ is strongly connected when I′ is strongly connected and{A} = top(I ′).
(8) I1 | I2 is strongly connected when both I1 and I2 are strongly connected.
(9) (νννs) I is strongly connected when I is strongly connected.

(10) 0 is always strongly connected.

Note strongly connected implies well-typed. Strong connectedness says that, in communication ac-
tions, only the message reception leads to activity (at the receiving participant), and that such activity
should immediately follow the reception of messages. Variants of the notion of connectedness (which
loosen some of the clauses of the definition above) are discussed in the next subsection. Among oth-
ers the following variant allows an identical technical development as the notion presented above
while useful in various examples.

As we shall discuss in the next subsection, there are more looser variants of connectedness
which can be used in its place, allowing all the remaining theoretical development to go through.
Strong connectedness is chosen since it allows a most transparent theoretical development. Further
we can often encode descriptions following looser principles using strongly connected interactions
preserving semantics.

The defining clauses of Definition 5 should be naturally understood. We only illustrate the
treatment of recursion. Given a recursionrec XA . I ′ and its operational semantics (cf. Section 10.3),
each occurrence of the term variableX can be seen as a link back to the beginning of recursion,
i.e. the recursive termrec XA . I ′ itself. This view suggests that, for guaranteeing connectedness, we
need to make sure that the action precedingX should be connected to thebeginningof the recursion,
i.e. the initiating participant ofI . For this to happen, we first annotateX with A, by which we can
statically check its preceding event happens toA; then we demandI ′, the body of recursion, does
indeed start fromA. This justifies the participant annotation on recursion variables.

We now show basic properties of strongly connected interactions.

LEMMA 4 (Substitution).Let I1 and I2 be two strongly connected interactions such thattop(I2)=
{A}. Then the interaction I1[I2/XA] is strongly connected andtop(I1) = top(I1[I2/XA]).

Proof. By induction on the syntax of the calculus.

• Induction base.
– 0. Vacuous.
– XA. In this case, we have thatI1[I2/XA] is exactlyI2 which is strongly connected by

assumption andtop(XA) = {A}.
• Inductive cases.

– A → B : ch(ννν s̃) . I . In this case, we have by induction hypothesis thatI [I2/XA] is
strongly connected and{B} = top(I) = top(I [I2/XA]). It follows that alsoA→ B :
ch(ννν s̃) . I [I2/XA] is strongly connected.

– A→B : s〈op, e, y〉 . I . Similar to previous case.
– x@A := e. I . Similar to previous case.
– I | I ′. In this case we must apply induction hypothesis to bothI and I ′. Then it

follows that it holds also for the parallel composition.
– if e@A then I1 else I2. Observing thattop(I1) = top(I2) = {A} we can reduce to

previous case.
– I1 + I2. As above.
– (νννs) I . Similar to previous case.
– recXA . I . Similar to previous case.

LEMMA 5 (Strong Connectedness: Subject Congruence).Let I1 and I2 be two interactions. If
I1 ≡ I2 and I1 is strongly connected then I2 is strongly connected.

Proof. We can show that this holds for all cases:

61

• rec XA . I ′′ ≡ I ′′[rec XA . I ′′/XA]. In this case,rec XA . I ′′ and soI ′′ are strongly connected
with top(I ′′) = {A}. By Lemma 4, it follows that alsoI ′′[rec XA . I ′′/XA] is strongly
connected.

• (νννs) I | I ′ ≡ (νννs) (I | I ′) (if si 6∈ f n(I ′)). Trivial.
• (νννs) (νννs′) I = (νννs′) (νννs) I . Trivial.

PROPOSITION5 (Strong Connectedness: Subject Reduction).Let I be strongly connected and
σ be well-typed. Then(σ, I) → (σ′, I ′) implies I′ is strongly connected.

Proof. By induction on the reduction rules.

• Induction base cases.
– (INIT). In this case we have that(σ,A→ B : ch(ννν s̃) . I ′) → (σ,(ννν s̃) I ′′) and by defi-

nition of strong connectedness we have that it is connected wheneverI ′′ is strongly
connected andtop(I ′′) = B. Moreover,(ννν s̃) I ′′ is strongly connected wheneverI ′′ is
strongly connected which concludes this case.

– (COMM). By applying the rule, we get(σ,A→B : s〈op, e, x〉 . I) → (σ′, I) if and
only if σ ⊢ e@A⇓ v. By definition of strong connectednessI is strongly connected.

– (ASSIGN). This rule states that(σ,x@A := e. I ′) → (σ′, I ′). By definition of strong
connectedness we have thatI ′ is strongly connected.

– (IFTRUE) and (IFFALSE). We have that(σ, if e@A then I1 else I2) → (σ, I) and by
definition of strong connectedness we have thatI = Ii is strongly connected.

• Inductive cases.
– (PAR). This rule implies that(σ, I1 | I2)→ (σ′, I ′1 | I2) if and only if (σ, I1)→ (σ′, I ′1).

Now, by definition of strong connectedness we have thatI1 andI2 are strongly con-
nected. Moreover, by induction hypothesis, we have thatI ′1 is strongly connected.
Finally, by using the definition of strong connectedness again, we have that asI ′1 and
I2 are strongly connected then also their parallel composition I ′ = I ′1 | I2 is strongly
connected.

– (RES). Applying the rule for restriction we have that(σ,(ννν s̃) I1) → (σ′,(ννν s̃) I2)
if and only if (σ, I1) → (σ′, I2). This implies thatI1 is strongly connected and by
induction hypothesis alsoI2 is strongly connected. We can then conclude that also
(ννν s̃) I2 is strongly connected.

– (STRUCT). The structural rule is similar to the previous one. We onlyhave to make
sure that connectedness is preserved by the structural congruence and this is ensured
by Lemma 5.

Strong connectedness (as well as its variants) imposes a strong structural constraint on the shape
of interactions. One such consequence is the following observation. Intuitively it says that, in each
thread of interactions, there is always one single participant ready to perform any operation that is not
an input; while the remaining participants are waiting for input. At any stage of a thread of activity,
there is only one participant performing any operation but and input. On the contrary, the rest of the
other participant are all performing an input.

DEFINITION 6 (Input-Output Form).Let Γ ⊢ I ⊲ ∆, assume that I structurally equivalent to
ΣiA→B : s〈opi, ei , xi〉 . Ii or A→B : ch(νννs) . I ′ and consider the tree generated by unfolding recursion
occurrences. I is ininput-output formwhenever for all C6= A, C occurs in each path (towards the
leaves) first as a receiver, then zero or more ifthenelse, assignments and then as an output.

LEMMA 6. If I is structurally equivalent toΣiA→B : s〈opi, ei , xi〉 . Ii or A→B : ch(νννs) . I ′ and,
moreover, it it is strongly connected, then I is always in input-output form.

Proof.Direct from the definition of strong connectedness.
We shall use this observation during our next analysis, in which we extract true units of activity from
a global description.

62

13.2. Further Examination of Connectedness (1): Input and Output Asymmetry. In strong
connectedness, we regard only a sending action to be “initiating”. Some observations on this point
follows.

First, for session initiation actions, this is a natural choice. The typing of the end-point calculus
is based on the idea that a service channel should always be available: in such a setting, the only
feasible choice for guaranteeing the sequencing as specified in a global description is to use only a
sending party as the one who does an action.

Second, for in-session communication actions, we can indeed swap the inputting party and
outputting party as an “initiator” of sequencing, at least theoretically. For example, compare the
following two interactions. The first one is strongly connected:

(76)
x@A := 3.
A→B : s〈op〉.
...

while the second one uses the reverse sequencing.

(77)
x@A := 3.
B→A : s〈op〉.
...

By a close look at (76), we observe the following assumption:

In the second action,B should already be ready to receive ats; while A will
just at this second stepdoes the sending action.

Note that, in this assumption, we arenot demanding a strict sequencing in the inputting side: rather
it is in the outputting party which takes responsibility forthe timing of this communication action.
It is not feasible to demand both parties should make ready their complementary actions at the same
time.

If we are to allow (77) and to have local processes obey the described sequencing, the assump-
tion would be:

In the second action,A should already be ready to send (or have sent) ats;
while B will just at this second stepbecome ready to receive an action.

Note this argument for “sequencing by input” holds even in the context of asynchronous commu-
nication (either the pure one or the one with arrival order nondeterminism). However (77) isnot a
good discipline, simply because, when a participant is sending, it should first create a datum: and
this may as well be done as the result of the preceding event atthe sender side, not at the receiver’s
side. From this viewpoint, (77) neglects a hidden causalityprinciple for message creation, and may
not be a practical choice.

These arguments suggest our assumption that it is a sender rather than a receiver who realises
a sequencing is a natural idea. We next discuss two basic variants of connectedness based on this
understanding of sequencing.

13.3. Further Examination of Connectedness (2): Variants of Connectedness.
r-Strong Connectedness.Strong connectednessis robust with respect to asynchrony of mes-

sages, i.e.even if we assume all messages are sent asynchronously in end-point processes, the princi-
ple still guarantees strict sequencing. Strong connectedness however is often too strict. For example,
consider the following description:

(78)
Buyer → Seller : QuoteCh(νννs).
Buyer→Seller : s〈RequestQuote, productName, x〉.
Seller→Buyer : s〈ReplyQuote, productPrice, y〉.0

63

Here a Buyer requests a Seller to start a session through a service channelQuoteCh, exchanging a
fresh session channels. Throughs, the Buyer request a quote with a product name. The Seller then
replies with the corresponding product price.9

Sending multiple consecutive messages from one party to another in a session is often found in
practice (in both business and security protocols). Further (78) may not violate the essential idea of
strong connectedness both logically and in implementation: first, it is still a reception of a message
which acts as a trigger of an event in a different participant. Second, we can always send such
consecutive messages in one go, so that it still works in the infrastructure which implements each
message flow by asynchronous messaging (note if we send theseconsecutive messages separately, we
need to guarantee the order of messages in some way, for whichpurpose we may use a widely used
transport level protocol such as TCP). We call a refinement ofstrong connectedness which allows
such consecutive interactions from the same sender to the same receiver,strong connectedness
relative to repetition, or r-strong connectedness. We give its formal definition below for reference.

DEFINITION 7. We sayI starts from an action from A to Bwhen I is prefixed with a session
initiation from A to B or a communication fromA to B.

DEFINITION 8 (r-strong connectedness). labeldef:r:strongconnectedness The set ofr-strong
connected interactionsare inductively generated as follows.

(1) A → B : ch(νννs) . I ′ is r-strongly connected whenI ′ is r-strongly connected and either
top(I ′) = {B} or I ′ starts from an action fromA to B.

(2) A→B : s〈op, e, x〉 . I is r-strongly connected whenI is r-strongly connected and either
top(Ii) = {B} or I is prefixed by an action fromA to B.

For other terms we use the same clauses as in Definition 5, replacing “strong connectedness” with
“r-strong connectedness”.

One may note all relative strong connected interactions canbe encoded into strong connected inter-
actions. For example, (79) can be translated into:

(79)

Buyer → Seller : QuoteCh(νννs).
Seller→Buyer : s〈Ack〉.
Buyer→Seller : s〈RequestQuote, productName, x〉.
Seller→Buyer : s〈ReplyQuote, productPrice, y〉.0

Thus we only have to add one ack between two consecutive actions in the same directions. For this
reason, in all technical developments which depend on strong connectedness, we can equally use
r-strong connectedness without any change in essential arguments. In particular, the same soundness
and completeness results for the endpoint projection hold.

Connectedness.We can further loosen relative strong connectedness. For one thing, one may
consider the following description is a natural one.

(80)

Broker → Seller : SellerCh(νννs).
Broker → Buyer : BuyerCh(ννν f′,s′).
Broker→Seller : s〈RequestQuote, productName, x〉.
Broker→Buyer : s′〈RequestQuote, productName, y〉.
Seller→Broker : s〈ReplyQuote, productPrice, z〉......

Here Broker does four consecutive actions which are targeted to two different participants. Further
this global description specifies, in the fifth line, that a Seller replies to a Buyer even though the
immediately preceding action goes to the Buyer. However, itis natural and easy to consider that
Seller can send its message after the third line, and this is received by Broker in the fifth line. The
description still obeys a locality principle, which is directly realisable in synchronous communica-
tion. It is also easy to realise this idea in asynchronous communication as far as message sending
order for each target is preserved (if message order is not preserved even for the same participant,

9In practice, one may as well describe the initial “session initiation” action and the first RequestQuote action
as one action, as in WS-CDL. One may as well consider (78) as a representation of this idiom in a formal setting.

64

we may still be able to group messages and send them again in one go up to a permutation, even
though this becomes complicated if there is a branching, which is somewhat similar to permutation
of instructions in pipelining in modern CPUs).

This principle, which we simply callconnectedness, can be formalised by accumulating po-
tential initiating participants one by one. For example, inthe first line, it may well be the case
that Broker is the only potential initiating participant. After the first line, Seller joins. After the
second line, Buyer further joins. So in the fifth line, Sellercan indeed invoke an interaction. Sim-
ply connected interactions again allow the parallel technical development, even though operational
correspondence needs adjustment.

This relaxed variant of connectedness has one issue in thatsequencing in a global action may
show false dependencywhen projected onto local behaviour. This means, among others, connected
but not r-strong connected descriptions are in general not well-threaded in the sense we shall discuss
later. In spite this observation, we strongly believe this relaxed version of connectedness will have
a basic role as a structuring principle of global descriptions, on which we are intending to explore
elsewhere.

Other Concerns.By introducing other syntactic constructs such as join operation, the notion
of connectedness can further be refined. As far as such a variant imposes a reasonable constraint fol-
lowing a locality principle of actions, we believe the corresponding principle can be used as a sound
substrate for the essentially equivalent technical development we shall discuss in the subsequent
subsections.

14. Theory of End-Point Projection (2): Well-Threadedness

14.1. Service Channel Principle.With strong connectedness, each interaction is a direct con-
sequence of the preceding local event. On this basis, a finer analysis of interaction is possible, which
allows us to extract a unit of behaviour acting in a global description. This unit is calledthread,
which plays a pivotal role in the present theory of endpoint projection.

Before introducing the notion of threads, we first illustrate one subtle point in the way service
channels (which act as initiating points of sessions) are represented in the end-point calculus using
an example. Consider the following global description:

(81)

A→ B : chB(νννs) .
B→ A : chA(ννν t) .

A→B : t〈op1, v1, x〉 .
B→A : s〈op2, v2, y〉 .0

First we haveA askingB for service (session)chB, thenB askingA for servicechA, thenA replying
to B with a value on session namet (belonging to sessionchA) and finallyB sending toA a value
using session names (belonging tochB). Now consider the following naive implementation of the
interaction above as communicating local processes, focussing onA.

(82) A[chB(νννs) .!chA(t) .t ⊳ op1〈v1〉 .s⊲ op2〈y〉.0]σA

The local description (82) directly translatesA’s portion of (81), whereA first asksB for service via
chB, then waits for somebody (hereB) to ask for its own servicechA, then sends a value toB over
t, and finally waits for a value to be sent overs. Is this a faithful way to represent the behavioural
content of (82)?

Suppose another client wishes to use a service available atchA. The projected behaviour (82)
indicates that this service atchA becomes available only whenA finishes an interaction atchA, which
makes availability of service atChA dependent onA’s action (the issue becomes worse ifA waits for
B’s reply before offeringchA).

Generally, in our formalism and in web-service languages such as WS-CDL, a channel used for
initiating protocols (service channelsin our formalism, initial channels for starting choreographies/sub-
choreographies in WS-CDL, which may as well be public URLs) are intended to be repeatedly in-
vokable and be always available to those who know the port names. In fact, in the standard practice
of web services, a service is embodied by a shared channels inthe form of URLs or URIs through

65

which many users can throw their requests at any time (such availability at shared ports is maintained
as part of the standard notion of “service” in a service-based framework going beyond web service).
This is why the construction of services as found in (82) looks unnatural: a service channel should
always be available to clients who know its URL. This may be called service channel principle.

