A Theoretical Basis of
Communication-Centred Concurrent
Programming

Marco Carbon&2 Kohei Honda Nobuko Yoshida
Robin MilneP Gary Browrf Steve Ross-Talbbt

1Queen Mary, University of London, UK
2 Imperial College, London, UK

3 University of Cambridge, UK

4 Pi4 Technologies Ltd

Abstract.

This document presents two different paradigms of desorippf communication behaviour,
one focussing on global message flows and another on entdhediaviours, as formal calculi based
on session types. The global calculus originates from GQigyegphy Description Language, a web
service description language developed by W3C WS-CDL wgrkiroup. The end-point calculus is
a typedrtcalculus. The global calculus describes an interactiemaco from a vantage viewpoint;
the endpoint calculus precisely identifies a local behavideach participant. After introducing the
static and dynamic semantics of these two calculi, we egaheory of endpoint projection which
defines three principles for well-structured global dgsttwn. The theory then defines a translation
under the three principles which is sound and complete is¢hee that all and only behaviours speci-
fied in the global description are realised as communicationong end-point processes. Throughout
the theory, underlying type structures play a fundameimta. r

The document is divided in two parts: part | introduces the tlescriptive frameworks using
simple but non-trivial examples; the second part estadtish theory of the global and end-point
formalisms.

Contents

Abstract.

Part 1.

1.

arwd

10.
11.
12.
13.
14.
15.
16.
17.
18.

Introductory Examples
Introduction to Part 1
Describing Communication Behaviour (1)
Describing Communication Behaviour (2)
Describing Communication Behaviour (3)
Correspondence with CDL

A Formal Theory of Structured Global Programming
Introduction to Part 2
Informal Preview
Global Calculus (1): Syntax
Global Calculus (2): Reduction
Global Calculus (3): Typing
End-Point Calculus (1): Syntax and Reduction
End-Point Calculus (2): Typing
Theory of End-Point Projection (1): Connectedness
Theory of End-Point Projection (2): Well-Threadedness
Theory of End-Point Projection (3): Coherence
Main Results: EPP Theorems
Extension and Applications
Related Work

Bibliography

Appendix

Appendix A. Summary of Reduction and Typing Rules

Appendix B. Proofs for the global calculus type system

Appendix C. Proofs for the end-point calculus type system

59
65
74
83
89
92

95

97
99
101
510

Part 1

Introductory Examples

1. Introduction to Part 1

This paper introduces two different ways of describing camioation-centred software in the
form of formal calculi and discusses their relationship.ofdifferent frameworks of description, one
centring on global message flows and another centring on (ead-point) behaviours, share the
common featurestructured representation of communicatioi$ie global calculus originates from
Choreography Description Language (CDUS], a web service description language developed by
W3C’s WS-CDL Working Group. The local calculus is based oafitcalculus B1], one of the
representative calculi for communicating processes. Vsvsiiny well-formed description (in a
technical sense we shall make clear) in the global calculissahprecise representation in the local
calculus.

Both calculi are based on a common notion of structured coniration, calledsession A
session binds a series of communications between two pantie one, distinguishing them from
communications belonging to other sessions. This is a atdrngtactice in business protocols (where
an instance of a protocol should be distinguished from aratistance of the same or other proto-
cols) and in distributed programming (where two interagtparties use multiple TCP connections
for performing a unit of conversation). As we shall explanghe present paper, the notion of session
can be cleanly integrated with such notions as branchimgysen (loop) and exceptions. We show,
through examples taken from simple but non-trivial bussngotocols, how concise structured de-
scription of non-trivial interactive behaviour is pos&hlsing sessions. From a practical viewpoint,
a session gives us the following merits.

e |t offers a clean way to describe a complex sequence of conuatimns with rigorous
operational semantics, allowing structured descriptibimi@ractive behaviour.

e Session-based programs can use a simple, algorithmidéiltjeat typing algorithm to
check its conformance to expected interaction structures.

e Sessions offer a high-level abstraction for communicatiehaviour upon which further
refined reasoning techniques, including type/transitigi¢-based ones, can be built.

The presentation in this paper focusses the first point, are @ formal basis for the second point.
A full discussion of the second point and exploration of thieck point are left to a later version of
this paper and in its sequels.

An engineering background of the present work is the expdogrowth of the Internet and
world-wide web which has given rise to, in the shape of dedfatandards, an omnipresent haming
scheme (URI/URL), an omnipresent communication proto@diETP/TCP/IP) and an omnipresent
data format (XML). These three elements arguably offer heikfra-structural bases for application-
level distributed programming. This engineering backgibmakes it feasible and advantageous to
develop applications which will be engaged in complex saqas of interactions among two or more
parties. Another background is maturing of theories of psses centring on thecalculus and its
types. Thatcalculus and its theories of types are singular in that ndt do they enable a study of
diverse ways for structuring communication but also thégvafruitful and often surprising connec-
tions to existing formalisms including process algebrag.(€SP and CCS), functional computation
(e.g. A-calculus), logics (Linear Logic) and objects (e.g. Ja¥ée believe a combination of strong
practical needs for interactional computation and rictote@cal foundations will lead to rich dia-
logues between practice and theories. The present workeaded to offer some of the technical
elements which may become useful in this dialogue.

This paper consists of two parts. In the first part, which heefirst give sections including this
Introduction, we informally introduce two paradigms of deking interactions through incremen-
tally complex examples. These examples come from use-fas€PL found in CDL primer j1]
by Steve Ross-Talbot and Tony Fletcher, and those exampltasnanicated by Gary Browrnlp]
and Nickolas Kavanzta®§]. In the second part, which form the remaining sections, ntetuce
formal semantics, type discipline, and the formal conmectietween the core parts of these two
formalisms.

Buyer Seller Shipper

RequestForQuote

QuoteResponse

QuoteAcceptance
Choice{ QuoteReject

| OrderConfirmation| RequestDelDetails

DeliveryDetails

DeliveryDetails

FIGURE 1. Graphical Representation of Simple Protocol

Structure of the paper.In the rest of this paper, Sections 2, 3 and 4 are devoted ¢onva
illustration of key technical elements through descriptaf small but non-trivial use-cases in the
global and local calculi. The description starts from a dargxample and reaches a fairly complex
one, illustrating the essence of each construct as well@selationship between their respective
global descriptions and the corresponding local ones. i@e8étcomments on the correspondence
and differences between our formal calculi and CDL. The sdqart (from Section 6 to Section 10)
formally introduces two calculi (operational semanticsSiection 6 and type disciplines in Section
7), develops theories of end-point projections (in Se&ti8rand 9), and concludes the paper with
related works and further topics (in Section 10). The appeaffers further technical details.

2. Describing Communication Behaviour (1)

2.1. A Simple Business Protocolln this section and the next, we show how small, but in-
creasingly complex, business protocols can be accuratelycancisely described in two small pro-
gramming languages, one based on global message flows atitiabased on local, or end-point,
behaviours. Along the way we also illustrate each conswéithese mini programming languages
(whose formal semantics is discussed in the second paregfaper).

Our starting point is a simple business protocol for purgigaa good among a buyer, a seller
and a shipper, which we calimple BSH Protocol Informally the expected interaction is described
as follows.

(1) First, Buyer asks Seller, through a specified channelffes a quote (we assume the good
to buy is fixed).

(2) Then Seller replies with a quote.

(3) Buyer then answers with eith@uoteAcceptance or QuoteRejection. If the answer is
QuoteAcceptance, then Seller sends a confirmation to Buyer, and sends a chahne
Buyer to Shipper. Then Shipper sends the delivery detaiBuger, and the protocol
terminates. If the answer {uoteRejection, then the interaction terminates.