In the engineering context, a basic form of service channel principle can be found in RPC and
RMI, and its web-service embodiment such as SOAP. In the context of theπ-calculus, this notion
is representable as a replicated input who is “receptive” (or “input ready”). We can easily enforce a
more refined discipline so that we can guarantee input service channels to be never under prefix in
the typing for the end-point calculus. If we do so, (82) becomes untypable.

We now present the local representation of (81) which indeedobeys the service channel princi-
ple. First we have the following local code forA:

(83) A[! chA(t).t ⊳ op1〈v1〉 .0 | chB(νννs) .s⊲ op2〈y〉 .0]σA

ForB we have:

(84) B[! chB(s) .chA(νννt) . t ⊲ op1〈x〉 .s⊳ op2〈v2〉 .0]σB

By tracing reductions of the parallel composition of (83) and (84), we can check the interaction does
proceed faithfully following (81).

14.2. Motivation: False Causality in Global Description. We are now ready to illustrate the
notions of threads and well-threadedness. Consider the following global description:

(85)

A→ B : chB(νννs) .
B→C : chC(νννt) .

C → A : chA(νννu) .
A→B : s〈op, v, x〉 . I .

Note the description is strongly connected. However we claim this description is not well-structured,
and is impossible to be faithfully realised as reasonable end-point processes.

Let us examine the behaviour ofA described in (85). Following the service channel principle,
we can observe the behaviour ofA has two different chunks of code, which we (first informally)call
threads. The first thread starts a fresh session by invokingchB in B, and sends a value toB over s.
The other thread is the one which provides the service viachA (which may be realised inI). Thus the
local behaviour may be represented as:

(86) A[!chA(νννt) .PA | chB(νννs) .s⊳ op〈v〉 .QA]σA

In the same way, we may consider the following local implementation ofB.

(87) B[chB(s) .chC(νννt) .t ⊲ op〈x〉 .PB]σB

Finally, let us considerC’s end-point view:

(88) C[chC(t) .chA(νννu) .PC]σC

Let us now see how these process interact. AfterB asksC for servicechC, the processs⊲op〈x〉 .PB is
free to react with the terms⊳op〈v〉.PA2 in A, even beforeC has interacted withA’s other component.

Can we change the local behaviours (86, 87, 88) so that it can precisely represent the original
global behaviour (85)? We reason as follows.

(1) The service channel principle says that the channelchA is replicated and is ready to receive
an invocation.

(2) Now the session channels is initiated by a thread atA which is not under chA (since if it
is underchA, how can it be the initial move?).

(3) But for an action ats to take placeimmediately after invocation at chA, it should be under
chA, a contradiction.

Thus we concludeit is impossible to impose the global sequencing stipulated(85) by well-typed
local behaviours.This means (85) describes afalse dependency (sequentialisation) among actions
which cannot be realised by well-typed local interactions.This examples motivates the main theme of
this section, the descriptive principle calledwell-threadedness, which automatically prevents such

66

false dependency from appearing in global description. We introduce this notion formally in the next
two subsections.

14.3. Annotating Interactions with Threads. Let us come back to the first global description
(81), which we found to be realisable by end-point processesgiven in (83) and (84). Let us analyse
these few lines of global description (81) informally, reproduced below.

(1) A→ B : chB(νννs) .
(2) B→ A : chA(νννt) .
(3) A→B : t〈op1, v1, x〉 .
(4) B→A : s〈op2, v2, y〉 .
(5) 0

(1): This initial interaction is initiated byA, which is an output (session initiation) atB’s
service channelchB: dually the interaction is an input (reception of a session initiation)
for B at chB.

(2): B reactsby an interaction, again withA, but which is now an output forB and which is
asession initiationatA’s service channelchA. Dually it is aninput actionfor A, receiving
a session initiation at its ownchA. ForA, this input is doneindependently from the initial
output actionin (1).

At this point we realise, in(2) above, that,because B’s output action is a reaction to its own previous
input action, the former and the latter should be in the same “code”: we call such a causally connected
sequence of actions of the same participant, athread. Up to(2), we have the following three threads.

Thread 1:: which is inA, containing its invocation atchB, opening a channels.
Thread 2:: which is inB, containing its reception of the invocation above (openings) and

its subsequent invocation atchA (openingt).
Thread 3:: which is inA, containing a reception of invocation atchA (openingt).

Note Thread 1 and Thread 3 areseparate threads: whenever a new invocation of a service (or a new
session initiation) is done, this creates a new thread at thereceiving, or service, side.

Let us continue our analysis.

(3): The output ofA is reaction to its previous input, so it is in the same thread as the latter,
i.e. Thread 3. Since it uses the session channelt opened byA in its Thread 3 (in the
second line), this also shows this action should be in Thread3. The same interaction at
the third line is an input forB, which should be Thread 2, because it usest opened in the
initial action of Thread 2.

(4): HereB reacts by an output action ats. Since this is opened in its Thread 2, we know
this action byB should be in Thread 2. Similarly, the dual input action byA should be in
Thread 1 sinces is opened in Thread 1 forA.

(5): We have no more interaction, concluding the analysis.

As a summary, there are three threads as a whole, two forA and one forB. In A, we have one thread
(Thread 1) starting from an output and another (Thread 3) which is a “service” starting from input at
service channelchA: this is precisely the processes given in (83), reproduced below:

A[! chA(t).t ⊳ op1〈v1〉 .0 | chB(ννννννs) .s⊲ op2〈y〉 .0]σA

Similarly there is one service inB, Thread 2, as given in (84), reproduced below:

B[! chB(s) .chA(νννt) . t ⊲ op1〈x〉 .s⊳ op2〈v2〉 .0]σB

Thus extracting “threads” (in an informal sense) from a global description has led to obtaining local
behaviours which faithfully realise it. The analysis of local causality based on threads based on
session types is the main focus of the following discussion.We first start from annotating a global
interaction with a notion of threads.

67

DEFINITION 9 (Annotated Interaction). Thread annotated interactions, or simply annotated
interactions, writtenA,A ′, . . ., are given by the following grammar.

A ::= Aτ1 → Bτ2 : ch(s̃) .A

| Aτ1 →Bτ2 : s〈op, e, y〉 .A

| x@Aτ := e.A

| if e@Aτ then A1 else A2

| A1 +τA2

| A1 |
τ
A2

| XA
τ

| rec τXA .A

| 0

where eachτi is a natural number. We callτ,τ′, . . . occurring in an annotated interaction,threads

REMARK 4. In the parallel compositionA1 |
τ
A2, there is only one thread annotationτ. Observe

that, by connectedness, if such composition is under prefix,both share the same initiating participant.
The thread to which this participant belongs is the annotatingτ. Restricting our attention to such form
does not lose generality because if two independent interactions with (say) disjoint participants are
running, then we can treat each thread separately. For the same reason we do not have to annotate
the restriction (note the restriction can only occur outside of prefixes by Convention 1).

An annotated interaction annotates each node of an abstractsyntax tree of a term with threads, which
are given as natural numbers. For example, (81) is annotatedas, following our previous analysis:

A1 → B2 : chB(s) .
B2 → A3 : chA(t) .

A3→B2 : t〈op1, v1, x〉 .
B2→A1 : s〈op2, v2, y〉 .0

But we can also annotate the same global interaction with an inconsistent annotation:

A1 → B1 : chB(s) .
B2 → A1 : chA(t) .

. . .

which does not make sense.

14.4. Well-Threadedness.We have seen at the end of the previous subsection a thread anno-
tation may or may not make sense. Finding the condition for consistent threading is tantamounts
to finding a consistent way to annotate an interaction with threads. By our previous analysis, we
need to stipulate whether the causality specified globally can be precisely realisable locally. For
this purpose we need to analyse the tree structure of annotated interactions (we shall later show the
same analysis using typing rules: here we treat trees directly to make clear a geometric intuition of
wellthreadedness).

We fix some terminology. Regarding eachA as an abstract syntax tree, it has aconstructorat its
root (say prefix or parallel composition), which is annotated by either one thread or, if it is initiation
or communication, an ordered pair of threads (the first for sender the second the receiver). Above
the constructor, it has itsdirect subtree(s), each of which is another such abstract syntax tree. Each
(possibly indirect) subtree ofA is dominatedby each of its (direct and indirect) proper subtrees.

DEFINITION 10 (Basic Terminology for Threads). (1) If the root ofA is initialisation/communication
from B to C and is annotated by(τ1,τ2), thenτ1 (resp. τ2) is theactive thread ofA by
B (resp. thepassive thread ofA by C). If the root ofA is other constructors, then its
annotationτ is both its active thread and its passive thread.

68

(2) If A ′ occurs as a proper subtree ofA, then (the root of)A is apredecessorof (the root
of) A ′. Symmetrically we definesuccessor. A direct predecessor/successoris a prede-
cessor/successor which does not have no intermediate predecessor/successor.

Note if the root ofA is a predecessor of that ofA ′, then the former’s execution should indeed
temporarly precedes that of the latter. We can now introducethe consistency condition for thread
annotation.

DEFINITION 11 (Consistent Thread Annotation). A thread-annotated strongly connected in-
teractionA is globally consistentif the following conditions hold for each of its possibly indirect
subtrees, sayA ′.

(G1) Freshness Condition:: If A ′ starts with an initialisation, then its passive thread should
be fresh w.r.t. all of its predecessors (if any).

(G2) Session Consistency::If A ′ starts with a communication betweenB andC via (say)s
and another subtreeA ′′ of A starts with a communication vias or an initialisation which
openss, then the thread byB (resp. byC) of A ′ should coincide with the thread byB
(resp. byC) of A ′′.

(G3) Causal Consistency:: If A ′′ is the direct successor ofA ′, then the active thread ofA ′′

should coincide with the passive thread ofA ′.

A thread annotated interaction islocally consistentif it is globally consistent and if the following
conditions hold for each of its (possibly indirect) subtreesA.

(L) Local Causal Consistency:: SupposeA ′ is a supertree ofA andA is an initialisation
or a communication, similarly forA ′. If both contain the same threadτ and, moreover,A
is the first such subtree ofA ′, then ifτ is passive by (say)B thenτ is active byB and vice
versa.

REMARK 5. For (G2), the well-typedness already guarantees that, ifthere are two commu-
nications vias, or one communication vias and an initialisation opening it, then their involved
participants coincide.

(G1) says a fresh thread starts when a service is invoked.(G2) says two distinct interactions in the
same session (which are, by typing, always between the same pair of participants) should be given
the same threads w.r.t. each participant.(G3) says ifA has an input annotated as a (passive) thread
then its immediately following output should be annotated by the same (but this time active) thread.10

(L) is a crucial condition which is about local causality. It says that, within the same thread going
through an interaction, a participant acts in a strictly alternating fashion in initialisation/communication
actions.11 To illustrate this condition, let us go back to our initial example:

A→ B : chB(s) .
B→ A : chA(t) .
A→B : t〈op1, v1, x〉 .
B→A : s〈op2, v2, y〉 .0.

We notice that it works just because for each session, each flow of information from one participant
to another is always followed, if any, by an opposite flow of information, e.g.A starts sessionchB

with names thenB replies toA on s. If not, the causality depicted in the global description can
never be realised locally. Thus(L) embodies the condition which is the key to local realisability of
causality in a global description.

Somewhat surprisingly, global consistency implies local consistency.12

PROPOSITION6. If A is globally consistent, then it is also locally consistent.

10If we are to work with r-strong connectedness in Section 13.3, then (G3) should be refined so that if two
consecutiveA to B actions are given they should be annotated by the same threads.

11If we are to work with r-strong connectedness in Section 13.3, then(L) should be refined so that we treat
consecutiveA to B actions as a single chunk.

12This result is related with what is called “switching condition” in game-based semantics.

69

Proof. (outline) Suppose there are two separate inputs byB annotated by the same threadτ and
for which there are no intermediate actions annotated byτ (that is, we have two consecutive inputs
within the same thread which are temporarily separated). But this is impossible since immediately
after the first passiveτ, this should lead to its active occurrence in the direct subtree, which contra-
dicts our assumption. Symmetrically suppose there are two separate outputs byB annotated by the
same threadτ and for which there are no intermediate actions annotated byτ (that is, we have two
consecutive outputs within the same thread which are temporarily separated). But this is impossible
since immediatelybeforethe second activeτ, this should be preceded by its passive occurrence in
the direct supertree. �

DEFINITION 12. We sayA is consistentif it is globally consistent or, equivalently, if it is locally
consistent.

We can now define well-threadedness. Below we sayA is an annotation of Iwhen the result of
stripping off annotations fromA coincides withI .

DEFINITION 13 (Well-Threaded Interactions). A strongly connected term I is well-threaded
when there is an annotationA of I which is consistent.

Note well-threadedness implies strong connectedness (hence well-typedness). In the next subsection
we introduce the type discipline which type all and only well-threaded interactions, via consistent
global and local annotation.

14.5. Examples of Well-Threadedness.It is important to understand now what is the connec-
tion between an interaction and its annotation. In order to give a sound and deterministic correspon-
dence, we define a function which annotates interactions. Wenow try to explain the rules of the
typing system. Consider the following interaction

A→ B : chB(s) .

B→A : s〈op, e, x〉 .

(A→C : chC(t) | A→B : s〈op, e, x〉)

If we now consider its implementation in the local calculus according to our discussion above, we
would get for someσ

A[chB〈s〉 .s⊲ op(x) . (chC〈t〉 | s⊳ op〈e〉)]σA

B[! chB(s) .s⊳ op〈e〉 .s⊲ op(x)]σB

C[! chC(t)]σC

If we now start talking about threads we notice that going through each action we must take a choice
whether to start a new thread or continue a previous one. According to the translation we gave into
the end-point calculus we can think about the following annotation:

A1 → B2 : chB(s) .

B2→A1 : s〈op, e, x〉 .

(A1 →C3 : chC(t) |1 A1→B2 : s〈op, e, x〉)

We now show another case where we also include recursion and the if then else construct. Consider
the following interaction

A→ B : chB(s) .

rec XB .B→A : s〈op, e, x〉 .XB

Without going into the details of a possible end-point representation, it is clear to see that in here
there is a problem with the notion of well-threadedness. In fact, afterA starts the sessionchB, B
continuously sendse to A on session names. This goes against our notion of well-threadedness

70

i.e. an alternation of actions between the two participantsof a session. Instead, if we add a further
interaction betweenA andB things become good again

A→ B : chB(s) .

rec XB .B→A : s〈op, e, x〉 .

A→B : s〈op′, e′, y〉 .XB

One last example is given by the following interaction:

A1 → B2 : chB(s1,s2) .

(B2 →C3 : chC(t) .C3→B2 : t〈. . .〉B2→A1 : s1〈. . .〉

|1

B2 →C4 : ch′C(t ′) .C4→B2 : t〈. . .〉B2→A1 : s2〈. . .〉)

14.6. Type Discipline for Well-Threadedness.Given a well-typed, strongly connected anno-
tated interaction we can check if it is well-threaded compositionally using a typing system. We first
present the typing system which checks(G1–G3). Then we refine it so that it can validate(L) . Let
S,S′, . . . range over the set of all finite sets of session channels.

Θ ::= Θ · τ : S | Θ,X : Θ | /0

We assumeΘ defines a function.Θ1,Θ2 indicatesdom(Θ1)∩ dom(Θ2) = /0. We sayΘ is well-
formedwhen each session channel is assigned to at most two threads.The judgement has the form:

Θ ⊢ A

whereΘ records free session channels used in each thread inA. We use the following notations:

(1) The functiontopT(A) takes the active thread ofA.
(2) The operationΘ1⊙Θ2 is the union ofΘ1 andΘ2 except for taking the union of session

channels for each thread common inΘ1,2. If Θ1 ⊙ Θ2 is well-formed then we write
Θ1 ≍ Θ2.

71

DEFINITION 14 (Type Discipline for Well-Threadedness).For an annotated strongly connected
(hence well-typed) interactionA, Θ ⊢ A is derived by the following rules.

(WT-INIT)
Θ,τ1 : S⊎S′,τ2 : S′ ⊢ A topT(A) = τ2 S′ ⊂ {s̃} S∩{s̃} = /0

Θ,τ1 : S⊢ Aτ1 → Bτ2 : ch(s̃) .A

(WT-COMM)
Θ,τ1 : S1,τ2 : S2 ⊢ Ai s 6∈ fc(Θ) topT(Ai) = τ2

Θ,τ1 : S1∪{s},τ2 : S2∪{s} ⊢ Aτ1 →Bτ2 : s〈op, e, x〉 .A

(WT-ASSIGN)
Θ ⊢ A topT(A) = τ

Θ ⊢ x@Aτ := e.A

(WT-IFTHENELSE)
Θ ⊢ Ai topT(Ai) = τ

Θ ⊢ if e@Aτ then A1 else A2

(WT-SUM)
Θ ⊢ Ai topT(Ai) = τ

Θ ⊢ A1 +τA2

(WT-PAR)
Θ1 ≍ Θ2 Θi ⊢ Ai topT(Ai) = τ (i = 1,2)

Θ1⊙Θ2 ⊢ A1 |
τ
A2

(WT-RES)
Θ,τ : S⊎ASETs⊢ A topT(A) = τ

Θ,τ : S⊢ (νννs) τA

(WT-VAR)
Θ well-formed

Θ,X : Θ ⊢ XA
τ

(WT-REC)
Θ,X : Θ ⊢ A topT(A) = τ

Θ ⊢ rec τXA .A

(WT-ZERO)
−

τ̃ : /0 ⊢ 0
REMARK 6. (well-formedness) By constructionΘ ⊢ A implies Θ is well-formed. This is

not used in the following proofs, but is natural since any session channel can only be used by a
pair of threads in each well-threaded annotated interaction. Note also, in (WT-Init), the notation
Θ,τ1 : S⊎S′,τ2 : S′ impliesτ1 6= τ2, similarly for (WT-Com).

THEOREM 3 (WT-typing characterises well-threadedness).An annotated strongly connected
interactionA is consistent if and only ifΘ ⊢ A.

Proof. Soundness is direct from the definition. For completeness, the only non-trivial cases are
(WT-Init) and (WT-Par). First observe that, by definition, awell-threaded interaction never assignes
a thread to two actions which both use the thread actively if these actions are by distinct participants;
similarly when the thread is used passively. Thus if we take its subtree and consider the minimum
Θ which records the usage of session channels by its occurringthreads, thenΘ is well-formed. The
rest is direct from the definition. �

Below we define(σ,A) → (σ′,A ′) exactly following the original reduction.

THEOREM4 (subject reduction, well-threadedness).If Θ ⊢ A and(σ,A) → (σ′,A ′) thenΘ′ ⊢
A ′ for someΘ′.

Proof. Θ′ is obtained by taking off a free session channel which is consumed by the reducgtion,
if any.

72

PROPOSITION7. For each annotated strongly connectedA, we can algorithmically check if
Θ ⊢ A or not for someΘ.

Proof. By directly applying the rules starting from the leaves of the abstract syntax tree. For a
recursion variable sayX, it suffices to start from the empty set (takingX as if it were inaction), and
retrospectively assign the free session channels induced when the recursion is met. For the inaction,
we start from the set of threads used for the final (target) annotated interaction. �

The typing rules also offer a transparent proof of Proposition 6 (which says global consistency im-
plies local consistency). We first augmentΘ above as follows:

Θ ::= Θ · τ : (↑,S) | Θ · τ : (↓,S) | Θ,X : Θ | /0

Above we add, for each thread, the direction of the last (latest) action in that thread. The judgement
has the same form. The operationΘ1⊙Θ2 now combine this direction, so that it is defined iff the
directions coincide for each common thread: if this fails for any thread, the composition is undefined.
We then replace (WT-Init) and (WT-Comm) as follows:

(WT-INIT)
Θ,τ1 : (↓,S⊎S′}),τ2 : (↑,S′) ⊢ A topT(A) = τ2 S′ ⊆ {s̃}

Θ,τ1 : (↑,S) ⊢ Aτ1 → Bτ2 : ch(s̃) .A

(WT-COMM)
Θ,τ1 : (↓,S1),τ2 : (↑,S2) ⊢ Ai topT(Ai) = τ2 J 6= /0

Θ,τ1 : (↑,S1∪{s}),τ2 : (↓,S2∪{s}) ⊢ Aτ1 →Bτ2 : s〈op, e, x〉 .A

In both, the condition on the direction atτ2 is non-trivial. After giving an activity to another thread,
when it comes back insideA, the threadτ2 always starts as an input: it does not voluntarily start its
action. We can check this can only be the case by going througheach rule, thus proving Proposition
6.

14.7. Inferring Well-Threaded Annotation. In the previous subsection we have shown we
can type-check well-threadedness given an annotated interaction. In this subsection we show there is
a simple algorithm which can inductively infer such annotation if any: thus we simultaneously check
well-threadedness and annotate (non-annotated) interactions.

We use the following notations.

(1) ℓ indicates a sequence13 of thread assignments, where a session assignment is of the form
〈τ,A, s̃〉 (which intuitively indicates communications done via any of s̃ by A should be in
the threadτ).

(2) We write ℓ·ℓ′ etc. for the concatenation of two strings, and〈τ,A, s̃〉 ∈ ℓ when 〈τ,A, s̃〉
occurs inℓ.

DEFINITION 15 (Annotating Function). Theannotating functionγ(I , ℓ) is a partial function
which maps a pair of (1) a thread assignment and (2) a well-typed, strongly-connected interaction
which has at most one initiating participant to the corresponding annotated interaction, defined in-
ductively as follows. In the first line we choose a freshτ2 by incrementing the maximum thread in

13A thread assignment contains redundancy, containing identical occurrences of a thread assignment, for
the readability of the clauses for annotating functions.

73

ℓ.

γ(A→ B : ch(ννν s̃) . I , ℓ·〈τ1,A, t̃〉)
def
= Aτ1 → Bτ2 : ch(ννν s̃) .γ(I , ℓ·〈τ1,A, t̃ s̃〉·〈τ2,B, s̃〉)

(τ2 fresh)

γ(A→B : s〈op, e, x〉, ℓ·〈τ1,A, t̃〉)
def
= Aτ1→Bτ2 : s〈op, e, x〉 . γ(I , ℓ·〈τ1,A, t̃〉·〈τ2,B, r̃1sr̃2〉)

(〈τ2,B, r̃1sr̃2〉 ∈ ℓ, and τ1 6= τ2)

γ(x@A := e. I , ℓ·〈τ,A, t̃〉)
def
= x@Aτ := e. γ(I , ℓ·〈τ,A, t̃〉)

γ(I1 | I2, ℓ·〈τ,A, t̃〉)
def
= (γ(I1, ℓ·〈τ,A, t̃〉) |τ γ(I2, ℓ·〈τ,A, t̃〉))

γ(if e@A then I1 else I2, ℓ·〈τ,A, t̃〉)
def
= if e@Aτ then γ(I1, ℓ·〈τ,A, t̃〉) else γ(I2, ℓ·〈τ,A, t̃〉)

γ(I1 + I2, ℓ·〈τ,A, t̃〉)
def
= γ(I1, ℓ·〈τ,A, t̃〉)+ γ(I2, ℓ·〈τ,A, t̃〉)

γ(XA, ℓ·〈τ,A, t̃〉)
def
= XA

τ

γ(rec XA . I , ℓ·〈τ,A, t̃〉)
def
= rec τXA .γ(I , ℓ·〈τ,A, t̃〉)

Otherwise the functionΨ is not defined. We further set, forI which is well-typed and strongly con-
nected, which has a unique initiating participant, and which does not contain hiding or free session
channels:

Ψ(I)
def
= γ(I , 〈τ,top(I),ε〉)

Remark. Above in the communication case, the last conditionτ1 6= τ2 guarantees the choice ofτ2 is
unique.

PROPOSITION8 (Soundness and Completeness of Annotating Function).Assume I is well-
typed, strongly connected, which has a unique initiating participant. and which does not contain
hiding or free session channels. Then an interaction I is well-threaded if and only ifΨ(I) is defined.

Proof. By noting the clauses defining the functionΨ precisely correspond to the typing rules in
Definition 14 except for the strict alternation (taking off which does not lose necessary by Proposition
6). �

15. Theory of End-Point Projection (3): Coherence

15.1. Mergeability of Threads. By connectedness and well-threadedness, we have shown how
we can analyse the structure of a global interaction as a collection of different threads that compose
it. In other words, these threads will become, in the end-point calculus, as constituents of processes
which interact with each others and realise the original behaviour in the global description. In the
present section, which offers the last step of our ongoing analysis, we explore how we can consis-
tently construct concrete processes based on these threads. This concern immediately leads to the
final well-structuring principle for global description onthe top of strong connectedness and well-
threadedness.

We first observe it is often necessary tomergethreads to obtain the endpoint behaviour which
realises a global interaction. For instance, consider the following parallel composition of two inter-
actions.

(89)
A→ B : ch(νννs) .B→A : s〈op, e, x〉 .A→B : s〈op1, e1, x1〉 |
A→ B : ch(s′) .B→A : s′〈op, e, x〉 .A→B : s′〈op2, e2, x2〉

If we annotate this interaction we know that “B” will be marked with two threads, each corresponding
to one of the twoch invocations. When we make the end-point processes, we need to merge these
two threads into one process, since we naturally demand there is only one service offered atch. The
merging becomes necessary because these two threads show different behaviours:

• In one,A chooses the optionop1 which B offers; while

74

• in the other,B chooses the optionop2 whichB also offers.

We can project these two threads into two end-point processes:

(1) !ch(s) .s⊳ op〈e〉 .s⊲ op1(x1)
(2) !ch(s) .s⊳ op〈e〉 .s⊲ op2(x2)

In spite of having two behaviours for the same “service”, or behaviour, we can consistently integrate
these two threads into a single behaviour, using a branchinginput:

(90) B [! ch(s) .s⊳ op〈e〉 .s⊲ (op1(x1) + op2(x2))]σB

Indeed, this combined behaviour does act as prescribed in the global description, when the following
two output threads atA invokesB via chare given.

(91) A [ch(νννs) .s⊲ op〈x〉 .s⊳ op1〈e1〉.0 | ch(νννs′) .s′ ⊲ op〈x〉 .s⊳ op2〈e2〉.0]σA

We can easily observe the composition ofA andB does indeed induce the original global behaviour.
Similarly we can easily extract threads forB andcombine them into a consistent whole.

(92)
A→ B : ch(νννs) .B→A : s〈op, e, x〉 .A→B : s〈op1, e1, x1〉 +
A→ B : ch(s′) .B→A : s′〈op, e, x〉 .A→B : s′〈op2, e2, x2〉

Similarly for

(93)
if e′@A then A→ B : ch(νννs) .B→A : s〈op, e, x〉 .A→B : s〈op1, e1, x1〉

else A→ B : ch(s′) .B→A : s′〈op, e, x〉 .A→B : s′〈op2, e2, x2〉.

These three cases — parallel composition, sum, and conditional — are the central cases from which
the need to merge threads arises.

However therearecases when we cannot merge two related threads coming from a single global
description. Consider the following interaction, again focussing onB’s behaviour.

(94)
A→ B : ch(νννs) .B→A : s〈op, e, x〉 |
A→ B : ch(νννs′) .B→C : ch′(νννt)...

How can we project this description to the end-point behaviour of B? WhenB is invoked for service
ch, on one thread it replies to the invoker (A), while on the other one does something completely dif-
ferent. In fact, we obtain the following two slices (instances) ofB’s behaviour from this description:

(1) !ch(s) .s⊳ op〈e〉 and
(2) !ch(s) .ch′(ννν t)...

which can hardly be merged consistently.14

Thus we need a formal notion by which we can judge whether two or more end-point behaviours
are consistently mergeable or not. In the above example, it should tells us if the descriptions of
two different invocations for a servicech, when transformed into end-point processes, are in fact
mergeable to yield a single coherent behaviour. We call thisrelationmergeability. Before defining
this relation, we first introduce a notion of typed relations, of which mergeability is once instance.

DEFINITION 16 (typed terms and typed relation). (1) Atyped term(in the end-point cal-
culus) is a typed sequentΓ ⊢A P ⊲ ∆ or Γ ⊢ M ⊲ ∆.

(2) A relation over typed processes or networks (in the end-point calculus) istypedif each
related pair of typed terms have the same typing.

Thus typed relations are typed in two ways: they only deal with typed terms, and, moreover, they
only relate two terms of the same typing. In spite of this, forconvenience of notations, we stipulate:

CONVENTION 6. Given a typed relationR , we often leave typings implicit, writing e.g.PRQ
or MR N.

14Observe the result of directly combining two threads:

! ch(s) .(s⊳op〈e〉⊕ch′(νννt)...)

doesnotconform toeitherof the two components of the parallel composition in the global descriptions.

75

We are now ready to define mergeability.

DEFINITION 17 (Mergeability). Mergeability relation, denoted⊲⊳, is the smallest typed equiv-
alence relation on typed processes generated by the following rules. In each rule we assume typability
(i.e. we assume each related terms are typed under the same typing, including in conclusions).

Pi ⊲⊳ Qi for eachi ∈ J∩K andopj 6= opk for each j ∈ J\K,k ∈ K\J

s⊲ ΣJopj (x j) .Pj ⊲⊳ s⊲ ΣKopk(xk) .Qk

Pi ⊲⊳ Qi (i = 1,2, ..,n)

C[P1]..[Pn] ⊲⊳ C[Q1]..[Qn]

P≡α P′ P′ ⊲⊳ Q′ Q′ ≡α Q
P ⊲⊳ Q

WhenP ⊲⊳ Q, we sayP and Q are mergeable.

Note the only non-trivial clause is for the branching input:it says that, for each common branch,
the behaviour should be essentially identical. In the last rule we may as well use≡ or even larger
equality than≡α (for algorithmic checking, we demand the used relation to befeasibly checkable).

The relation⊲⊳ checks that two given processes are more or less identical. This “more or less
identical” means that, in brief, their behaviours do not contradict when they come to the same course
of interactions, i.e. when the same branch is selected by theinteracting party. Thus the rules above
say that we can allow differences in branches which do not overlap, but we do demand each pair of
behaviours with the same operation to be identical.

If two end-point behaviours are mergeable in this sense, we can truly merge them: merging-
ing, when applicable, just returns a single process which simulates both of the two behaviours, by
combining missing branches from the both. For instance, theprocess

s⊲ go(x) .P

and the process
s⊲ stop(x) .Q

are mergeable, and the result of merging is simply:

s⊲ go(x) .P + stop(x) .Q

. The formal definition of merge operation follows.