Figure 1 presents an UML sequence diagram of this protodede®ve that, in Figure 1, many details
are left unspecified: in real interaction, we need to spefafyexample, the types of messages and the
information exchanged in interaction, etc. While the pooladoes not include practically important

4

elements such as conditional and loops, its simplicitye®as a good starting point for introducing
two formalisms.

2.2. Assumption on Underlying Communication MechanismsWe first outline the basic
assumptions common to both global and local formalismsoBahd henceforth we call the dramatis
personae of a protocol (Buyer, Seller and Shipper in thegmtesase)participants

e We assume each participant either communicates througimelsaor change the content
of variables local to it (two participants may have their oweal variables with the same
name but they are considered distinct).

e In communication:

(1) A sender participant sends a message and a receivevesdgii.e. we only con-
sider a point-to-point communication. A communication lisays done through a
channel The message in a communication consists of an operator aathevhen
there is a value passing, a value. The value will be assignaddcal variable at the
receiver’s side upon the arrival of that message.

(2) Communication can be either amsession communicatiomhich belongs to a ses-
sion, orsession initiation channelshich establishes a session (which may be liked
to establishing one or more fresh transport connections foiece of conversation
between two distributed peers). In a session initiationmomication, one or more
fresh session channels belonging to a session are dedaredne session can use
multiple channels.

(3) A channel can be either session channelhich belongs to a specific session or
an session-initiating channelhich is used for session-initiation. For a session-
initiating channel, we assume its sender and a receiveeisigtermined.

e \We may or we may not demand:
(1) the order of messages from one participant to anotheugir a specified channel is
preserved.
(2) each communication is synchronous, i.e. a sender imatedgiknows the arrival of
a message at a receiver.
(3) one party participating in a session can use a sessiamaeh both for sending and
receiving.
The last three assumptions which we leave undermined dct affeay to formalise protocols, as well
as for understanding their formal properties. Neverthethe existence or lack of these assumptions
do not substantially affect the informal discussions is #mid the next section.

2.3. Representing Communication (1): Initiating SessionBuyer's session-initiating com-
munication in Simple BSH Protocol is described in the glaiz@tulus as follows.

2) Buyer — Seller : InitB2S(B2Sch) . |

which says:

Buyer initiates a session with Seller by communication tigio a session-
initiating channelNITB2S, declaring a fresh in-session chanB2Sch Then
interaction moves to.

Note “.” indicates sequencing, as in process calculi. A sessidiaiitin can specify more than one
session channels as needed, as the following example shows.
2 Buyer — Seller : InitB2S(B2Sch, S2Bchl

which declares two (fresh) session channels, one from Btoy&eller and another in the reverse
direction.

In local description, the behaviour is split into two, one Buyer and another for Seller, using
the familiar notation from process algebras. For exampldétomes:

3) Buyer| InitB2S (B2Sch. Py |, Seller[InitB2S (B2Sch). P, |

Above Buyer[P | specifies a buyer’s behaviour, whileller| P | specifies a seller’s behaviour. The
over-lined channel indicates it is used for output (thiddiek the tradition of CCStcalculus: in
CSP, the same action is writtémtB2S! (B2Sch).

Note the behaviour of each participant is described ratten their interaction. When these
processes are combined, they engage in interaction adluksan the scenario above.

2.4. Representing Communication (2): In-session Commurétion. An in-session commu-
nication specifies an operator and, as needed, a messagatcdiitst we present interaction without
communication of values.

(4) Buyer — Seller : B2SchQuoteRequest). |’
whereB2Schis an in-session channel. It says:

Buyer sends §uoteRequesinessage to Seller, then the interactibensues.
The same behaviour can be written down in the local calcudus a

(5) B2SchQuoteRequest). Py, B2SchQuoteRequest).P»
An in-session communication may involve value passingpbaws.

(6) Seller — Buyer : S2BchQuoteResponse, 3,000, X). |’
which says:

Seller sends QuoteRespons-message with valug 000to Buyer; Buyer, upon
reception, assigns the received valBe)00, to its local variable x.

This description can be translated into end-point behasias follows.
@) S2BchQuoteResponse, 3,000 . Py, S2BchQuoteResponse, y).P,
which describes precisely the same communication behaviou

2.5. Representing Branching.In various high-level protocols, we often find the situation
where a sender invokes one of the options offered by a raceAvenethod invocation in object-
oriented languages is a simplest such example. In a glokbailoa, we may write an in-session
communication which involves such a branching behaviodokaws.

{Buyer — Seller : B2SchQuoteAccept).l1}
(C) +
{Buyer — Seller : B2SchQuoteReject). Iz}
which reads:
Through an in-session chanr&2Sch, Buyer selects one of the two options
offered by SellerQuoteAccept andQuoteReject, and respectively proceeds
to 11 andls.
The same interaction can be written down in the local cakalsifollows. First, Buyer’s side (the
one who selects) becomes:

{B2SchQuoteAccept)..P1}

9) @
{B2SchQuoteReject).P,}

Above® indicates this agent may either behav@®aSchQuoteAccept)..P; orB2SchQuoteReject) . Py,
based on its own decision (this is so-callatbrnal sum whose nondeterminism comes from its in-
ternal behaviour).

In turn, Seller's side (which waits with two options) beca@ne

{B2SchQuoteAccept).Q1}
(20) +

{B2SchQuoteReject).Qp}
Here+ indicates this agent may either behava2SchQuoteAccept). Q1 or asB2SchQuoteReject). Q2
depending on what the interacting party communicates gir®2Sch (this is so-calleéxternal sum

6

Buyer — Seller : InitB2S(B2Sch).
Buyer — Seller : B2SchQuoteRequest).
Seller — Buyer : B2Sch(QuoteResponse, Vquot e; Xquot e) -
{ Buyer — Seller : B2Sch{QuoteAccept).
Seller — Buyer : B2SchOrderConfirmation).
Seller — Shipper : InitS2H(S2HcHh .
Seller — Shipper : S2HchRequestDeliveryDetails).
Shipper — Seller : S2Hch(DeliveryDetails, Vyetails, Xdetails) -
Seller — Buyer : B2SchDeliverDetails, Xdetails, Ydetails)-O }
+

{ Buyer — Seller : B2SchQuoteReject).0 }

FIGURE 2. Global Description of Simple Protocol

whose nondeterminism comes from the behaviour of an extproaess). Note both branches start
from input through the same chanrig2Sch.

In the local descriptions, the original sum in the globalaliggion in (8) is decomposed into
the internal choice and the external choice. Simildilyresp.l») may be considered as the result of
interactions betweeR; andQ1 (resp.P> andQy).

2.6. Global Description of Simple BSH Protocol.We can now present the whole of a global
description of Simple BSH Protocol, in Figure 2. While itsaneng should be clear from our fore-
going illustration, we illustrate the key aspects of theadiggion in the following.

e Buyer initiates a session by invoking Seller through thsigesinitiating channeNITB2S,
declaring an in-session chanm2ISCh. Next, Buyer sends another message to Seller with
the operation nameQot eRequest ” and without carried values (this message may as
well be combined with the first one in practice).

e Seller then sends (and Buyer receives) a refilyot eResponse” together with the quote
valuevguote- Vquot e iS @ variable local to Seller (its exact content is irrelevagre). This
received value will then be stored Xguot e, local to Buyer.

¢ In the next step, Buyer decides whether the quote is acdeptabot. Accordingly:

(1) Buyer may sendjuoteAccept-message to Seller. Then Seller confirms the pur-
chase, and asks Shipper for details of a delivery; Shippawars with the requested
details (say a delivery date), which Buyer forwards to Sellppon reception of this
message the protocol terminates (denote@,lifie inaction).

(2) Alternatively Buyer may senQuoteReject-message to Seller, in which case the
protocol terminates without any further interactions.