76

DEFINITION 18 (The merge operator).⊔ is a partial commutative binary operator on pro-
cesses, given by:

! ch(s) .P⊔ ! ch(s) .Q
def
= ! ch(s) .(P⊔Q)

ch(s) .P⊔ch(s) .Q
def
= ch(s) .(P⊔Q)

s⊲ Σi∈Jopi(yi) .Pi ⊔s⊲ Σi∈Kopi(yi) .Qi
def
= s⊲

Σi∈J∩Kopi(yi) .(Pi ⊔Qi) +
Σi∈J\Kopi(yi) .Pi +

Σi∈K\Jopi(yi) .Qi

x := e.P⊔x := e.Q
def
= x := e.(P⊔Q)

if e then P1 else P2⊔ if e then Q1 else Q2
def
= if e then (P1⊔Q1) else (P2⊔Q2)

(P1 | P2)⊔ (P3 | P4)
def
= (P1⊔P3) | (P2⊔P4)

s⊳⊕iopi〈ei〉 .Pi ⊔s⊳⊕iopi〈ei〉 .Qi
def
= s⊳⊕iopi〈ei〉 .(Pi ⊔Qi)

rec X .P⊔ rec X .Q
def
= rec X .(P⊔Q)

X⊔X
def
= X

0⊔0
def
= 0

where, in the right-hand side of each rule, we assume that every time the operator is applied to
two processes, say P and Q, we have P⊲⊳ Q. When this condition is not satisfied, the operation is
undefined.

The merge operator merges two end-point behaviours. In order for this merging to be successful, this
partial operation requires, for its definedness, that merged processes are structurally compatible (the
assumption given after the defining clauses). This compatibility is given as the relation⊲⊳. We can
check that when two⊲⊳-related processes are merged in any of these clauses, then its right-hand side
is always well-defined (inductively).

The most significant rule in the above definition of⊲⊳ is the one for the branching input. They
inspect the two operands which must start with

s⊲ Σiopi(yi)

And, if the operationopi appears in both terms, then the terms after the prefix (Ti andT ′
i) are merged

as well, which are ensured to be mergeable by the assumption.In the other cases, a new branch is
added to the summationΣ.

15.2. Thread Projection and Coherence.Given a consistently thread annotated interaction,
we can project each of its threads onto an end-point process.This thread projection is partial opera-
tion again by its use of the merge operator,

DEFINITION 19 (Thread Projection). AssumeA is consistently annotated andτ is one of its
threads. Then we define a partial operationTP(A, τ) as follows. Below assumeτ is distinct from
τ′, τ1 andτ2 and assume the right-hand side is defined iff all expressionsin the left-hand side are

77

defined.

TP(Aτ1 → Bτ2 : b(ννν s̃) .A, τ) def
=

b(ννν s̃) .TP(A, τ) (τ1 = τ)
! b(s̃) .TP(A, τ) (τ2 = τ)
TP(A, τ) (otherwise)

TP(Aτ1 →Bτ2 : s〈op, e, x〉 .A, τ) def
=

s⊳ op〈e〉 .TP(A, τ) (τ1 = τ)
s⊲ opi ⊲ (〈x〉i) .TP(Ai , τ) (τ2 = τ)
TP(Ai , τ) (otherwise)

TP(x@Aτ′ := e.A, τ) def
=

{

x := e.TP(A, τ) (τ′ = τ)
TP(A, τ) (τ′ 6= τ)

TP(A1 |
τ′
A2, τ) def

=

{

TP(A1, τ′) | TP(A2, τ) (τ′ = τ)
TP(A1, τ′)⊔TP(A2, τ) (τ′ 6= τ)

TP(if e@Aτ′ then A1 else A2,τ)
def
=

{

if e then TP(A1,τ) else TP(A2,τ) (τ′ = τ)
TP(A1,τ)⊔TP(A2,τ) (τ′ 6= τ)

TP(A1 +τ′ A2, τ) def
=

{

TP(A1, τ)⊕TP(A2, τ) (τ′ = τ)
TP(A1, τ)⊔TP(A2, τ) (τ′ 6= τ)

TP(rec τ′XA .A, τ) def
=

{

rec X .TP(A, τ) (τ′ = τ)
rec X .TP(A, τ) (τ′ 6= τ)

TP(XA
τ′ , τ) def

= X

TP(0, τ) def
= 0

WhenTP(A, τ) is undefined, we writeTP(A, τ) =⊥.

Some observation:

(1) For each of the initialisation and communication, we have three cases:
(a) When the concerned thread coincides with its active thread, in which case we obtain

the corresponding output prefix;
(b) When the concerned thread coincides with its passive thread, in which case we ob-

tain the corresponding input prefix; and
(c) three, when neither applies, in which case we simply obtain the projection of the

remaining body, which is, by Lemma 6, always in the input/output form.
(2) For assignment, parallel composition, conditional andifthenelse, each of which is anno-

tated with a single thread, we have two cases:
(a) When the projecting thread coincides with the thread of the interaction, we simply

carry over these constructors to endpoint processes;
(b) If not, we simply merge these threads (or identity in the case of assignment).

(3) Other cases are defined compositionally.

The previous definition of thread projection already demands that, if we ever wish it to be well-
defined, the behaviours inside a thread should be built consistently, i.e. whenever we use⊔ the
operator should be defined. The notion of coherence includesthis well-definedness, and extends it to
inter-thread consistency.

The need to consider inter-thread consistency arises because the description of the behaviour of
a service (replicated input) can be distributed over more than one places in one global description.
In this case, we should combine the result of projecting multiple threads into one code, for which we
use the merge operation again.

78

As an example, recall the projections we have seen in (94), page 75, which we reproduce below
with annotations.

(95)
A0 → B1 : ch(νννs) .B1→A0 : s〈op, e, x〉 |
A0 → B2 : ch(νννs′) .B2 →C3 : ch′(νννt)...

Call this interactionA. Then we have:

TP(A, 0)
def
= ch(νννs)s⊲ op〈x〉.0 | ch(νννs′)...

TP(A, 1)
def
= ! ch(s) .s⊳ op〈e〉

TP(A, 2)
def
= ! ch(s′) .ch′(ννν t)...

TP(A, 3)
def
= ! ch′(t)...

Clearly !ch(s) .s⊳ op〈e〉 and !ch(s′) .ch′(νννt)... are not mergeable. The point of coherence is that, if
there are multiple threads which constitute parts of the behaviour of a permanent service, then they
should be mergeable.

Since each channelch uniquely defines a service, we can collect all threads contributing to the
behaviour of this service by taking the passive thread of each session initialisation interaction viach.
Formally we set:

DEFINITION 20. The mapthreads(A, ch) is defined as follows, assumingch′ 6= ch.

threads(Aτ1 → Bτ2 : ch(νννs) .A ′, ch)
def
= {τ2}∪ threads(A ′, ch)

threads(Aτ1 → Bτ2 : ch′(νννs) .A ′, ch)
def
= threads(A ′, ch)

threads(Aτ1 →Bτ2 : s〈op, x, .〉A ′, ch)
def
= threads(A ′, ch)

threads(x@Aτ := e. .A ′, ch)
def
= threads(A ′, ch)

threads(if e@Aτ then A ′
1 else A ′

2, ch)
def
= threads(A ′

1, ch)∪ threads(A ′
2, ch)

threads(A ′
1 +A ′

2, ch)
def
= threads(A ′

1, ch)∪ threads(A ′
2, ch)

threads(A ′
1 | A

′
2, ch)

def
= threads(A ′

1, ch)∪ threads(A ′
2, ch)

threads(rec XA
τ .A ′, ch)

def
= threads(A ′, ch)

threads(XA
τ , ch)

def
= /0

threads(0, ch)
def
= /0

If two input threads are for the same service channel, then they are equivalent. Belowchannels(A)
indicates the set of service channels occurring inA.

DEFINITION 21. Given a well-threaded annotated interactionA, for all τ ∈ A, we define the
equivalence class[τ]A ⊆ N as

[τ]A =

{

threads(A, ch) if ∃ch∈ channels(A) such thatτ ∈ threads(A, ch)
{τ} otherwise.

Givenτ1,2 in A, we writeτ1 ≡A τ2 if there existsτ ∈ A such thatτ1,τ2 ∈ [τ]A .

DEFINITION 22 (Coherence). Given a well-threaded, consistently annotated interactionA, we
say thatA is coherentif the following two conditions hold:

(1) For each threadτ in A, TP(A, τ) is well-defined.
(2) For each pair of threadsτ1,τ2 in A with τ1 ≡A τ2, we haveTP(A, τ1) ⊲⊳ TP(A, τ2).

A well-threaded non-annotated interactionI is coherentif it has an annotation which is coherent.

79

Note a coherent interaction is by definition well-threaded,hence is strongly-connected. Since⊲⊳ is
calculable (the order is linear w.r.t. the sum of the size of two terms: when we take⊲⊳ up to≡ this
becomes exponential), we have:

PROPOSITION9. There is an algorithm which can check I is coherent or not.

EXAMPLE 18. The interactions (89) in page 74, (92) in page 75 and (93) in page 75 are all
coherent, but (94) in page 75 is not.

15.3. Properties of Coherent Interactions.AssumeA is coherent. AssumeA hasn-threads,
sayτ1, ..,τn. Then a thread projection toτi gives as an end-point process, sayPi, which is to be located
at some participant. Below we consider the structural correspondence betweenA andPi, using the
type structure. The key tool we shall use is the mergeabilityrelation and the merging operation at the
level of types. Below we overload the corresponding symbolsfor end-point processes.

DEFINITION 23 (Mergeability of Session Types).Mergeability relation on types, denoted⊲⊳,
is the smallest equivalence relation on session types generated by the following rules. We assume all
types (including those in conclusions) are well-formed.

αi ⊲⊳ βi for eachi ∈ J∩K andopj 6= opk for each j ∈ J\K,k ∈ K\J

s↓ ΣJopj (θ j) .α j ⊲⊳ s↓ ΣKopk(θk) .βk

αi ⊲⊳ βi for eachi ∈ J∩K andopj 6= opk for each j ∈ J\K,k ∈ K\J

s↑ ΣJopj (θ j) .α j ⊲⊳ s↑ ΣKopk(θk) .βk

αi ⊲⊳ βi (i = 1,2)

α1|α2 ⊲⊳ β1|β2

−

t ⊲⊳ t
α ⊲⊳ β

rec t.α ⊲⊳ rec t.β
−

end ⊲⊳ end

Whenα ⊲⊳ β, we sayα and β are mergeable. We extend this relation to service types in the way
(s̃)α@A ⊲⊳ (s̃)β@A iff α ⊲⊳ β.

DEFINITION 24 (The merge operator on types).⊔ is a partial commutative binary operator on
session types, given by:

s↓ ΣJopj (θ j) .α j ⊔ s↓ ΣKopk(θk) .βk
def
= s↓

Σi∈J∩Kopi(θi) .(αi ⊔βi) +
Σi∈J\Kopi(θi) .αi +

Σi∈K\Jopi(θi) .βi

s↑ ΣJopj (θ j) .α j ⊔ s↑ ΣKopk(θk) .βk
def
= s↑

Σi∈J∩Kopi(θi) .(αi ⊔βi) +
Σi∈J\Kopi(θi) .αi +

Σi∈K\Jopi(θi) .βi

(α1|α2) ⊔ (β1|β2)
def
= (α1⊔β1)|(α2⊔β2)

t⊔ t
def
= t

rec t.α⊔ rec t.β def
= rec t.(α⊔β)

end⊔end
def
= end

where, in the right-hand side of each rule, we assume that every time⊔ is applied to two types, say
α andβ, we haveα ⊲⊳ β. When this condition is not satisfied, the operation is undefined. We extend
the operation to service types as follows:

(s̃)α@A⊔ (s̃)α@A
def
= (s̃)(α⊔β)@A

We can easily checkα ⊲⊳ β impliesα⊔β is defined and results in a well-formed type. We observe:

PROPOSITION10. Supposeα1,2 ≪ β. Thenα1 ⊲⊳ α2 andα1⊔α2 ≪ β again. Further whenever
α ⊲⊳ β we haveα ≪ α⊔β.

80

(MTI NIT)
Γ, ch@B : (s̃)α ⊢min A⊲ ∆ · s̃[B,A] : β

Γ, ch@B : (s̃)(α⊔β) ⊢min Aτ1 → Bτ1 : ch(ννν s̃) .A⊲ ∆

(MTCOMM)
Γ ⊢min A⊲ ∆ · s̃[A,B] : α j Γ ⊢ e@A : θ j Γ ⊢ x@B : θ j s∈ {s̃} j ∈ J

Γ ⊢min Aτ1 →Bτ2 : s〈opj, e, x〉 .A⊲ ∆ · s̃[A,B] : Σ j∈Js↑ opj (θ j) .α j

(MTPAR)
Γ1 ⊢min A1 ⊲ ∆1 Γ2 ⊢min A2 ⊲ ∆2 fsc(∆1)∩ fsc(∆2) = /0

Γ1⊔Γ2 ⊢min A1 |
τ′
A2 ⊲ ∆1∪∆2

(MTSUM)
Γ1 ⊢min I1 ⊲ ∆1 Γ2 ⊢min I2 ⊲ ∆2

Γ1⊔Γ2 ⊢min I1 + I2 ⊲ ∆1⊔∆2

(MTZERO)
∀i 6= j . {s̃i}∩{s̃j} = /0

Γ ⊢min 0⊲
S

i s̃i [Ai ,Bi]end

(MTVAR)
∀i 6= j . {s̃i}∩{s̃j} = /0

Γ, XA : /0 ⊢min XA ⊲
S

i s̃i [Ai,Bi]end

(MTREC)
Γ ·XA : /0 ⊢min A⊲ ∆
Γ ⊢min rec XA .A⊲ ∆

FIGURE 23. Minimal Typing Rules for Global Calculus (main rules)

Proof. Direct from the definition. �

We now ask the question: how the typing ofA and itsτ-projection (assumingτ is its thread)
relate with each other? For this purpose we introduce two typing systems. The first system derives
minimal typing of annotated coherent interactions (annotations do not play any role in this typing
system: they are needed for their correspondence with the next typing system). W.l.o.g., we only
consider interactions without hiding, and assume the grouping of free session channels is determined
implicitly (the grouping of initialised session channels is determined by the binder at the initialisa-
tion). In the rules, we extend⊲⊳ and⊔ pointwise to session/service typings.

Other rules follow easily. In(TZERO) and(MTVAR), we choose the introduced empty type
assignment based on the implicit grouping of session channels. We observe;

PROPOSITION11. If Γ ⊢min A⊲∆ then it is the minimal typing ofA in the sense of proposition
2. �

Proof. By induction we show whenever we haveΓ⊢A⊲∆ there is the corresponding deduction
for Γ0 ⊢min A ⊲ ∆0 such thatΓ0 ≪ Γ and∆0 ≪ ∆. Further it is easy to show, again by induction,
Γ0 ⊢min A⊲ ∆0 impliesΓ0 ⊢ A⊲ ∆0. �

We next introduce a typing system which derives minimal typing for theportion of an interaction
associated with a thread. The typing rules is a simple refinement of what we have seen inSection
10.3, which we list in Figure 24. We only list the main rules: the remaining rules are easily guessed
from the given rules. All rules assume occurring annotated interactions (including those in the con-
clusions) are coherent. In the rule (TVar), the underlying idea is that we are stipulating only the
τ-portion of the behaviour ofX in ∆.

LEMMA 7. Assume we haveΓi ⊢
τi A ⊲ ∆i (i = 1,2) and, moreover,∆1,2 respectively contain

s̃[A,B]α1,2 neither of which are empty. Thenα1 = α2.