Remark. The description could have used more than one channelsxéon@e, the Buyer-Seller
interactions can us82Bchin addition for communication from Seller to Buyer. The udeoaly
B2Schmay be considered as a way to describe “request-reply” priotiecol inside a session, where
an initial sender sends a request through a channel, anéigeem turn replies leaving the involved
channel implicit (which is a practice found in CDL, c1]).

2.7. Local Description of Simple BSH Protocol.Figure 2 describes Simple BSH Protocol
from a vantage viewpoint, having all participants and tleeraction flows in one view. The same
behaviour can be described focussing on behaviours ofidwhiV participants, as follows.

7

Buyer[InitB2S (B2Sckh).

B2SchQuoteRequest).

B2SchQuoteResponse, Xquote) -

{ B2SchQuoteAccept).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Ygetails)-0 }

S
{ B2SchQuoteReject).0 }]

Seller[InitB2S (B2Scl).
B2SchQuoteRequest).
B2SchQuoteResponse, Vquote) -
{ B2SchQuoteAccept).
B2Sch0rderConfirmation).
1nitS2H (S2Hch .
S2HchDeliveryDetails).
S2Hch{DeliveryDetails, Xgetails) -
B2SchDeliveryDetails, Xgetails)-0 }
4
{ B2SchQuoteReject).0 } |

Shipper[InitS2H (S2Hcl).
S2HchDeliveryDetails).
S2Hch(DeliveryDetails, Vgetails)-0 |

FIGURE 3. Local Description of Simple Protocol

The description is now divided into (1) Buyer's interacthvehaviour, (2) Seller’s interactive be-
haviour, and (3) Shipper’s interactive behaviour. We foon8uyer’s behaviour. One can intuitively
see two descriptions of the same protocol, a global versidiigure 2 and a local version in Figure 3,
represent the same software behaviours — we can extracbtimef from the latter and vice versa.
We shall later establish such compatibility as a formal itesdowever there is a basic difference
in the nature of descriptions: A global description allovssta see how messages are exchanged
between participants and how, as a whole, the interactienas proceeds; whereas, in the local
description, the behaviour of each party is made explisiseen in distinct forms of choices used in
Buyer and Seller.

3. Describing Communication Behaviour (2)

3.1. Conditional. In Simple BSH Protocol, we only specified that Buyer may cleoesher
QuoteAccept Or QuoteReject nondeterministically. Suppose we wish to refine the desoripso
that Buyer would choose the former when the quote is biggen i certain amount, otherwise if
else. For this purpose we can use a conditional.

The description now specifies the “reason” why each brandhkisn. Notice the condition in the
conditional branchx < 1000, is explicitlylocated the description says this judgement takes place at
Buyer. The same scenario is described as follows using the end-palculus. Other participants’
behaviours remain the same.

3.2. Recursion. Assume we wish to further refine the protocol with the follog/specification:

If the quote is too high, Buyer asks another quote until ierees a satisfactory
quote.

if Xquote < 1000 @Buyer then
{ Buyer — Seller : B2SchQuoteAccept).
Seller — Buyer : B2SchOrderConfirmation).
Seller — Shipper : InitS2H(S2HcHh .
Seller — Shipper : S2HchRequestDeliveryDetails).
Shipper — Seller : S2HchDeliveryDetails, Vyetails, Xdetails) -
Seller — Buyer : B2SchDeliverDetails, Xdetails, Ydetails)-O }
else
{ Buyer — Seller : B2Sch{QuoteReject).0 }

FIGURE 4. Global Description of Simple Protocol with Conditional

Buyer[InitB2S (B2Sch.

B2SchQuoteRequest).

B2SchQuoteResponse, Xquote) -

if Xquote <1000 then

{ B2SchQuoteAccept).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Ygetails)-0 }

else

{ B2SchQuoteReject).0 }]

FIGURE 5. Local Description of Simple Protocol with Conditional(§er)

Such behaviour is easily described using a loop or, morergbperecursion. In Figure 6, we show
the global description of this enhanced protocol. Thereoatg two additional lines: in the second
line, rec X. indicates that, intuitively:

We name the following blocK. If X occurs inside that block, then we again
recur to the top of the block.

In the last line, which is the second branch,recurs again. Thus, at this point, the description
recurs to a point immediately afteec X (i.e. the third line). The significance of recursion is its
expressiveness (it can easily express various forms ofsjoand its theoretical tractability. In the
description, it is assumed that the valg,te Will be updated appropriately by Seller, which is
omitted from the protocol description.

It is instructive to see how this recursion is translated iemd-point behaviour. We present the
local counterpart of Figure 6 in Figure 7 (we omit Shippershhviour which does not change).
Observe both Buyer and Seller use recursion, so that thegataboratively be engaged in recur-
sive interactions. No change is needed in Shipper’s locstrifgtion, since it does not involve any
recursion.

3.3. Timeout. Let’s consider refining Simple BSH protocol as follows:

If Buyer does not reply in 30 seconds after Seller presentsodeg then Seller
will abort the transaction. Once Seller decides to do sonef/a confirmation
message arrives from Buyer later, it is deemed invalid.

9

Buyer — Seller : InitB2S(B2Sch.
rec X.
{ Buyer — Seller : B2SchQuoteRequest).
Seller — Buyer : B2SchQuoteResponse, Vquot e, Xquot e) -
if Xguote < 1000 @uyer then
{ Buyer — Seller : B2SchQuoteAccept).
Seller — Buyer : B2SchOrderConfirmation,).
Seller — Shipper : InitS2H(S2HcH .
Seller — Shipper : S2Hch(RequestDeliveryDetails).
Shipper — Seller : S2Hch(DeliveryDetails, Vetails, Xdetail s) -
Seller — Buyer : B2SchDeliverDetails, Xdetails; Ydetails)-O }
else
{ Buyer — Seller : B2SchQuoteReject). X } }

FIGURE 6. Global Description of Simple Protocol with ConditionaldaRecursion

Buyer[InitB2S (B2Sclh).
rec X.
{ B2SchQuoteRequest).
B2SchQuoteResponse, Xquote) -
if Xquote <1000 then
{ B2SchQuoteAccept).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Ydetails)-0 }
else
{ B2SchQuoteReject).X } } |

Seller[InitB2S (B2Sck).
rec X.
{ B2SchQuoteRequest).
B2SchQuoteResponse, Vquote) -
{ B2SchQuoteAccept).

B2Sch0rderConfirmation).

InitS2H (S2Hch .
S2Hch{DeliveryDetails).
S2Hch{DeliveryDetails, Xgetails) -

B2SchDeliveryDetails, Xgetails)-0 }

4
{ B2SchQuoteReject).X }]

FIGURE 7. Local Description of Simple Protocol with Recursion (RuABeller)

10

Buyer — Seller : InitB2S(B2Sch, S2Babort
Buyer — Seller : B2SchQuoteRequest).
Seller — Buyer : B2Sch(QuoteResponse, Vquot e; Xquot e) -
lett = timer (30)@Seller in {
{ Buyer — Seller : B2Sch(QuoteAccept) timer (t).
Seller — Buyer : B2Sch(OrderConfirmation).
Seller — Buyer : B2SchDeliverDetails, Xdetails, Ydetails)-O }
+
{ Buyer — Seller : B2SchQuoteReject) timer(t).0 }
catch (timeout(t))
{ Seller — Buyer : S2BabortAbort).0 } }

FIGURE 8. Global Description of Simple Protocol with Timeout

For describing this refined behaviour, we first should haveeams to describe a timeout. We consider
this mechanism consisting of (1) creating a timer with a tiotevalue; (2) starting a timer; and (3)
exception is thrown when a time out occurs. This excepti@iégal exceptionin the sense that we
consider our abstract notion of exceptions on the basiseofdaffiowing infra-structural support:

All exceptions are caught and handled within a participacally (a participant

may interact with other parties as a result).
This is the standard, low-cost mechanism employed in manytimes such as those of Java and
C++.