81

(TINIT-S)
Γ, ch@B : (s̃)α ⊢τ A⊲ ∆ · s̃[B,A] : β τ ∈ {τ1,τ2}

Γ, ch@B : (s̃)(α⊔β) ⊢τ Aτ1 → Bτ1 : ch(ννν s̃) .A⊲ ∆

(TINIT-O)
Γ ⊢τ A⊲ ∆ {s̃}∩ fc(∆) = /0 τ 6∈ {τ1,τ2}

Γ, ch@B : (s̃)α ⊢τ Aτ1 → Bτ1 : ch(ννν s̃) .A⊲ ∆

(TCOMM-S)
Γ ⊢τ A⊲ ∆ · s̃[A,B] : α j Γ ⊢ e@A : θ j Γ ⊢ x@B : θ j s∈ {s̃} j ∈ J τ ∈ {τ1,τ2}

Γ ⊢τ Aτ1 →Bτ2 : s〈opj, e, x〉 .A⊲ ∆ · s̃[A,B] : Σ j∈Js↑ opj (θ j) .α j

(TCOMM-O)
Γ ⊢τ A⊲ ∆ Γ ⊢ e@A : θ j Γ ⊢ x@B : θ j s 6∈ fc(∆) τ 6∈ {τ1,τ2}

Γ ⊢τ Aτ1 →Bτ2 : s〈opj, e, x〉 .A⊲ ∆

(TSUM)
Γ1 ⊢

τ A1 ⊲ ∆2 Γ1 ⊢
τ A2 ⊲ ∆2

Γ1⊔Γ2 ⊢τ A1 +A2 ⊲ ∆1⊔∆2

(TPAR)
Γ1 ⊢

τ A1 ⊲ ∆1 Γ2 ⊢
τ A2 ⊲ ∆2 fsc(∆1)∩ fsc(∆2) = /0

Γ1⊔Γ2 ⊢τ A1 |
τ′
A2 ⊲ ∆1∪∆2

(TZERO)
∀i 6= j . {s̃i}∩{s̃j} = /0

Γ ⊢τ 0⊲
S

i s̃i [Ai ,Bi]end

(TVAR)
∀i 6= j . {s̃i}∩{s̃j} = /0

Γ, XA : /0 ⊢τ XA ⊲ ∆

(TREC)
Γ ·XA : /0 ⊢τ A⊲ ∆
Γ ⊢τ rec XA .A⊲ ∆

FIGURE 24. Threaded Minimal Typing Rules for Global Calculus (mainrules)

Proof. Since in this case precisely the same set of prefixes are traced for τ1 andτ2, which is
direct from the reasoning for the previous proposition. �

PROPOSITION12. LetA be coherent and let{τi} be the set of threads inA. If, for eachτi , we
haveΓi ⊢

τi A⊲ ∆i , then we have⊔iΓi ⊢min A⊲⊔i∆i .

Proof. By induction of the derivation ofΓi ⊢
τi A ⊲ ∆i for eachi (simultaneously). The base

cases are trivial. For induction, the initialization uses two identical session types by Lemma 7 for the
two concerned threads to lift the session typing to the service typing. Since the former is the minimal
typing we are done. Communication is trivial. Other cases are also easy. �

We move to the relationship between the per-thread minimal typing for interaction and the minimal
typing of the corresponding thread projection. Below we write⊥(∆) for the result of turning each
session type assignment of the form ˜s[A,B] : α to s̃ : ⊥.

PROPOSITION13. LetA be coherent and let{τi} be the set of threads inA. Then, for eachτi ,
Γi ⊢

τi A⊲ ∆i impliesΓi ⊢ TP(A, τi)⊲⊥(∆i).

82

Proof. By induction of the derivation ofΓi ⊢
τi A⊲∆i , referring to each clause of Definition 19,

the corresponding rule of Figure 24, and the minimal typing rules for end-point processes given in
Figure 22. �

Finally for end-point processes, we observe:

PROPOSITION14. Let Γi ⊢A P1,2 ⊲ ∆i (i = 1,2) are minimal typings for P1,2 and, moreover,
P1 ⊲⊳ P2. ThenΓ1⊔Γ2 ⊢A P1⊔P2 ⊲ ∆1⊔∆2 is again the minimal typing of P1⊔P2.

Proof. By induction on the definition of⊲⊳, referring to the minimal typing rules for end-point
processes given in Figure 22. �

16. Main Results: EPP Theorems

16.1. The Projection. We now present the endpoint projection, the full encoding ofwell-
typed, strongly connected, well-threaded and coherent interactions into end-point processes. In the
sequel we call an interactionI restriction-freewhenever it contains no terms of the form(νννs) I ′ as
its subterm.

DEFINITION 25 (End-Point Projection).Let I be a restriction-free, well-typed, strongly con-
nected, well-threaded and coherent interaction with free session names̃s and letA = γ(I , 〈τ1,A,()〉)
be its consistent annotation. Then the end point projectionof (ννν s̃) I underσ, denotedEPP((ννν s̃) I , σ),
is given as the following network.

(ννν s̃) ΠA∈part(I) A[Π[τ]
G

τ′∈[τ]
TP(A, τ′)]σ@A

wherepart(I) denotes the set of participants mentioned in I.

EXAMPLE 19. We now consider a slight modification of the interaction considered throughout
the whole paper, i.e. where we have the strong connectednessproperty

Buyer→ Seller : B2SCh(s) .Seller→ Buyer : s[AckSession] .

Buyer→ Seller : s[RequestForQuote] .

Seller→Buyer : s〈QuoteResponse, v, quote,xquote〉 .

(Buyer→ Seller : s[QuoteReject] +

Buyer→ Seller : s[QuoteAccept] .

Seller→Buyer : s〈OrderConfirmation〉 .Buyer→Seller : s〈AckConfirmation〉 .

Seller→ Shipper : S2ShCh(s′) .Shipper→ Seller : s[AckSession] .

Seller→Shipper : s′〈RequestDelDetails, Buyer, xClient〉 .

Shipper→ Seller : s′[DeliveryDetails,DD,xDD] .

Seller→ Buyer : s[DeliveryDetails,xDD,xDD])

83

Note that we basically added few more interactions, just to keep the whole interaction strongly con-
nected. By this we can then give the encoding

Buyer{B2SCh ·n1〈s〉 .s⊲AckSession ·n2 .

s⊳RequestForQuote ·n3 .s⊲QuoteResponse ·n4(xquote) .

s⊳ (QuoteReject ·n5 |

QuoteAccept ·n6 .s⊲OrderConfirmation·n7 .s⊲AckConfirmation·n8 .

s⊳DeliveryDetails ·n12)}α |

Seller{B2SCh ·n1(s) .s⊲RequestForQuote·n3 .s⊳AckSession ·n2 .

s⊳QuoteResponse ·n4〈vquote〉 .

s⊲ (QuoteReject ·n5 +

QuoteAccept ·n6 .s⊳OrderConfirmation·n7 .s⊳AckConfirmation·n8 .

S2ShCh ·n9〈s
′〉 .s⊲AckSession ·n13 .

s′ ⊳RequestDelDetails·n10〈Buyer〉 .s⊳DeliveryDetails·n11(xDD)

s⊲DeliveryDetails ·n12)}β |

Shipper{S2ShCh ·n9(s
′) .s⊳AckSession ·n13 .

s′ ⊲RequestDelDetails·n10(xClient) .s⊳DeliveryDetails·n11(DD)}γ

Note that the flow property allows to give up all the synchronisations that we had in the previous
encoding.

16.2. Need for Pruning. Consider the following very simple global description.

(96) A→ B : b(νννs).0.

If we EPP this interaction with environmentσ, we obtain the following network:

(97) A[ch(νννs).0]σ@A | B[ch(s).0]σ@B

Now (96) reduces as:

(98) (σ,A→ B : b(νννs).0) → (σ,0)

while (97) reduces as

(99) A[ch(νννs).0]σ@A | B[ch(s).0]σ@B → A[0]σA
| B[ch(s).0]σ@B

Note (98) results in the empty configuration, while in (98) the service atch still remains, because
it is replicated. Note there is a discrepancy between two reductions: before reduction, the end-
point behaviour is indeed the EPP of the global description,while after reduction, the former is no
longer the EPP of the latter. However, as far as “active” behaviour (i.e. those who induce immediate
reduction) goes, there is a precise match: that is, as far as we take off the replicated service as a
garbage (since it is no longer of the use from inside this configuration), there is an exact match.

As another, and more subtle, example, consider the following interaction:

(100)
A→ B : b(νννs).B→A : s〈ack〉.A→B : s〈go〉.0 +
A→ B : b(νννs).B→A : s〈ack〉.A→B : s〈stop〉.0

The projection of this interaction is, omitting trailing inactions:

(101)
A[ch(νννs).s⊲ acks⊳ go⊕ch(νννs).s⊲ acks⊳ stop]σ@A |
B[ch(s).s⊳ ack.(s⊲ oks⊲ stop]σ@B

After one step which takes the left branch, (100) reduces to the following configuration:

(102) A→ B : b(νννs).B→A : s〈ack〉.A→B : s〈go〉.0

84

The corresponding reduction for (101) leads to:

(103)
A[ch(νννs).s⊲ acks⊳ go]σ@A |
B[ch(s).s⊳ ack.(s⊲ gos⊲ stop]σ@B

Now take the EPP of (102):

(104)
A[ch(νννs).s⊲ acks⊳ go]σ@A |
B[ch(s).s⊳ ack.s⊲ go]σ@B

There is again a discrepancy between (104) and (103): the former (or its original, (102) haslost one
branch, while (103) naturally keeps it. But again we realisethis lost branch is inessential from the
viewpoint of the internal dynamics of the resulting configuration: the branch “stop” is never used in
in (102).

In summary, a global interaction can lose information during reduction which is still kept in the
corresponding reduction in its EPP, due to persistent behaviour at service channels. This motivates
the introduction of the following asymmetric relation thatwe shall use to state a property of the
end-point projection. Below we write !RwhenR is an-fold composition of replications.

DEFINITION 26 (Pruning). Assume we haveΓ ⊢A P ⊲ ∆, Γ,Γ′ ⊢A Q ⊲ ∆ and, moreover,
Γ ⊢A P ⊲ ∆ is a minimal typing. If further we haveQ ≡ Q0|! R whereΓ ⊢ Q0 ⊲ ∆, Γ′ ⊢A R and
P ⊲⊳ Q0, then we write:

Γ ⊢A P ⋖ Q ⊲ ∆
or P ⋖ Q for short; and sayP prunes Q underΓ;∆ or P prunes Qfor short.

REMARK 7. Writing simplyP ⋖ Q does not in fact lose any precision since we can then always
reconstruct appropriate typings.

The pruningP ⋖ Q indicatesP is the result of cutting off “unnecessary branches” ofQ, in the light
of P’s own typing. ⋖ is in fact a typed strong bisimulation in the sense thatP ⋖ Q means they have
precisely the same observable behavioursexcept for the visible input actions at pruned inputs, either
branches or replicated channels.Thus in particular it satisfies the following condition.

LEMMA 8 (pruning lemma).

(1) ⋖ is a strong reduction bisimulation in the sense that it satisfies the following two
clauses:
(a) If M ⋖ N and M→ M′ then M→ N′ such that M′ ⋖ N′.
(b) If M ⋖ N and M→ N′ then M→ M′ such that M′ ⋖ N′.

(2) ⋖ is transitive, i.e. M⋖ N and M⋖ R imply M⋖ R.

Proof. (1) is because, ifM ⋖ N, the branches pruned fromM can only be among those which
are never used byM. (2) is by noting: if we pruneR to makeM following the minimal typing ofM,
and pruneM to makeM following the minimum typing ofM, then we can surely take off all branches
and replicated inputs fromR in the light of the minimal typing ofM, and obtainsM itself. �

As we just observed,⋖ satisfies the much stronger property of being indeed a strongbisimulation
w.r.t. all typed transitions (w.r.t. the minimal typing of the left-hand processes). In a later version we
shall present the full account of this bisimulation.

16.3. EPP Theorem.We can finally state and prove the main results of this paper. Below we
write Γ ⊢ σ when the stored values inσ follow the typing inΓ in the obvious sense.

THEOREM5 (End-Point Projection).Assume I is well-typed, strongly connected, well-threaded
and coherent. Assume furtherΓ ⊢ I ⊲ ∆ andΓ ⊢ σ. Then the following three properties hold.

(1) (type preservation)If Γ ⊢ I ⊲ ∆ is the minimal typing of I, thenΓ ⊢ EPP(I , σ) ⊲ ⊥(∆)
where⊥(∆) is the result of replacing each occurrence of type assignment in ∆, says̃[A,B] :
α, with s̃ : ⊥. In particular, if Γ ⊢ I and Γ ⊢ σ hold then we haveΓ ⊢ EPP(I , σ).

(2) (soundness)if EPP(I , σ) → N then there exists I′ such that(σ, I) → (σ′, I ′) and
EPP(I ′, σ′) ⋖ N.

(3) (completeness)If (σ, I) → (σ′, I ′) thenEPP(I , σ) → N such thatEPP(I ′, σ′) ⋖ N.

85

Proof.; For type preservation, take the consistent annotationA and assume{τi} is the threads
of A (which we assume does not include free term variables for simplicity). SinceΓ ⊢min A ⊲ ∆,
we have:

(105) Γi ⊢
τi
min A ⊲ ∆i

for eachτi ∈ {τi} for which, by Proposition 12, we have

(1) ⊔iΓi = Γ and
(2) ⊔i∆i = ∆.

By Proposition 13, we also have, for eachτi ∈ {τi}:

(106) Γi ⊢
min TP(A, τi) ⊲ ∆i

Now considerA conatinsτ1,2,3 as the threads for a server atchand consider

(107) Γi ⊢
τi
min A ⊲ ∆i (i = 1,2,3)

as well as

(108) Γi ⊢
min TP(A, τi) ⊲ ∆i (i = 1,2,3)

By Proposition 14 we have

(109) ⊔i∈{1,2,3}Γi ⊢
min ⊔i∈{1,2,3}TP(A, τi) ⊲ ⊔i∈{1,2,3}∆i

gives the replicated input atch. Now

(110) ⊔i∈{1,2,3}Γi

gives the service typing atchand zero or more client typings, in addition to assignment tovariables.
For soundness, suppose there is a redex inEPP(A, σ). The only non-trivial cases are condi-

tional, sum and initialisation. Here we treat the case of communication and initialisation. First, if
there is a communication in the projected network, then there is one active output thread and its dual
input thread. Since an active output cannot come fromI except at its root, we know this comes from
a top-level active thread (a thread whose first action is not under any other constructor except parallel
composition). For simplicity assume

(111) A
def
= Aτ1 →Bτ2 : s〈op, v, x〉.A ′

and consider:

(112) (σ, A) → (σ[x 7→ v], A ′)

Corresponding reduction is:

(113) A[TP(A, τ1)|P] | B[TP(A, τ2)|Q] → A[TP(A ′, τ1)|P] | B[TP(A ′, τ2)|R]

Since other threads ofA ′ stay intact, we have the same set of threads in the projections except we
lose the initial actions ofτ1,2, which let us lose these initial actions from their projections, hence doe.
For initialisation, assume an initialisation reduces in the way:

(114) EPP(A, σ) → P

We again have a top-level active output and a replicated input in EPP(A, σ). Suppose this replicated
input comes from two threads:

(115) TP(A, τi) (i = 1,2)

Let the output thread beτ0 which is paired withτ1:

(116) TP(A, τi) (i = 0)

that is, we have (again for simplicity not considering parallel composition at the top-level):

(117) A
def
= Aτ0 → Bτ1 : ch(ννν s̃).A ′

This reduces as:

(118) (σ, A) → (σ, (ννν s̃)A ′)

86

In A ′, we have the same threads except forτ0,1. First,τ0 loses its first action, otherwise the same as
before. This does not change the projection. Forτ1, the redex of the projection has:

(119) ⊔i=1,2TP(A, τi) | R

whereR is the result of taking off the first input fromE⊔i=1,2 TP(A, τi). While the projection of
A ′ at ch loses theτ1-part; further the projection ofA ′ at τ1 only has theτ1-part of the code, losing
its τ2-part, if any. Thus this changed part has the shape:

(120) TP(A, τ2) | R′

such thatR′ ⋖ R. Since we also haveTP(A, τ2) ⋖ ⊔i=1,2 TP(A, τi) and because all other threads
remain identical betweenA andA ′, we have

(121) EPP(A ′, σ) ⋖ P,

as required. Other cases are similar.
Completeness is by induction on the derivation of reductionin the global calculus. This is

essentially the reverse (and easier) arguments of those forthe soundness. The main point is showing
that translating into the end-point calculus and then performing the corresponding reduction by using
the annotated threads. After the reduction, the communication and assignment again yields a precise
match: initialisation, conditional and sum can lead to a loss of threads for one or more services (at
certain service channels) by reducing in the global calculus, but otherwise with precisely the same
collection of threads. By compensating the former with�, we obtain the simulation.

Formally, we have the following cases:

• Rule (INIT). Applying this rule, we must have thatI = A→ B : ch(ννν s̃) . I ′ andσ′ = σ. If
we then apply the end-point projection, we first have that theannotationA of I is

Aτ1 → Bτ2 : ch(ννν s̃) .γ(I ′, ℓ′′ · 〈τ1,A, t̃ s̃〉 · 〈τ2,B, s̃〉)

where, further on, we fixA ′ = γ(I ′, ℓ′′ · 〈τ1,A, t̃ s̃〉 · 〈τ2,B, s̃〉). If we now end-point project,
assuming all the restricted session channel names are in vector s̃′, we have

(ννν s̃′) (A[
G

τ∈[τ1]

ch(s̃) .TP(A ′, τ) | Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@A |

B[
G

τ∈[τ2]

!ch(s̃) .TP(A ′, τ2) | Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@B |

ΠC6∈{A,B} C[Π[τ]
G

τ′∈[τ]
TP(A, τ′)]σ@C)

From the definition of the merge function, we can deduce the following network

(ννν s̃′) (A[ch(s̃) .
G

τ∈[τ1]

TP(A ′, τ) | Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@A |

B[!ch(s̃) .
G

τ∈[τ2]

TP(A ′, τ2) | Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@B |

ΠC6∈{A,B} C[Π[τ]
G

τ′∈[τ]
TP(A, τ′)]σ@C)

If we now apply the reduction rule (INIT) (together with the rule (RES) and structural
congruence) we haveN =

(ννν s̃′s) (A[
G

τ∈[τ1]

TP(A ′, τ) | Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@A |

87

B[
G

τ∈[τ2]

TP(A ′, τ2) |

!ch(s̃) .
G

τ∈[τ2]

TP(A ′, τ2) |

Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@B |

ΠC6∈{A,B} C[Π[τ]
G

τ′∈[τ]
TP(A, τ′)]σ@C)

On the other hand, from the definition of end-point projection, if we take(ννν s̃s′) I ′ and
we end point project it by choosing an annotation ofI ′ which is equal toA ′ (and this is
obviously possible by annotating withℓ′′ · 〈τ1,A, t̃s̃〉 · 〈τ2,B, s̃〉) we getM =

(ννν s̃′s) (A[
G

τ∈[τ1]

TP(A ′, τ) | Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@A |

B[
G

τ∈[τ2]

TP(A ′, τ2) | Π[τ]6=[τ1]

G

τ′∈[τ]
TP(A, τ)]σ@B |

ΠC6∈{A,B} C[Π[τ]
G

τ′∈[τ]
TP(A, τ′)]σ@C)

It is now straightforward to show thatM ⋖ N.
• Rule (COMM). In this case we haveI = A→B : s〈op, e, x〉 . I as(σ, A→B : s〈op, e, x〉 . I)→

(σ[x@B 7→ v], I). Applying the annotating function, we getA equal to

Aτ1 →Bτ2 : s〈op, e, x〉 . γ(I ′, ℓ′′ · 〈τ1,A, t̃〉 · 〈τ2,B, r̃〉)

and fix A ′ = γ(I ′, ℓ′′ · 〈τ1,A, t̃〉 · 〈τ2,B, r̃〉). From this we get the following end-point
projection:

(ννν s̃′) (A[s⊳ op〈e〉 .TP(A ′, τ1) | Πτ 6=τ1
TP(A, τ)]σ@A |

B[s⊲ op(x) .TP(A ′, τ2) | Πτ 6=τ2
TP(A, τ)]σ@B |

ΠC6∈{A,B}C[ΠτTP(A, τ)]σ@C)

Now, if we apply the reduction rule for the end-point calculus the term above will reduce
to

(ννν s̃′) (A[TP(A ′, τ1) | Πτ 6=τ1
TP(A, τ)]σ@A |

B[TP(A ′, τ2) | Πτ 6=τ2
TP(A, τ)]σ@B[x7→v] |

ΠC6∈{A,B}C[ΠτTP(A, τ)]σ@C)

Finally, we can see that if we annotateI ′ withA ′ we then have that it’s end point projection
is exactly the term above.

• (SUM). This rule states(σ, I1 + I2) → (σ′, Ii) so we haveI = I1 + I2. AnnotatingI we
have the termA

γ(I1, ℓ·〈τ,A, t̃〉)+ γ(I2, ℓ·〈τ,A, t̃〉)

. In the sequel we shall call the two branches withA1 andA2 respectively. If we now
end-point project, we have

(ννν s̃′) (ΠA A[ΠτTP(A, τ)]σ@A)

• All other cases are similar and straightforward.

�

COROLLARY 2. Assume I is well-typed, strongly connected, well-threadedand coherent. As-
sume furtherΓ ⊢ I ⊲ ∆ andΓ ⊢ σ. Then the following three properties hold.

88

(1) (error-freedom)EPP(I , σ) does not have a communication error (in the sense of Section
12.2).

(2) (soundness and completeness for multi-step reduction)if EPP(I , σ) →n N then there
exists I′ such that(σ, I) →n (σ′, I ′) andEPP(I ′, σ′) ⋖ N. Symmetrically, if(σ, I) →n

(σ′, I ′) thenEPP(I , σ) →n N such thatEPP(I ′, σ′) ⋖ N;

Proof. (1) is immediate from Theorem 5 (1) and Corollary 1 (page 57).(2) is by Lemma 8 (1,2)
and Theorem 5 (2, 3). �

Note we can strengthen the reduction-based simulation in Theorem 5 and Corollary 2 by annotating
reduction with associated constructors, e.g.

(σ, A→B : s〈op, v, x〉.I ′)
〈A,B,s,op,v,x〉

−→ (σ[x 7→ v], I)

similarly for the end-point calculus. This account, as wellas further discussions on applications and
extensions of these results, will be discussed in a future version of this paper and its sequels.

16.4. EPP for Non-Connected Global Descriptions.Note that there are many alternatives to
the encodings introduced in this document. It is always a trade off between restrictions to the allowed
interactions and complexity of the encoding. In the last encoding we could also have introduced an
extra restriction, i.e. assuming that in every sum the operations are distinct. That would have allowed
the possibility of removing the fresh names during annotations for the summation. We report a
possible full encoding without restriction on connectedness in the appendix of this document.

17. Extension and Applications

17.1. Local variable declaration. We consider extensions and applications of the theory of
EPP. First, we augment the syntax of global/local calculi with one useful construct,local variable
declaration:

newvar x@A := ein I newvar x := ein P

This construct is indispensable especially for repeatedlyinvocable behaviours, i.e. those of services.
Suppose a bookseller is invoked by two buyers simultaneously, each asking a quote for a different
book. If these two threads share a variable, these two requests will get confused. The use of local
variable declaration can avoid such confusion. The dynamics and typing of this construct are standard
[36]. For endpoint projection, it is treated just as assignment.

17.2. Intra-Participant Interaction. In §10.1, we demanded that, in the grammar of service
typing,A 6= B in s̃[A,B]. This means well-typed global terms never have an intra-participant interac-
tion. This is a natural assumption in a business protocol which primarily specifies inter-organisational
interactions: however it can be restrictive in other contexts. Under connectedness (whose definition
does not change), we can easily adapt the EPP theory to the inclusion of intra-participant interac-
tions. First, the typing rules in Table 19, page 43, takes off(TCOMINV) and refines(TCOM) so that
the typings̃[A,B] : α always reflects the direction of the interaction just inferred. This allows us to
treat the case whenA andB are equal. The key change is in well-threadedness. WhenA = B, the
condition (G2) (session consistency) in the definition of wellthreadedness is problematic since we
do not know which of the two threads should be given to which participant. However stipulating the
following condition solves this ambiguity:

Local Causal Consistency: If there is a downward sequence ofactions which starts from an active
threadτ and ends with an action in whichτ occurs for the first time (i.e.τ occurs in no intermediate
actions in the sequence), then the latterτ occurs passively.

We also note this condition is aconsequenceof (G1–3) in the theory without intra-participant inter-
action so that we are not adding any extra constraint to inter-participant interactions.

89

17.3. Name Passing.An extension which is technically significant and practically useful is
the introduction ofchannel passing. Channel passing is often essential in business protocols.As an
example, consider the following refinement of Buyer-SellerProtocol.

Buyer wants to buy a hardware fromSeller, but Buyer knows noSeller’s ad-
dress on the net, i.e. it does not knowSeller’s service channel. The only thing
Buyer knows is a service channelhardware of a DirectoryService, which will
send back the address of aSeller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situation,Buyer has no prior knowledge of not only the seller’s channel but also the par-
ticipant itself. In a global description including its typing, participant names play a basic role. Can
we leave the name of a participant and its channels unknown and still have a consistent EPP theory?
This has been an open problem left in WS-CDL’s current specification (which allows channel passing
only for a fixed participant). Below we restrict our attention to service channel passing, excluding
session name passing (which poses an additional technical issue [21]).

First, at the level of he endpoint calculus, it suffices to usethe channel passing in the standard
π-calculus.

DirectoryService(s).s(y).y(t).P

which describes the initial behaviour ofBuyer. Notey is an imperative variable, so thaty(t).P first
readsthe content ofy then uses it for communication. The typing rules are extended accordingly.

In the global calculus, we introduce a syntactic variableY, called aparticipant placeholder, for
denoting anonymous participants. For example we can write:

A→Y : xs̃. I Y →Y′ : s〈op, e, y〉 . I

The newly addedA→Y : xs̃. I intuitively says:

A starts a session with session namess̃ on the service channel stored in x at
the location A.

The participant at which the service is offered is left unknown by placing a placeholderY. However
this will be instantiated once the variablex at A is inspected. For example, ifx is evaluated toch@B
in the store, the interaction takes place as inA→ B : chs̃. I .

As an example, we present the buyer-seller-directory scenario discussed above:

Buyer → Directory : hardwares.

Directory→Buyer : s〈sell, hware@amazon.co.uk, x〉 .

(Buyer →Y : xs′ .Y→Buyer : s′〈OK, data, y〉 |

Buyer→Directory : s〈more, ”” , z〉 .

Directory→Buyer : s〈sell, hardware@pcworld.co.uk, x〉 .

Buyer →Y′ : xs′′ .Y′→Buyer : s′′〈OK, data, y〉)

Note that, depending on the channel sent fromDirectory, Y andY′ are assigned to different partici-
pants.

The dynamics of the global calculus adds the rule which infers:

(σ, A→Y : xs̃. I) → (σ,(ννν s̃) I [B/Y])

whenever we haveσ@A(x) = ch@B.
For types, we first extend the basic typesθ with (s̃)α. We then add, with the obvious extension

to the syntax of types:

Γ ⊢ x@W1 : (s̃)α Γ ⊢ I ⊲ ∆ · s̃[W2,W1] : α
Γ ⊢W1 →W2 : xs̃. I ⊲ ∆

Other typing rules can be extended to deal with terms containing the participant variableY in the
same manner.

90

Finally, for the EPP theory, we need no change in the notion ofconnectedness. For well-
threadedness, we first annotate placeholders regarding, e.g. A→Y : xs̃. I as the start of a new thread
for Y, so we annotate it asAτ1 →Yτ2 : xs̃. I with τ2 fresh. The definition of well-threadedness remains
the same. Coherence however needs additional consideration. The variablex@A can store different
channels from different participants. For this purpose we use a typing system which records a possi-
ble set of assignment, in the shapex@W1 : C whereC is a set of channels which may be instantiated
into C. If some concrete channel is inC, the behaviour of that channel becomes constrained by co-
herence. This setC is inferred, starting from some fixed set, by addingch(as inx@W1 :C∪{ch@B})
when we infer, e.g.W1→W2 : s〈opj, ch@B, x〉 . I , whereWi can be either of participants or place-
holders.

We give a flavour of how this extension works by the end-point projection of the example above.
We first consider the annotated interaction for placeholders.

Buyer1 →Y3 : xs′ .Y3→Buyer1 : s′〈OK, data, y〉

In the projection of this thread, we have placed a hole− which should be substituted with the appro-
priate service channels.

TP(A, 3) = ! (s′) .s′ ⊳ OK〈data〉

Thus, checking coherence consists in updating the definition of the functionthreads which induces
the thread equivalence classes. But what equivalence classes should threads 3 and 4 belong to? We
can use the prediction of all the possible valuesx can assume at runtime, i.e.hware@amazon.co.uk
andhardware@pcworld.co.uk. We have to make sure that thread 3 belongs to boththreads(A, hware)
andthreads(A, hardware). Then, if we are end-point projecting inamazon.co.uk we will substitute
hware to in both thread projections, and if we are end-point projecting pcworld.co.uk we will sub-
stitutehardware instead.

17.4. Conformance.By relating global descriptions to their local counterpart, the presented
theory allows us to make the best of the rich results from the study of process calculi. One such
application isconformance checking(and its dynamic variant, runtime monitoring), discussed in
Introduction. Our purpose is to have a formal criteria to saythe communication behvaiour of a
programP conforms to a global specificationI .

Conformance concerns the possibility of checking whether an existing system tallies with a
given specification. In process algebra and concurrency in general, this way of reasoning usually
leads to system relations such as (inverse of) simulation orbisimulation. Given an implemented
system, sayP, the idea is to check whetherP conforms to a well-typed specification in the global
calculus. Then, using the end-point projection, we can generate an end-point network (which is
in the same language as the given implemented system). This suggests that we must perform our
comparison in the end-point calculus.

One interesting mechanism to be exploited is the typing system: the end-point projection gen-
erates not only a network consistent with the global specification, but also a type for the generated
network. This can already be used for a first comparison with the given system: if this does not type,
then the given system does not conform to the specification.

Unfortunately, there are cases where types may reveal as conform, systems which are not. Our
solution is to adopt a notion of typed bisimulation [?, ?]. Thus, the given system must be simulated
by the specification with its minimal type in order conform toit.

Let us clarify this with an example in the buyer-seller scenario. Let P be the process

QuoteCh(νννs) .s⊲ Quote〈x〉 .

if (x≤ 100) then s⊳Accept〈〉 else s⊳ Reject〈〉

Consider now a system (already implemented) with the following end-point processes (referred to as
System):

Buyer[P] | Seller[! QuoteCh(s) .s⊳ Quote〈300〉 .

s⊲ (Accept〈〉 + Reject() + Restart())]

91

Suppose we want to check that the system aboveconformsto a specification given in the global
calculus. The following specification says that the buyer either accepts or rejects the quote.

Buyer → Seller : QuoteChs.

Seller→Buyer : s〈Quote, 300, x〉 .

Buyer→Seller : s〈Accept〉+Buyer→Seller : s〈Reject〉

We recall the end point projection of the specification above(referred to asSpec)::

Buyer[QuoteCh(νννs) .s⊲ Quote〈x〉 .

(s⊳Accept〈〉⊕s⊳ Reject〈〉)] |

Seller[! QuoteCh(s) .s⊳ Quote〈300〉 .

s⊲ (Accept〈〉 + Reject())]

Assuming we have a type for the specification, we can deduce, from the projection,α, the
minimal type forQuoteCh, equal to

s↑ Quote(int) s↓ (Accept(null) + Reject(null))

Notice thatQuoteCh : (s)α, even though it is not minimal, types the networkSystem as well
(its minimal type is instead obtained by adding an extra option to the branching corresponding to
the operationRestart). This observation gives a hint thatSystem is conform to the specification. In
fact, this is true as all the options specified in the type are mimicked by theSpec (so the specification
simulates the implementation).