Let us see how this can be realised in concrete syntax. Wedfise the global description in

Figure 2. Some comments:

e Inthefirstline (initiating a session), two session chasy®&2Sch(for default communica-
tions) andS2Baborf(for aborting a transaction), are communicated throm@B2S. This
generalised form of a session, where participants can usgpfawchannels in a single
session, is useful for varied purposes.

e In the fourth line, a timet with timeout value 30 is initiated at Seller. This timer Wik
stopped if the input guard specifying that timer (Lines 6 a0)i receives a message (the
two branches of a single choice have the same timer).

e In the second line to the last, an exception handler is gimdrich says: when the timer
fires, Seller will send an abort message Buyer. It is omitted that, if Buyer's message
arrives, Seller behaves as a sink, i.e. does nothing.

The same protocol can be described using the local formaigiended with timeout as follows.
As before, in the exception branch, that Seller is assuméghave as a sink to message8zich
(i.e. B2SchQuoteAccept).0+ B2SchQuoteReject).0 is omitted: it is possible it would behave
non-trivially after itis in the abort mode). On the other daim Buyer's behaviour, we ugsr which
indicates parallel composition. This behaviour is the sasbefore except the reception at the abort
channel is added on parallel.

3.4. Combining Conditional, Recursion and Timeout.As a conclusion to this section, we
present the combination of all constructs we have introdwscefar. Figure Figure 10 gives a global
description of the following behaviour:

(1) First, Buyer asks Seller, through a specified channelffes a quote (we assume the good
to buy is fixed).

11

Seller[InitB2S (B2Sch, S2Baboyt
B2SchQuoteRequest).
B2SchQuoteResponse, Vquote) -
lett =timer(30)in {

{ B2SchQuoteAccept) timer(t).
B2SchOrderConfirmation).
B2SchDeliveryDetails, Xgetails)-0 }

4

{ B2SchQuoteReject) timer(t).0 }

catch (timeout(t))

{ S2Babor{Abort)abort.0 } }]

Buyer[InitB2S (B2Sch, S2Baboyt
{
B2SchQuoteRequest).
B2SchQuoteResponse, Xquote) -

{ B2SchQuoteAccept).
B2Sch0rderConfirmation).
B2SchDeliveryDetails, Xgetails)-0 }

2
{ B2SchQuoteReject).0

}
par
{ S2Babort{Abort)abort .0 }

]

FIGURE 9. Local Description of Simple Protocol with Timeout

(2) Then Seller replies with a quote.

(3) Buyer then answers with either “I will buy” (if the price theap) or “I will not buy” (if
not) to Seller. S

(4) If the answer is “I will buy”, then Seller sends a confirimoat to Buyer, and sends a
channel of Buyer to Shipper. Then Shipper sends the delidetsils to Buyer, and the
protocol terminates.

(5) Ifthe answer is “I will not buy”, then the interaction nas to (1) above.

(6) If Buyer does not reply in time, Seller will abort the tsaetion.

The local description is given in Figure 11.

4. Describing Communication Behaviour (3)

4.1. Criss-Crossing of Actions: Proactive Quoting (1).In this section we treat behaviours
which involvecriss-crossing between two participants, sé@yandB, one message goes frofvto B
and another fronB to A in parallel, one of which often having a stronger prioritye\l¥se use-cases
contributed by Gary Brown12] and Nickolas Kavanzta®p).

Brown’s use-case is a (simplified form of) one of the typicdéraction patterns in Investment
Bank and other businesses. Its narrative description iemely short, but the induced behaviour is
non-trivial to describe. We assume two participatandB.

(1) Initially, A sends a request for quote Bo

(2) ThenB sends an initial quote tA as a response.

(3) ThenB will enter a loop, sending pro-actively a new quote in a “RefrQuote”-message
every 5 seconds unti\'s “AcceptQuote”-message arrivesBit

12

Buyer — Seller : InitB2S(B2Sch).
rec X. {
Buyer — Seller : B2SchQuoteRequest) .
Seller — Buyer : B2SchQuoteResponse, Vquot e; Xquot e) -
lett = timer (30)@Seller in {
if (Xquote < 1000 @Buyer) {
Buyer — Seller : B2SchQuoteAccept) timer (t).
Seller — Buyer : B2Sch(OrderConfirmation).
Seller — Shipper : InitS2H(S2HcH .
Seller — Shipper : S2Hch(RequestDeliveryDetails).
Shipper — Seller : S2Hch(DeliveryDetails, Vyetails, Xdetails) -
Seller — Buyer : B2SchDeliverDetails, Xetails, Ydetails) -
0
} else{
Buyer — Seller : B2SchQuoteReject) timer(t). X }
catch (timeout(t)) {
Seller — Buyer : S2Babor{Abort).0

FIGURE 10. Global Description of BSH Protocol with Conditionaltw' Timeout

Thus the “AcceptQuote”-message frexis in a race condition with a “RefreshQuote”-message from
B. Once the quote is acceptdishould terminate its loop. We leave unspecified in the use-bhaw
a quote is calculated, hotvdecides to accept a quote, and hawotifies which quote\ is agreeing
on (refinements are easy).

The repeated actions at each time interval can be cleanhelbeddusing the predicate-based
invocation mechanisn¥p], which is also useful for other purposes.

when (p@A) {1}

wherepis a predicate (an expression of a boolean type). It reads:

The interactionl does not start until the predicafebecomes true: when it
becomes so, thenwill be engaged in.

Its precise semantics is either (1) whenepdyecomes true, should start; or (2) whep becomes
true,| can start, but this “event” can be missed in which dasgy not start. The behaviour in (1)
tends to become more deterministic, while (2) is realis#éifleugh busy-waiting without additional
synchronisation mechanism.

We use this construct to describe the use-case. We firshirddy illustrate the underlying idea
(suggested by1[2)): after the initial quote has arrived &, we consider there are two independent
threads of interactions, in bothandB.

e In one,A may decide to send the “AcceptQuote”™message; wezceives itB will set
its local variablepguot eaccept ed t0 “truth” (which should be initially “false”).

13

Buyer[InitB2S (B2Sch, S2Babort
{

rec X.

{ B2SchQuoteRequest).
B2SchQuoteResponse, Xquote) -
if Xquote < 1000 then
{ B2SchQuoteAccept).

B2SchOrderConfirmation).
B2SchDeliveryDetails, Ygetails)-0 }
else
{ B2SchQuoteReject).X } }

par

S2Babor{ABORT, Xanort) - O

}
]

Seller[InitB2S (B2Sck).
rec X.
{ B2SchQuoteRequest).
B2SchQuoteResponse, Vquote,) -
lett =timer(30)in {
{ B2SchQuoteAccept) timer (t).
B2Sch0rderConfirmation).
1nitS2H (S2Hch .
S2HchDeliveryDetails).
S2Hch{DeliveryDetails, Xgetails) -
B2SchDeliveryDetails, Xgetails)-0 }
4
{ B2SchQuoteReject) timer.X }
catch (timeout(t))
{ S2BabortAbort,abort).0 }

}

]

Shipper[InitS2H (S2Hcl).
S2HchDeliveryDetails).
S2HchDeliveryDetails, Vgetails)-0]

FIGURE 11. End-Point Description of BSH Protocol with Conditiathalop/Timeout

e In another,A is always ready to receive “RefreshQuote”-message (witleva quote
value); On the other handas far as the local variable quot eaccept ed iS falsg B will
repeatedly send, at each 5 seconds, a fresh quote.