In order to show that checking only the type is not enough, letus consider another system, say
System2, where the buyer’s behaviour is insteadP | P. In this case, the network is still typed by
QuoteCh : (s)α but, because ofP occurring twice,System2 is not type-simulated bySpec and then
not conform to the specification.

In summary, letI be a global description consisting ofA and other participants. SupposeP is
a program which implementsA’s behaviour. Then we can check the conformance ofP against the
specificationI by projectingI to A, which we callS, and checkP conforms toS; the relation “P
conforms toS” can be taken as, for example, the converse of the weak similarity with respect to
typed transitions under the minimal typing ofS. We can use this notion via either hand-calculation
(coinduction), model checking (e.g. mobility workbench),mechanical syntactic approximation, or
as a basis of runtime monitoring.

18. Related Work

As far as we know, this work is the first to present the typed calculus based on global description
of communication behaviour, integrated with the theory of endpoint projection. Global methods for
describing communication behaviour have been practiced inseveral different engineering scenes
in addition to WS-CDL (for which this work is intended to serve as its theoretical underpinning).
Representative examples include the standard notation forcryptographic protocols [33], message
sequence charts (MSC) [24], and UML sequence diagrams [34]. These notations are intended to offer
a useful aid at the design/specification stage, and do not offer full-fledged programming language,
lacking in e.g. standard control structures and/or value passing. Petri-nets [45] may also be viewed
as offering a global description, though again they are moreuseful as a specification/analytical tool.

DiCons (which stands for “Distributed Consensus”), which is independently conceived and
predates WS-CDL, is a notation for global description and programming of Internet applications in-
troduced and studied by Baeton and others [3]. DiCons chooses to use programming primitives close
to user’s experience in the web, such as web server invocation, email, and web form filing, rather
than general communication primitives. Its semantics is given by either MSCs or direct operational
semantics. DiCons does not use session types or other channel-based typing. An analogue of the
theory of endpoint projection has not been developed in the context of DiCons.

The present work shares with many recent works its directiontowards well-structured communication-
centred programming using types. Pict [38] is the programming language based on theπ-calculus,

92

with rich type disciplines including linear and polymorphic types (which come from the studies on
types for theπ-calculus discussed in the next paragraph). Polyphonic C♯ [4] uses a type discipline for
safe and sophisticated object synchronisation. Compagnoni, Dezani, Gay, Vasconcelos and others
have studied interplay of session type disciplines with different programming constructs and pro-
gram properties [11, 15, 16, 21, 44, 46]. The EPP theory offers a passage through which these studies
(all based on endpoint languages and calculi) can be reflected onto global descriptions, as we have
demonstrated for session types in the present work. In the context of session types, the present
work extends the session structure with multiple session names which is useful for having parallel
communications inside a session.

Many theories of types for theπ-calculus are studied. In addition to the study of session types
mentioned above, these include input/output types [30, 37], linear types [20, 26], various kinds of be-
havioural types [2, 5, 6, 22, 23, 42, 43, 50] and combination of behavioural types and model checking
for advanced behavioural analysis [39, 40], to name a few. Among others, behavioural types offer an
advanced analyses for such phenomena as deadlock freedom. We are currently studying how these
advanced type-based validationon techniques on the basis of the present simple session type disci-
pline will lead to effective validation techniques. Again these theories would become applicable to
global descritpions through the link established by the EPPtheory.

Gordon, Fournet, Bhargavan and Corin studied security-related aspects of web services in their
series of works (whose origin lies in the security-enhancedpi-calculus called spi-calculus [1]). In
their recent work [9], the authors have implemented part of WS-Security libraries using a dialect of
ML, and have shown how annotated application-level usage ofthese security libraries in web services
can be analysed with respect to their security properties bytranslation into theπ-calculus [10]. The
benefits of such a tool can be reflected onto the global descriptions through the theory of EPP, by
applying the tool to projections.

Laneve and Padovani [27] give a model of orchestrations of web services using an extensions of
π-calculus to join patterns. They propose a typing system forguaranteeing a notion of smoothness
i.e. a constraint on input join patterns such that their subjects (channels) are co-located in order to
avoid a classical global consensus problem during communication. Reflecting the centralised nature
of orchestration (cf. footnote 1), neither a global calculus nor endpoint projection is considered. A
bisimulation-based correspondence between choreographyand orchestration in the context of web
services has been studied in [13] by Busi and others, where a notion of state variables is usedin
the semantics of the orchestration model. They operationally relate choreographies to orchestration.
Neither strong type systems nor disciplines for end-point projection are studied in their work.

93

Bibliography

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.Information and
Computation, 148(1):1–70, Jan. 1999.

[2] R. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed pi-calculus. InProc. of the FST-TCS
’99, volume 1738 ofLNCS. Springer-Verlag, 1999.

[3] J. Baeten, H. van Beek, and S. Mauw. Specifying internet applications with DiCons. InSAC ’01, pages
576–584, 2001.

[4] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#.ACM Trans. Program.
Lang. Syst., 26(5):769–804, 2004.

[5] M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. InProc. TLCA’01, 2001.
[6] M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. InProc. FOSSACS’03, 2003.
[7] J. A. Bergstra and J. W. Klop. Algebra of communicating processes.Theoretical Computer Science, 37:77–

121, 1985.
[8] G. Berry and G. Boudol. The Chemical Abstract Machine.TCS, 96:217–248, 1992.
[9] K. Bhargavan, C. Fournet, and A. Gordon. Verified reference implementations of WS-Security protocols.

To appear in WS-FM ’06, 2006.
[10] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. InCSFW, pages 82–96,

2001.
[11] E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Correspondence assertions for process synchronization in

concurrent communications.Journal of Functional Programming, 15(2):219–247, 2005.
[12] G. Brown. A post at pi4soa forum. October, 2005.
[13] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration conformance

for system design. InCOORDINATION, volume 4038 ofLNCS, pages 63–81, 2006.
[14] M. Carbone, M. Nielsen, and V. Sassone. A calculus for trust management. InProc. of the FST-TCS ’04,

volume 3328 ofLNCS, pages 161–173. Springer-Verlag, 2004.
[15] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S.Drossopoulou. Session Types for Object-Oriented

Languages. InProceedings of ECOOP’06, LNCS, 2006.
[16] S. Gay and M. Hole. Subtyping for session types in the pi calculus.Acta Informatica, 42(2-3):191–225,

Nov. 2005.
[17] C. A. Gunter.Semantics of Programming Languages. MIT Press, 1995.
[18] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. InProceedings of HLCL

’98, volume 16.3 ofENTCS, pages 3–17. Elsevier Science Publishers, 1998.
[19] C. Hoare.Communicating Sequential Processes. Prentice Holl, New York, 1985.
[20] K. Honda. Composing processes. InProceedings of POPL’96, pages 344–357, 1996.
[21] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured

communication-based programming. InESOP ’98, pages 122–138. Springer, 1998.
[22] K. Honda, N. Yoshida, and M. Berger. Control in theπ-calculus. InProc. Fourth ACM-SIGPLAN Continu-

ation Workshop (CW’04), 2004.
[23] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. InPOPL, pages 128–141, 2001.
[24] International Telecommunication Union. Recommendation Z.120: Message sequence chart, 1996.
[25] N. Kavanztas. A post at petri-pi mailing list. August, 2005.
[26] N. Kobayashi, B. Pierce, and D. Turner. Linear types andπ-calculus. InProceedings of POPL’96, pages

358–371, 1996.
[27] C. Laneve and L. Padovani. Smooth orchestrators. InFoSSaCS ’06, LNCS, pages 32–46, 2006.
[28] R. Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in Computer Science.

Springer, Berlin, 1980.
[29] R. Milner. Functions as processes.MSCS, 2(2):119–141, 1992.

95

[30] R. Milner. The polyadicπ-calculus: A tutorial. InLogic and Algebra of Specification. Springer-Verlag,
Heidelberg, 1993.

[31] R. Milner, J. Parrow, and D. Walker. A calculus of mobileprocesses, I and II.Information and Computation,
100(1):1–40,41–77, Sept. 1992.

[32] R. Milner, M. Tofte, and R. W. Harper.The Definition of Standard ML. MIT Press, 1990.
[33] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks of computers.

Commun. ACM, 21(12):993–999, 1978.
[34] OMG. Unified modelling language, version 2.0, 2004.
[35] PI4SOA. http://www.pi4soa.org.
[36] B. C. Pierce.Types and Programming Languages. MIT Press, 2002.
[37] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.Mathematical Structures in

Computer Science, 6(5):409–453, Oct. 1996.
[38] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. InProof, Language

and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.
[39] J. Rehof. Lacking. InPOPL, 2004.
[40] J. Rehof. Lacking. InPOPL, 2004.
[41] S. Ross-Talbot and T. Fletcher. Ws-cdl primer. Unpublished draft, May 2006.
[42] D. Sangiorgi. Uniform receptive. InICALP, 2004.
[43] D. Sangiorgi. Modal theory. InICALP, 2005.
[44] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system. InPARLE’94,

volume 817 ofLNCS, pages 398–413, 1994.
[45] W. van der Aalst. Inheritance of interorganizational workflows: How to agree to disagree without loosing

control? Information Technology and Management Journal, 2(3):195–231, 2002.
[46] V. T. Vasconcelos, A. Ravara, and S. J. Gay. Session types for functional multithreading. InCONCUR ’04,

LNCS, pages 497–511, 2004.
[47] W3C. Choreography description language, w3-cdl, web services choreography working group.

http://www.w3.org/2002/ws/chor/.
[48] W3C WS-CDL Working Group. Web services choreography description language version 1.0.

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.
[49] G. Winskel.The formal semantics of programming languages. MIT Press, 1993.
[50] N. Yoshida, M. Berger, and K. Honda. Strong Normalisation in theπ-Calculus. InProc. LICS’01, pages

311–322. IEEE, 2001. The full version to appear inJournal of Inf. & Comp..

96

Appendix

APPENDIX A

Summary of Reduction and Typing Rules

(INIT)
(σ,A→ B : ch(s̃) . I) → (σ,(ννν s̃) I)

(COMM)
σ ⊢ e@A⇓ v σ′ = σ[xi@Bi 7→ v]

(σ,ΣiAi →Bi : si〈opi,ei,xi, ., I〉i) → (σ′, Ii)

(ASSIGN)
σ ⊢ e@A⇓ v σ′ = σ[x@A 7→ v]

(σ,x@A := e. I) → (σ′, I)

(IFTRUE)
σ ⊢ e@A⇓ tt

(σ, if e@A then I else I ′) → (σ, I)
(IFFALSE)

σ 6⊢ e@A⇓ ff

(σ, if e@A then I else I ′) → (σ, I ′)

(PAR)
(σ, I1) → (σ′, I ′1)

(σ, I1 | I2) → (σ′, I ′1 | I2)
(RES)

(σ, I) → (σ′, I ′)
(σ,(ννν s̃) I) → (σ′,(ννν s̃) I ′)

(STRUCT)
I ≡ I ′′ (σ, I) → (σ, I ′) I ′ ≡ I ′′′

(σ, I ′′) → (σ′, I ′′′)

TABLE 1. Dynamic Semantics of Global Calculus

(S-END)
1� 1

(S-PAR)
α � α′ β � β′

α | β � α′ | β′

(S-COMM)
k1 ≤ k2 ∃ j1, . . . , jk1. αi � α j i ∧si = sj i ∧opi = opj i ∧θ j i � θi

Σi=1...k1si ↑ opi(θi) .αi � Σ j=1...k2sj ↑ opj (θ j) .α j

(S-COCOMM)
k1 ≤ k2 ∃ j1, . . . , jk1. αi � α j i ∧si = sj i ∧opi = opj i ∧θi � θ j i

Σi=1...k1si ↓ opi(θi) .αi � Σ j=1...k2sj ↓ opj (θ j) .α j

TABLE 2. Rules for the local calculus subtyping relation

99

(TCHOICE)
K ⊆ J s∈ t̃ Γ(x j) �Var(θ j) Γ ⊢A Pj ⊲ ∆ · t̃@A : α j

Γ ⊢A s⊲ Σ j∈Jopj · ñ j (x j) .Pj ⊲ ∆ · t̃@A : Σk∈Ktk ↓ opk(θk) .αk

(TOUT)
J ⊆ K s∈ t̃ Γ(x j) �Var(θ j) Γ ⊢A Pj ⊲ ∆ · t̃@A : α j

Γ ⊢A s⊳⊕ j∈Jñ j 〈ej 〉 .Pj ⊲ ∆ · t̃@A : Σk∈Ktk ↑ opk(θk) .αk

(TII NIT)
Γ ⊢A P⊲ ∆ · s̃@A : α

Γ,ch(s̃) : α ⊢A ch· ñ(s̃)P⊲ ∆
(TOINIT)

Γ ⊢A P⊲ ∆ · s̃@A : α
Γ,ch(s̃) : α ⊢A ch· ñ〈s̃〉 .P⊲ ∆

(TIF)
Γ ⊢A e : bool Γ ⊢A P⊲ ∆ Γ ⊢A Q⊲ ∆

Γ ⊢A [e]P,Q⊲ ∆
(TVAR)

Γ ⊢A P⊲ ∆
Γ ⊢ X ⊲ ∆

(TRES)
Γ ⊢ P⊲ ∆ ·n :⊥
Γ ⊢ (νννn) P⊲ ∆

(TPAR)
Γ ⊢A P⊲ ∆1 Γ ⊢A Q⊲ ∆2

Γ ⊢A P | Q⊲ ∆1 ◦∆2
(TREC)

Γ ⊢ X : ∆ Γ ⊢A I ⊲ ∆
Γ\X ⊢A rec X . I ⊲ ∆

TABLE 3. Typing rules for the end-point calculus: protocols

(TPRIN)
Γ ⊢A P⊲ ∆

Γ ⊢ A[P]σ⊲ ∆
(TNETPAR)

Γ ⊢ N1 ⊲ ∆1 Γ ⊢ N2 ⊲ ∆2

Γ ⊢ N1 | N2 ⊲ ∆1◦∆2
(TNETRES)

Γ ⊢ N⊲ ∆ ·s :⊥
Γ ⊢ (νννs) N⊲ ∆

TABLE 4. Typing rules for the end-point calculus: networks

100

APPENDIX B

Proofs for the global calculus type system

In this appendix, we shall prove the properties of type discipline for the global calculus, mainly
the proof of Theorem 1. Moreover, we will go through some intermediate results. We shall start from
the proof of Proposition 1.

Proposition 1.

(1) (well-formedness)Γ ⊢ I ⊲ ∆ impliesΓ and∆ are well-formed.
(2) (weakening, 1) AssumeΓ′·Γ is well-formed. ThenΓ ⊢ I ⊲ ∆ impliesΓ·Γ′ ⊢ I ⊲ ∆.
(3) (weakening, 2) Let∆ be well-formed and ˜s are fresh. ThenΓ ⊢ I ⊲ ∆ implies Γ ⊢

I ⊲ ∆·s̃[A,B]end.
(4) (thinning) Assumefc(Γ′)∩ fc(I) = /0. ThenΓ·Γ′ ⊢ I ⊲ ∆ impliesΓ ⊢ I ⊲ ∆.
(5) (co-type) Γ ⊢ I ⊲ ∆·s̃[A,B]α impliesΓ ⊢ I ⊲ ∆·s̃[B,A]α.

Proof.

(1) By induction on the typing rules. We only analyse in detail some cases.
• (TZERO). In this case we haveI = 0 for Γ ⊢ 0⊲

S

i s̃i [Ai ,Bi]end. From the rule we
can deduce thatΓ is well-formed. Moreover, as∀i 6= j . {s̃i}∩ {s̃j} = /0 also∆ is
well-formed.