Note the variablepguot eaccept ed iS used for communication between two threadBinWhen B
ceases to send new quot@salso cease to react to new quotes fiBnthus both reaching a quiescent
state. The description in the global formalism (augmentéd Wwhen”-construct) follows.

Above, “Ta” is the standard-action local toA, indicating passage of an unspecified duration of time.
Thus as a whole

Ta. A — B A2Bch{AcceptQuote). Pquot eAcceppted :=tt @B. 0,

14

A — B InitA2B(A2Bch .

A — B: A2Bch(RequestQuote).

B — A A2Bch(Quote, Yquot e, Xquote) -
Pquot eAccepted = £f @ B.

{
Ta. A — B: A2Bch(AcceptQuote). PyuoteAcceppted =1t @B. O
par
rec X. {
lett =timer(5)@B in
when (expired(t) @B)
if (Pquot eAccepted = ££@B) { B — A : A2Bch(RefreshQuote, Yquote, Xquote) - X }
}

FIGURE 12. A Proactive Quoting with a Criss-Cross (global)

indicates that the sending of “AcceptQuote” (with a quotkigaat the time) may take place after
some duration of time, and whdhreceives this messagB,will assign “truth” to its local variable
Pquot eAcceppt ed- ONe may as well refine the above part as follows, using thehWisonstruct.

when (satisfied) @A)
{ A — B :A2Bch{AcceptQuote). Pyuot eAcceppted :=tt @B. 0}

wheresatisfied is an unspecified predicate local Ap indicating the satisfaction & w.r.t., say,
the current quote value.

In the second thread is engaged in a loop: the timeexpires at each 5 seconds and, when
expires(t) (which is a predicate rather than exception) becomes thepody of “when” is exe-
cuted. If pquot eacceppt ed IS false, it sends a quote and re-enters the l100pgudt eacceppt ed iS true, it
terminates the loop. The interaction

B — A: A2Bch(RefreshQuote, Yquot e, Xquot e

not only indicatesB sends a “RefreshQuote”-message, but @ls$s ready to receive it and sets the
communicated quote into its variablguot e.

The protocol description invites us to diverse forms of refirent. For example, we may con-
sider the predicateatisfied is a boolean variable set aftArreceives a new quote (in the second
thread). We leave exploration of such refinements to thearead
Next we consider the local version of Figure 12, using the-poidt counterpart of the “when”-
construct. This is given in Figure 13. One may compare theegmed behaviours with those in
Figure 12. The “when” construct is usedBywith the same semantics as in the global calculus.

In the local description ofA's behaviour, the projection makes clear that, in one ofts t
threads A repeatedly gets ready to receive “RefreshQuote”’-mesdagiesB, while, independently,
may move to the stage where it sends an “AcceptQuote’-messe. Thus, when a criss-cross
of these messages take plagewill simply receives the message froBiwhile sending its own
message. As noted before, we may as well refilsebehaviour, for example in its transition to the
quote acceptance state.

In the local description 0B, the first thread does not start from thaction (which isA’s local
action) but starts from the reception of “QuoteAcceptantessage fromh. The second thread is
engaged with the timeout and loop using the “when” constugihg the variablquot eAccept ed-

15

A[InitA2B (A2Bch, B2Ach.
A2Bch(RequestQuote).

BZACh<QuOte, Xquote> .
{1.A2Bch{AcceptQuote, Xquote) .0 par rec X.{ B2AchRefreshQuote, Xquote) - X } }

B[InitA2B (A2Bch, B2Ach.
A2BchRequestQuote).
B2Ach(RefreshQuote, Yquote) -
Pquot eAcceppted :=ff.

A2Bch(AcceptQuote). PquoteAcceppted =1t . O
par
rec X.{
lett =timer(5) in when (expired(t))
{ if (Pquoteaccepted = £f) { B2Ach(RefreshQuote, Yquote) - X } }

FIGURE 13. A Proactive Quoting with a Criss-Cross (local)

A — B : InitA2B(A2Bch, B2Ach.
A — B: A2Bch{RequestQuote).
B — A:B2Ach(Quote, quot e, Xqiate) -
rec X.{
lett =timer(5)@B in
A — B: A2Bch{AcceptQuote)timer(t).0
catch(timeoutt))
B — A :B2Ach(RefreshQuote, newQuoteXquote) . X }

FIGURE 14. A Proactive Quoting with a Criss-Cross (global, with
atomic interaction)

The local descriptions of the proactive quoting protocoFigure 13 are directly related with
its global description in Figure 12 and vice versa, up to thatment of criss-crossing. In particular,
it is not hard to imagine how we can project the descriptiofrigure 12 to the one in Figure 13
following a simple principle. A natural question is whetlvee can do theeversetranslation in a
general way: can we integrate the local descriptions inf€éig® to synthesize the global description
in Figure 12? What would be the general principle involveduch projection? Part of this question
will be answered in Part Il of the present paper.

4.2. Criss-Crossing of Actions: Proactive Quoting (2).In this subsection, we present an
alternative global description of the proactive quotingtpcol. Itis simple and understandable, even
though the description is only sound under a strong assomptiout the underlying communication
on mechanism. The description follows.

16

The description in Figure 12 is terse and understandableveMer its clarity has become possible
only by assuming a significant condition on the underlyingssaging semantics: each interaction
is atomic. This assumption becomes essenti@l i B : A2Bch(AcceptQuote), which needs be
executed atomically: if not, it is possible thasends & cceptQuote-message t8, but the time-out

in B is caughtB sendsRefreshQuote to A, andA should again send&cceptQuote-message again,
which is not the expected behaviourAf Rather it says thah — B : A2Bch{AcceptQuote) either
happens or not at all and moves to a timer, which is only rablésif this action is atomic. It may be
costly to realise such atomicity in general. At the same tithe description may suggest atomicity
of interaction can lead to terse specification of a compléxakimur.

Due to the assumption on atomicity and its interplay withetipit is hard to devise local de-
scriptions directly corresponding to Figure 14. Even if wiipiate the same atomicity assumption
in local descriptions, it is hard to construct the projectomtoA: the problem is that the 'when’ loop
within A does not have an activity that it can observe to indicateBHas exited the loop. A possi-
ble approach to this would be to model a guard condition¥f¢o also include the 'quoteAccepted’
variable — but this guard condition would also have to inelube aspect of duration, otherwise
(as a result of the 'when’ blocking semantics) the guard atould simply block until the variable
‘'quoteAccepted’ was set to true, and it would not receive afthe quote refresh messages. Fur-
ther, if both participants are required to use the same guamdition, then it also assumes they have
synchronised clocks and evaluate the expressions at gthetsame time.

4.3. Criss-Crossing of Actions: A T-Shirts Procurement Praéocol (1). Next we treat Ka-
vanztas'’s use-cas@f], which describes a protocol for purchase orders betweeallyrbig corpo-
ration (RBC) and a small T-shirts company (STC).

(1) RBC sends a purchase order (PO) to STC.

(2) STC acknowledges the PO and initiates a business prazéssidle the PO.

(3) After STC'sinternal processes regarding the PO are ¢eteq, STC sends “PO-Completed”
to RBC in order for RBC to complete its own business process.

(4) RBC can send a Cancel Order message to abort STC'’s bsigraess (which can criss-
cross with a PO completed message), any time before RBCvescttie PO Completed
message from STC

(5) If Cancel Order arrives at STC before PO Completed is sent STC, then STC aborts
its business process and acknowledges this to RBC with P@eled, in order for RBC
to abort its own business process. Otherwise, if STC haadyrsent PO Completed, it
ignores the Cancel Order because RBC has agreed it will He@®srwhen cancellations
are not sent out within an agreed-upon time-frame.

(6) If RBC has already sent the Cancel Order message andttteaeives the PO Completed
message, then instead of aborting, RBC completes it.

Figure 15 presents a global description of this protocol.

Above, RBC first initialises a session channel R2Sch thrdagR2S, then sends an order, which
STC acknowledges. RBC then starts a timer, i.e. the longast T it is willing to wait before
the PO confirmation arrives. The timer is frozen upon the P@fipoation. Alternatively if the
time-out occurs, it is handled by the catch part: RBC sendabemt message to STC, and either
STC acknowledges it or its PO-confirmation arrives. Note \aeehmade a timer explicit in this
description: we later show a description which does not oelyhe use of a timer.

An acute reader may observe that this description agaimessatomicity of communication,
as in the previous subsection, in the sense that: the egeaftan interactio — B : ch(0p) means
the two things at the same tim&:sends a message aBdhas received that message.

Next we give an end-point counterpart of the same descripiioFigure 16.

In STC's description, we use the following predicate-basrception mechanism. The syntax for
this exception handling is:

try {P} catch(p) {Q}

17

RBC — STC : InitR2S(R2Sch.
RBC — STC: R2ScHCreatelrder).
STC — RBC: R2ScH0rderAck).
lett =timer(T)@RBC in
{STC — RBC: R2ScHP0OCompleted) timer(t).0}
catch timeout(t) {
RBC — STC: S2RabortAbort). {
STC — RBC: R2Sabor{ConfirmAbort).0
+
STC — RBC: R2SchPOConfirmation).0 }

FIGURE 15. A Global Description of T-Shirts Procurement

RBC[TnitR2S (R2Sch.
R2ScHCreateOrder).
S2RcH0rderAck).
lett =timer(T)in {

S2RcHPOCompleted)timer(t).0

catch timeout(t) {
S2Babor{Abort , true) .
S2BabortConfirmibort).0
+
S2RcHPOConpl et ed) .0} |

STC[InitR2S (R2Sch.
R2ScHCreatelrder).
Xaport .= false.
S2RcHOrderAck).
try
{ T1.S2RcHPOCompleted).0}
catch (—Xaport)
{S2BabortConfirmibort).0
+
S2RchPOCompleted) .0}
par
S2BabortAbort , Xaport). 0]

FIGURE 16. A Local Description of T-Shirts Procurement

whose semantics is, informally: to execute the interacBamless the predicate (a boolean-valued
expression) is satisfied (notg is treated as an event). In the latter ca@eyould be executed. This
construct is feasibly implemented if the “catch” part is aweption such as timeout or explicitly
thrown exceptions. However its implementation becomesenmrolved if, as here, a predicate is
used for invocation since in that case a mechanism is negessavatch the update of relevant

18

variables. Note this construct is similar to the “when” doust: the same underlying mechanism
can realise both. As an alternative, one may realise a sitmdhaviour using either a busy-waiting
or a “sleep” construct, though these alternatives may ndaitieful to intended semantics when we
use arbitrary predicates for invocation.

We illustrate the behaviour of RBC and STC in this end-pogsatiption. First, RBC’s local
behaviour is as follows.

e The first three actions (session init, order request andaeladgement) are obviously
implemented,

e RBC sets a timer and waits for T time-units to receive the P@igoation from STC;

e [f the time-out is triggered, RBC will send an abort to STCd dhen wait for the abort
confirmation or for the PO confirmation.

The local behaviour of STC may be illustrated thus.

e As in the RBC part, the first three actions need no descriptart the fact that STC
has a variable for checking whether RBC has requested ah @boot. This variable is
initialised to false;

e Atthis point STC checks the abort variable, and if it is noktit decides to perform a tau
action and then send the PO confirmation.

o if the abort variable is true it then confirms the abort;

e in parallel with the described thread, there is anotheratthnghich just waits for an abort
message from RBC.

Note the end-point description makes it explicit how timgewone and how criss-crossing occurs in
terms of two distributed end-point behaviours. We beligvfaithfully realises the global behaviour
described in Figure 15 under the assumption of atomicitytractions: at the same time, one may
observe that the given end-point description doesautomatically get extracted from the global
description. In fact, as far as the initial protocol destoip goes, the local description arguably
realises a correct behaviour even if we do not stipulate theniity assumption for communication
actions (it is notable that CDI4B] does not stipulate such atomicity).

4.4. Criss-Crossing of Actions: A T-Shirts Procurement Prdéocol (2). The descriptions so
far depend on the explicit use of timer and exception (tiniewtnich a timer engenders. However
the nondeterminism and criss-crossing of message exchangemselves may not be directly related
with local use of timers. Indeed, a description of the oJezathange of interactions is possible
without using timers, as we shall discuss below.

The protocol uses two (local) variables, AbortRequestediTat and ConfArrived at RBC, both
initialised to be false. The timing of update of these vdgalis the key underlying idea of this
protocol. The protocol description follows.

Let us offer an informal illustration of the protocol.

e The initial three interactions remain the same as befoee, $ending a purchase order
from RBC to STC after a session initiation, then an acknogggdent from STC to RBC.

e At this stage the interactions are divided into the paraiéghposition of two behaviours.
In one thread of interaction, we have:

(1) STC will, at some point, check AbortRequested is true (RBC'’s abort request has
arrived) or false (i.e. RBC’s abort request has not arrived)

(2) If AbortRequested is false, then STC will send a PO cor#tiom message. When
RBC receives it, it will set its ConfArrived to be true, and Goves to the com-
pletion of PO processing.

(3) If AbortRequested is true, then STC will send a AbortConéid message. RBC
receives it, and in both sites the PO process aborts.

In another thread of interaction, we have:

(1) Atsome point RBC will check ConfArrived.

(2) If it is false (i.e. a PO confirmation has not arrived), rtreends AbortRequest-
message to STC.

19

RBC — STC : InitR2S(R2Sch.
RBC — STC: R2ScHCreateOrder).
STC — RBC: R2ScH0rderAck).
{
Xaport Request ed@ST C:= false.
IsTC:
if ﬂXAbortRequested@bs-rc{
STC — RBC: R2ScHP0OConfirmation).
Xconf Arri ved@RBC:= true .0}
else
STC — RBC: R2Sabor{ConfirmAbort).0
}
par
{
Xconf Arri ved@RBC .= false.
TRBC-
if —Xconf Arri ved @RBC{
RBC — STC: S2RabortAbort).
Xabor t Request ed .= true .0}

FIGURE 17. A Global Description of T-Shirts Procurement without
Timer

(3) Ifitis true (i.e. a PO confirmation has arrived), then RBIGves to the completion
of PO processing.

In Figure 17,1stc (resp. Tree) indicates ar-action in STC (resp. in RBC), which may take an
unspecified amount of time. We can check that this protocatmeroves to:

e The situation where STC sends a PO confirmation but an RBGsafsince, for an RBC
to abort, it needs to obtain AbortConfirm message from STC).

e The situation where RBC receives both a PO-confirmation abdrt€onfirm (for the
same reason).

Note however it is possible STC may receive, in one threadyrtiequest message at titnleut, for
some reason, this has not been propagated to anther thréaejrso that, at timé+tp, STC sends
a PO-confirmation message to RBC. However this does notaxdiots the initial specification (we
also believe this is consistent with the standard businesgention).

The end-point projection of this example is not to hard, Whiee leave to the reader. We
also note Kavanzta®¥] presents a different description in CDL using the “whenhstuct with
distributed predicates.