• (TINIT). By this rule we assumeΓ′, ch@B : (s̃)α ⊢ A → B : ch(s̃) . I ⊲ ∆ and then
Γ′, ch@B : (s̃)α ⊢ I ⊲ ∆ · s̃[B,A] : α. Now, by induction hypothesis,Γ = Γ′, ch@B :
(s̃)α is well-formed. As for∆ it is trivial to prove its well-formedness as a conse-
quence of the well-formedness of∆ · s̃[B,A] : α.

• (TCOMM). In this case we haveΓ ⊢ A→B : s〈opj, e, x〉 . I ⊲ ∆ · s̃[A,B] : Σ j∈Js ↑
opj (θ j) .α j . Now, asΓ ⊢ I ⊲ ∆ · s̃[A,B] : α j , by induction hypothesisΓ and ∆ ·
s̃[A,B] : α j are well-formed. As a consequence, also∆ · s̃[A,B] : Σ j∈Js↑ opj (θ j) .α j
is well-formed.

• (TCOMM INV). Similar to previous case.
• (TRES-I). Similar to previour cases.
• (TIF). Trivial, by induction hypothesis.
• (TASSIGN). Trivial, by induction hypothesis.
• (TSUM). Trivial, by induction hypothesis.
• (TVAR). Trivial, by rule assumption.
• (TREC). From the hypothesisΓ ·XA : ∆ ⊢ I ⊲ ∆ we deduce that bothΓ and∆ are

well-formed.
• (TPAR). By induction hypothesis, it is a consequence of the assumptions.

(2) Straightforward, by induction on the typing rules.
(3) Similar to previous case.
(4) By induction on the typing rules, similar to previous cases.
(5) By induction on the typing rules, similar to previous cases.

�

We then give the proof of Proposition 2.

Proposition 2.

(1) (preorder) The relation≪ is a preorder.
(2) (subsumption) LetΓ ≪ Γ′ and∆ ≪ ∆′. ThenΓ ⊢ I ⊲ ∆ impliesΓ′ ⊢ I ⊲ ∆′.

101

(3) (existence of minimal typing) LetΓ ⊢ I for someΓ. Then there existsΓ0 such that (1)
Γ0 ⊢ I and (2) wheneverΓ′ ⊢ I we haveΓ0 ≪Γ′. Moreover suchΓ0 can be algorithmically
calculable fromI . We callΓ0 theminimum service typing of I.

Proof.

(1) It is straightforward to show that the relation≪ is reflexive and transitive.
(2) Easy from the shape of the proof rules.
(3) By directly constructing minimum session/service typings inductively (for a typable term),

using a session typing in which groupings by vectors are taken off so that it is a finite set
of assignments of the form[A,B](α1, ..,αn): this is because the grouping may prevent a
term from having a minimum session typing (this suggests we may as well take off the
groupings from the type discipline: the present form is chosen for clarity of presentation).
When session initialisation is done, we group session channels. Since, at each step, we
can check the obtained typing is smaller than any other legitimate type derivation, we
know the final typing we obtain is the minimal/principal typing.

�

And then proof of Lemma 1.

Lemma 1.

(1) (substitution, 1) IfΓ,XA : ∆ ⊢ I ⊲ ∆′ andΓ ⊢ I ′ ⊲ ∆ thenΓ ⊢ I [I ′/XA] ⊲ ∆′.
(2) (substitution, 2) IfΓ ⊢ σ, Γ ⊢ σ(x@A) : θ andΓ ⊢ v : θ, thenΓ ⊢ σ[x@A 7→ v].

Proof.

(1) The proof is direct from the typing rules.
(2) It is immediate from the typing rules.

�

Finally the main theorem for this section.

Theorem 1.

(1) (Subject Congruence) IfΓ ⊢ I ⊲ ∆ andI ≡ I ′ thenΓ ⊢ I ′ ⊲ =α ∆.
(2) (Subject Reduction, 1) AssumeΓ ⊢ σ. ThenΓ ⊢ I ⊲ ∆ and(σ, I) → (σ′, I ′) imply Γ ⊢ σ′

andΓ ⊢ I ⊲ ∆′ for some∆′.
(3) (Subject Reduction, 2) AssumeΓ ⊢ σ. ThenΓ ⊢ I and(σ, I) → (σ′, I ′) imply Γ ⊢ σ′ and

Γ ⊢ I ′.

Proof.

(1) We shall prove this by induction on the structural congruence rules.
• The proof is trivial for all cases that define| and+ to be commutative monoids.
• When (νννs) I | I ′ ≡ (νννs) (I | I ′) whenevers 6∈ f n(I ′), suppose thatΓ ⊢ (νννs) I |

I ′ ⊲ ∆. Now, by rule (TPAR), we have that there exist∆1 and ∆2 with fsc(∆1)∩
fsc(∆2) = /0 such thatΓ ⊢ (νννs) I ⊲ ∆1 andΓ ⊢ I ′ ⊲ ∆2 and∆ = ∆1∪∆2. Now, ac-
cording to which rule we can apply for gettingΓ ⊢ (νννs) I ⊲∆1, we have three cases:
(TRES-1), (TRES-2) and (TRES-3). We only analyse the first one as the other two
are very similar. If we apply (TRES-1) then we have that there exists a∆′ such
that ∆1 = ∆′, s̃1s̃2 : ⊥ and Γ ⊢ I ⊲ ∆′, s̃1ss̃2[A,B] : α. Now, applying again rule
(TPAR), we can deduce thatΓ ⊢ I | I ′ ⊲ ∆′, s̃1ss̃2[A,B] : α ∪ ∆2 if we can prove
thatfsc(∆′, s̃1ss̃2[A,B] : α)∩ fsc(∆2) = /0. As fsc(∆1)∩ fsc(∆2) = /0, we only have to
make sure thatfsc(∆2)∩{s} = /0 and this can be ensured by alpha-renaming theI ′

and∆2 in case there is clash (extended bound name convetion). The proof concludes
by applying the rule (TRES-1) again.

(2) In order to prove this, we shall prove a stronger result i.e. Γ ⊢ I ⊲ ∆ and(σ, I) → (σ′, I ′)
imply Γ ⊢ I ⊲ ∆′ and one of the following statements is true:

• ∆ = ∆′

• ∆ = ∆1, s̃[A,B] : α and∆′ = ∆1, s̃[A,B] : α′.

102

Note that if this is true, we have that

(122) fsc(∆) ⊆ fsc(∆′)

The proof proceeds by induction on the depth of the derivation of (σ, I) → (σ′, I ′).

Basic cases.
• (COMM). By hypothesis, we have(σ,A→B : s〈op, e, x〉 . I)→ (σ′, I) andΓ⊢A→B :

s〈op, e, x〉 . I ⊲∆. Now, the only applicable rules are (TCOMM) and (TCOMM INV).
The cases are similar, so we shall inspect only the first one. We then have that
∆ = ∆1 · s̃[A,B] : Σ j∈Js↑ opj (θ j) .α j andΓ ⊢ I ⊲ ∆1 · s̃[A,B] : α j .

• (INIT). We have(σ,A→ B : ch(ννν s̃) . I)→ (σ,(ννν s̃) Ii). By applying the rule (TINIT),
we have thatΓ′, ch@B : (s̃)α ⊢ A→ B : ch(s̃) . I ⊲ ∆ for Γ = Γ′, ch@B : (s̃)α and
Γ′, ch@B : (s̃)α ⊢ I ⊲ ∆ · s̃[B,A] : α. Now, by applying rule (TRES-1) repeatedly,
we haveΓ′, ch@B : (s̃)α ⊢ (ννν s̃) I ⊲ ∆ · ε :⊥ and by rule (TRES-3), we can get
Γ′, ch@B : (s̃)α ⊢ (ννν s̃) I ⊲ ∆.

• (REC). We have(σ, rec XA . I) → (σ, I [rec XA . I/XA]) andΓ ⊢ rec XA . I ⊲ ∆. The
only applicable rule is (TREC), which impliesΓ ·XA : ∆ ⊢ I : ∆. But, by Lemma 1,
we have thatΓ ⊢ I [rec XA . I/X]⊲ ∆.

• (IFTT). From this semantics rule it follows that(σ, if e@A then I1 else I2) → (σ, I1)
and from the hypothesisΓ ⊢ if e@A then I1 else I2⊲∆. Applying rule (TIF) we have
Γ ⊢ I1 ⊲ ∆.

• (IFFF). Similar to previous case.
• (SUM). Similar to previous case.
• (ASSIGN). We have that(σ,x@A := e. I) → (σ′, I) andΓ ⊢ x@A := e. I ⊲ ∆. Now,

applying the rule (TASSIGN) we getΓ ⊢ I ⊲ ∆.

Inductive cases.
• (PAR). By this rule, as we assume(σ, I1 | I2)→ (σ′, I ′1 | I2), we get(σ, I1)→ (σ′, I ′1).

Moreover, there exist∆1 and∆2 such that∆ = ∆1∪∆2 andΓ ⊢ I1 | I2 ⊲ ∆, and such
that, applying rule (TPAR), Γ ⊢ I1 ⊲ ∆1 andΓ ⊢ I2 ⊲ ∆2 with fsc(∆1)∩ fsc(∆2) = /0.
Now, by induction hypothesis, it follows that there exists∆′

1 such thatΓ ⊢ I ′1 ⊲ ∆′
1,

and by rule (TPAR) again, it follows thatΓ ⊢ I ′1 | I2 ⊲ ∆′
1 ∪ ∆2 because of what

observed in (122).
• (STRUCT). It follows from first point of this theorem.
• (RES). In this case we have

(σ, I) → (σ′, I ′)
(σ,(ννν s̃) I) → (σ′,(ννν s̃) I ′)

There are three possible cases for typing restriction, but we only analyze rule (TRES-
1) as the other cases are similar. By applying this rule we must haveΓ ⊢ (νννs) I ⊲∆ =
∆1, s̃1s̃2 : ⊥ if and only if

Γ ⊢ I ⊲ ∆1, s̃1ss̃2[A,B] : α

Now, as(σ, I)→ (σ′, I ′), by induction hypothesis, we have thatΓ ⊢ I ′⊲∆′′ and three
possible cases:

(a) ∆′′ = ∆1, s̃1ss̃2[A,B] : α′. If we now apply again rule (TRES-1), we get that
Γ ⊢ (νννs) I ′ ⊲ ∆1s̃1s̃2 :⊥.

(b) ∆1 = ∆2, s̃′[C,D] : α′ and∆′′ = ∆2, s̃′[C,D] : α′′, s̃1ss̃2[A,B] : α. Now, applying
again rule (TRES-1), we get thatΓ ⊢ (νννs) I ′ ⊲ ∆2, s̃′[C,D] : α′′, s̃1s̃2 :⊥.

(c) ∆′′ = ∆1, s̃1ss̃2[A,B] : α and we trivially getΓ ⊢ (νννs) I ′ ⊲ ∆1s̃1s̃2 :⊥.
(3) Easy to prove from the previous point.

�

103

APPENDIX C

Proofs for the end-point calculus type system

In here, we give the proofs for the end-point calculus type discipline. Mainly we give proofs for
Theorem 2.

Proposition 3.

(1) (well-formedness)Γ ⊢ M ⊲ ∆ impliesΓ and∆ are well-formed.
(2) (weakening, 1) AssumeΓ′·Γ is well-formed. ThenΓ ⊢ M ⊲ ∆ impliesΓ·Γ′ ⊢ M ⊲ ∆.
(3) (weakening, 2) Let∆ be well-formed and ˜s are fresh. ThenΓ ⊢ M ⊲ ∆ implies Γ ⊢

M ⊲ ∆·s̃ : ⊥.
(4) (thinning) Assumefc(Γ′)∩ fn(M) = /0. ThenΓ·Γ′ ⊢ M ⊲ ∆ impliesΓ ⊢ M ⊲ ∆.
(5) (subsumption, 1) IfΓ,ch@A : (s̃)α ⊢ M ⊲ ∆ andα � β thenΓ,ch@A : (s̃)β ⊢ M ⊲ ∆
(6) (subsumption, 2) IfΓ ⊢ M ⊲ ∆·s̃@A : α andα � β thenΓ ⊢ M ⊲ ∆·s̃@A : β.

Proof.

(1) By induction on the typing rules. The proof is similar to the global case.
(2) This proof proceeds by induction on the typing rules. Before this we need to prove that

the result holds also for processes i.e.Γ ⊢A P ⊲ ∆ impliesΓ·Γ′ ⊢A P ⊲ ∆. Also in this
case, the proof proceeds by induction on the typing rules andis straighforward. We are
now able to prove the result for any network.

• (TPARTICIPANT). In this rule we have thatΓ ⊢ A[P]σ ⊲ ∆ if and only if Γ ⊢A P⊲ ∆.
By what we proved above, we have thatΓ ·Γ′ ⊢A P ⊲ ∆ and then, again by rule
(TPARTICIPANT) we haveΓ ·Γ′ ⊢ A[P]σ ⊲ ∆.

• (TPAR-NW). We have thatΓ ⊢ N1 | N2 ⊲ ∆1⊙∆2 if and only if Γ ⊢ N1 ⊲ ∆1 and
Γ ⊢ N2 ⊲ ∆2. By induction hypothesis we getΓ ·Γ′ ⊢ N1 ⊲ ∆1 andΓ ·Γ′ ⊢ N2 ⊲ ∆2
and by rule (TPAR-NW) again we getΓ ·Γ′ ⊢ N1 | N2 ⊲ ∆1⊙∆2

• (TRES-NW,1), (TRES-NW,2), (WEAK-end-NW) and (WEAK-⊥-NW). Similar to
previous case.

(3) The proof proceeds by induction on the typing rule. As in the previous proof, we need to
prove something similar for the processesP.

(4) By induction on the typing rules.
(5) By induction on the typing rules, the results is a direct consequence of the rules typing

communication.
(6) By induction on the typing rules. Similar to previous case.

�

We then give the proof of Proposition 4.

Proposition 4. (existence of minimal typing) LetΓ0 be theminimal service typing of M. Then, if
Γ ⊢ M ⊲ ∆ then we haveΓ0 ⊢ M ⊲ ∆0 such thatΓ′ ⊢ M ⊲ ∆′ and∆′ using the same vectors of free
session channels as∆ impliesΓ0 � Γ′ and∆0 � ∆′. Proof. (outline) By typing, we knowM has all
session channels abstracted by initialisation actions. For this reason we already know the grouping of
bound session channels inM, determining uniquely vectors used in the introduction ofend-types (for
⊥ types an arbitrary grouping of session channels is enough).Starting from them, we can inductively

105

construct minimum typings following the syntax ofM. The second clause is its simple generalisation
(note grouping of free session channels should be given beforehand to construct a typing). �

And then proof of Lemma 2.

Lemma 2.

(1) If Γ ⊢ A[P]σ ⊲ ∆, Γ ⊢ x@A : θ andΓ ⊢ v : θ, thenΓ ⊢ A[P]σ[x7→v] ⊲ ∆.
(2) If Γ,X : ∆ ⊢A P ⊲ ∆′ andΓ ⊢A Q ⊲ ∆, thenΓ ⊢ P[Q/X] ⊲ ∆.

Proof.

(1) Trivial, from typing rules.
(2) This proof is similar to the global case i.e. by inductionon the typing rules.

�

Below the proof for Lemma 3

Lemma 3. (subject congruence)Γ ⊢ M ⊲ ∆ andM ≡ N thenΓ ⊢ N ⊲ ∆.
Proof. By rule induction of the generation rules of≡. �

Finally the main theorem for this section.

Theorem 2. If Γ ⊢ N⊲ ∆ andN → N′ thenΓ ⊢ N′ ⊲ ∆.
Proof. Standard, using Lemma 2. �

106