4.5. Further Note. In this section we have explored various ways to describe iluginess
protocols (though the presented ones are far from the onjsw@describe them). The purpose of
these formal representations of business protocols inglwailcis not only to analyse the behaviours
of these protocols themselves and to reason about them|doutcaunderstand the correspondence

20

between

feature CDL formalism
session channels located at input no restriction
session initiation implicit explicit
general co-relation yes by adding “polyadic sync”
typing by-name (informal) by-structure (formal)
type checking no yes
local exception none yes
repetition loop recursion
sequencing imperative prefix
predicate-based invocation yes by adding “when”
EPP implemented proved
global variable lookup yes no
global completion yes no
TABLE 1. Correspondence and Differences

various constructs and their expressiveness. Byda precise operational semantics, we

can discuss diverse aspects of the constructs needed &seapra large class of communication
behaviours with precision. Further analyses of these aner@omplex business protocols in these
formalisms would be an important and stimulating futureseesh topic.

5. Correspondence with CDL

In this section, we briefly outline relationship between Ciid the global/local calculi we have
used in the previous sections. The correspondence/diffeseare summarised in Table 1.
Some comments:

Channels are one of the fundamental elements in commumriebtised languages as well
as in security engineering, arising in diverse forms (suglsackets, remote object IDs,
and URLs). Even though an informal global description maymention channels (this is
because the names of participants play the role of chantiets) become essential when
exception and channel passing are involved. In fact, indstahdistributed programming,
we may use multiple channels (often in the shape of trangponections) in one unit of
conversation.

CDL channels are located at the inputting side, represgntia ports where the sender
writes to. Formalisms are more general, using channelsfbothput and for output.
Concerning session initiation, this is done implicitly iDC. In our calculi, we place the
explicit session initiation which makes the underlying g®nal and type structure more
explicit and more amenable to analyses. This does not pregginom using the calculus
to represent practical business protocols since we maydéba session initiation and
the subsequent action to be combined into a single messagelementation.
Co-relation is one of the significant features of CDL. Catien can be considered as a
way to collectively treat multiple sessions as one cont&nsainit. Though we have not
been treated in this work, this feature can be cleanly remtesl in formal calculi. One
method is to use the so-called polyadic synchronisation.

CDL does not have a proper notion of type checking nor typererice. However it is
equipped with such notions as relationship, roles and gpaints, whose specifications
are related with each other through XML schemas. These anstplay an important
role as part of documentation. These data will be usable @sia bf typing, using the
so-called by-name approach (as found in Java).

In the current CDL specification, type checking (i.e. vdrityif a particular choreogra-
phy is well typed) is not part of the specification. Such typeaking may as well be
partly complemented by type inference (i.e. elaboratinyped phrases with appropriate
types). These verifications can be done formally in the dat;u.e. we can provide an

21

algorithm which, given an interactidnand a typd, checks whether thieis a good type
for I. Transporting this facility into a CDL development tool ik one of the significant
future topics.

As we saw above, exception are indispensable for managing meeresting real applica-
tion situations. One thing missing in WS-CDL would be thdigbof handling exceptions
locally, with a standard local scoping rule. This topic magerve further consideration.
Repetition of instructions is usually dealt with while l@gn the calculus we use recur-
sion, another mechanism which can faithfully emulate thadard loop operation as well
as many forms of recursive calls. They also enjoy many theadefeatures. This does
not mean it is better to replace loops with recursion: wheoog lbehaviour is intended,
writing it with a loop often leads to a more understandabltagpam.

Sequencing of interactions can be treated in two differesgsyi.e. the way it is done
in CDL and the way it is done imecalculus. In CDL, a standard imperative language
construct “;” is adopted. In our formalisms, we are using siaple prefixing opera-
tor. Superficially, the latter construct is less powerfudriithe former, mainly because it
assumes only very simple operations are allowed before.th&h the contrary, when
using “;” we can combine complex expressions such as thoswioed by the parallel
operator. Again there is a precise embedding of “;” into trefiging in combination with
other constructs, so we lose no generality in using “.” whilewing easier analysis.
CDL is equipped with the predicate-based invocation meisharffor which we used
the construcwvhen). This mechanism is powerful for various specificationd, ibalso
demands a heavy implementation mechanism. Exploratioas#where this construct
becomes indispensable would become important for undaetistg its status in structured
concurrent programming.

Various globalised features of CDL are incorporated beedbsy often naturally arise
in business protocols. Their semantic content however noayp@ precisely understood.
Note globalised behaviour has to be, in effect, realisechbgractions among distributed
peers. Therefore, at least at the level of formalisms, thderstanding of how a certain
global construct may be realised by interactions is a prés#g for their proper inclu-
sion in formalisms. Precise appreciation of what highdl@tebal abstraction would be
suitable for describing communication-centred softwagbadviour, and how they relate
to their local (communication-based) realisation, is apontant topic for future study.

22

Part 2

A Formal Theory of Structured Global
Programming

6. Introduction to Part 2

Part Il develops a theory afnd-point projection (EPR)Wwhich gives an exact condition and
framework by which we can relate the global description ahownication-centric software to its
local description. The theory is intended to offer one ofd¢katral formal underpinnings of W3C'’s
web service choreography description language, WS-COL [The development of the theory has
benefitted greatly from the dialogue between the invitedraists of W3C WS-CDL Working Group
and WG’s members: in fact, without this dialogue, this tlygoay not have been developed, at least
at this moment and in its current shape.

The presented theory may be considered as offering a forotitiste for designing, imple-
menting and using distributed applications written in WBtCand related languages, by establish-
ing principles by which applications’ global descriptiondatheir local description are naturally and
precisely related. In particular, the theory may be usaiblesombination with results from other
research threads, as a mathematical underpinning of watoals and infrastructural support for web
services, including those for static and dynamic verifmatiOne such effort is underway, using an
open-source reference implementation of WS-CBY] [

In the rest of the paper, Section 2 informally motivates ttheai of end-point projection and
its theory, and summarises key technical results and tingjineering relevance. Sections 3, 4 and
5 formally introduce the global calculus, centring on itswdgnic semantics (reduction) and static
semantics (type disciplines). Section 6 and 7 does the santbd local calculus. 8 introduces key
descriptive principles for the global calculus which formbasis of the theory. Section 9 establishes
the main results of the paper, the exact correspondencep@n diructures and dynamics between
descriptions in the global calculus and those in the loca) timough an end-point projection. Section
10 positions the presented ideas in a historical contertpewes the present work with existing work,
and discuss further topics. Some of the auxiliary proofsa@efehitions are left to Appendix.

7. Informal Preview

What is end-point projection? End-point projection, or EPP for short, is a concept fredlyen
discussed throughout the development of CDL in the W3C W3-@Drking group. Its basic idea
is simple, and may be summarised as follows.

Let's write down a communication-centred concurrent pesgr(in this case a
business protocol) globally, then project it to each enihipso that we can ob-
tain a local description which realises the original glokdéscription through
their interaction.

As a simple example, consider an interaction:
(11) Buyer — Seller : B2Sch{QuoteAccept, 100, x).0

which is an interaction between a Buyer and a Seller, the éoroommunicating it accepts
the quote with price 100 pounds (or dollars or whatever awyeyou like). This simple global
description is projected onto two end-point (local) dgstions:

(12) Buyer[B2Sch{100).0]
and
(13) Seller[B2Sctfx).0]

Here description of an “interaction” in (11) (in which botergling and receiving of information are
one thing) is decomposed into its local communication aetifin which a sending action of (12)
and a receiving action of (13) are separate). We can sedftBatyer does the specified sending and
Seller the receiving, then precisely the interaction asi§ige in (11) takes place. So we can regard
(12) and (13) as how local agents should behave if we wisiseetile global interaction as described
in (11). As such, they can be regarded as local programs imgiéng original global description,
or alternatively as local monitors which constrain the hébar of each agent.

25

Why EPP matters. Why does EPP matter? First, without EPP, a global descnitamnot be
executed, and, in fact, its computational meaning is nelearca central idea of web services, or
in general communication-centred programs and servis¢lsat independently runnirgconcurrent
agents achieve their application goals through their comaation with each other. Thus a global
description should be considered as describing behavibdistributed communicating processes:
the latter is the meaning of the former. In this sense, it Ig @men a uniform notion of EPP is given
that the computational content of global descriptions teheined.

Second and relatedly, EPP is an essential basis for divegieezring applications of global
descriptions. Once we have a clear notion of EPP, it offersgéch end-point, what local behaviour
a given global description specifies: if we wish to monitoretiter an independently developed end-
point program behaves in a way specified by a global desgripthen we can compare the former
with the EPP of the latter. Or if we wish to develop a prografinieg a given global description,
we can start from the EPP of the latter: and after developiriglla specified program, one can
check whether it conforms to the original global descriptigith respect to its communication be-
haviour (such validation, which we may calbnformance validationwill be particularly useful in
collaborative program development). Or we can even devalgjpbal description language which
can specify full algorithmic details specification at eastd point in which case the result of per-
formaing an EPP on a detailed global specification onto alktid-points offers directly executable
distributed programs whose behaviour is by definition comént to the original global specification.

Thirdly, EPP offer a central underpinning for the theoraticnderstanding of the structures of
global description and their use. In this context the foremmportance is that, through EPP, we
have a foundation to relate the rich results from theorigzro€esses to the present engineering con-
text. This connection (as our subsequent inquiries makar)cleads to a deep structural analysis
of global descriptions. Further the connection enablediejon of algebras, logics and types of
theories of process calculi in the present engineeringestnEffective web service engineering may
as well demand a language for global description of inteactuch as WS-CDL, which often offers
far more understabable description of communicationfeeapplication than a collection of local
behaviours. One of the key merits EPP offers to this engingenedium is the use of a rich theory
of process algebras and other concurrency formalisms suPte@i Net as a theoretical foundations.
Web service engineering demands theoretical foundatienause it is about interoperability among
disparate agents inhabiting distinct protection domaonsif a more wordly term, organisations with
possibly conflicting interests and complex trust relatiops). In such a context, different organisa-
tions may as well need a clear shared understanding on hgvatkeo interact with each other in a
given business protocol. As an example, consider a buspresscol which is about transaction of
stocks and which need be bound by regulations. We need actiaia as to whether each end-point
(organisation) is acting conforming to the protool. In fambnformance of the protocol itself to a
regulation should initially be clarified, for which we nedéar engineering understanding preferably
backed up by a theoretical basis. We expect many key eleroéttigories of processes will offer
critical engineering tools in this context.

Criteria for EPP.. An ad-hoc EPP framework may not work: in fact, it never worksis is
for simple reasons. First, we wish to implement EPP as arritigo which can once and for all
map a large class of global descriptions to their local cenparts. Thus we need a general way to
relate global descriptions to local ones. Second, in redagilobal description to local description,
we wish to avoid the situation where generated local desenifby different notions of EPP are not
compatible with each other. This is especially true whenabal description serves ageference
descriptionof software infrastructure in an organisation or a sociahdm, used as a key reference
for various business decisions, interoperability andastiructural development (this is in fact one of
the stated goals of WS-CDUT)).

IHere “independence” indicates primarily about synchratiig; boundaries, which can also indicate pro-
tection domain boundaries, see Secti&for further discussions.

26

So we need a general framework for EPP, which can uniformlg engeneral class of global
descriptions onto their end-point counterparts. But howwa know a given EPP is correctly pro-
jecting a global description to a local description? An mfial, but important, engineering criteria
is that the resulting local descriptions hawtuitively a clear and direct connection to the original
global description. That is, a designer who specifies sofivieehaviour by a global description
should not have surprises when the real computation isseshlly communications among projected
local processes. From the viewpoint of interoperatbiiitys also important that we have a general
and uniform scheme which can be applied to a large class bagttescriptions (note that, assuming
we use a public standard for global descriptions, if we hasgefficiently general and satisfactory
EPP mapping, this gives us a firm basis for interoperatbildypart from these two informal criteria,
the following three are natural formal criteria by which wenomeasure the effectiveness of an EPP
scheme (which are in fact closely related to the two inforondéria we just noted).

e Mapping preserves types and other well-formedness comditi

e The projected local description implements all behaviaexpected from the original
global description. Concretely, actions expected from @bagl description should be
faithfully realised by communication among a collectionpobjected end-points. This
property may be calledompleteness of ERPP

e In the reverse direction, locally projected communicatprgcesses should not exhibit
observable behaviour not prescribed in global descripisar as its predefined interface
goes? Concretely, communications among projected peers shaildsmbeyond actions
stipulated in the original global description. This may ladled soundness of EPP.

For these criteria (especially the latter two) to make sensgractice, we should have a precise
way to say, among others, what course of actions (their karb structures) are stipulated in a
global description, and what course of interactions (tkeids and structures) are expected from
a collection from local descriptions. To do so, we can folldwe standard framework in process
algebras 7,19, 28,7 and programming language semantids,[36, 49, defining formal syntax,
well-formedness (type disciplines) and evolution of bebar (dynamic semantics). By mathemati-
cally defining these ideas, we can now formulate correctogtsia without ambiguity as well as a
means to prove (or refute) whether a framework of an EPPfieatithe given criteria (of course the
use of formal definitions of semantics of process languagesegond its use in end-point projec-
tions, including a reference for concrete implementat&fgrmal basis for developing diverse forms
of verification technologies, and deeper inquiries intohmatatical properties of these descriptive
frameworks themselves, c32]).

The aim of the rest of the present note is nothing but carrgingthe program just outlined:
formalising central notions of global/local languagedheit distilled form; presenting formal criteria
for correctness of EPP; and study a general framework of BERding formal arguments for its
correctness, including three natural descriptive prilespunder which the presented EPP results in
sound and complete local descriptions. In particular wél ghesent:

e Formal definition of static and dynamic semantics of the gla@mnd local calculi, which
distills respective descriptive paradigms/languageati(ssemantics specifies a type dis-
cipline for description, dynamic semantics specifies homjgotation proceeds in a given
description). Type disciplines in respective formalisrosas a basis of the whole techni-
cal development in the paper.

e Atheory of end-point projection, which maps a global dggt@sn to local description, as
well as offering a means to examine its properties. We firss@nt three basic principles
for global descriptions which defines a notion of “well-fagdness” of description. Then
we introduce a simple inductive algorithm which maps eacli-feemed global descrip-
tion onto a collection of local descriptions (one for eack-goint), and present formal
arguments that this map is both sound and complete, witleotsp static and dynamic
semantics of respective formalisms.

2Local programs may as well need to engage in actions out$iti@se prescribed even just for implement-
ing those prescribed actions.

27

The theoretical development focusses on key elements babjlocal formalisms without such fea-
tures as timeout and exception. We believe there are nomosuntable technical obstacles to extend
the present theory to these additional features.

8. Global Calculus (1): Syntax

In this section and the next, we introduce the syntax andmjgiatatic semantics of the global
calculus. Thelynamic semanticspecifies an abstract notion of “computation” underlyingiarfal-
ism. In the case of Turing Machine, this is a move of a head aad/write of each slot of a tape. In
the case of thé-calculus, this is an application of a lambda term to an aninand a subsequent
substitution (for examplgAx. fx)3 — f3 indicates that, when the functighx. fx) is applied to an
argument 3, the result is another applicati®). In the case of a global calculus, this is represented
as a transition from a global description to another gloteadiption, carrying out each step of in-
teraction (exchange of a message). Since each participaytomin its own local variables, such
transition can also involve collection of local variabldgfe participants involved.

From an engineering viewpoint, the dynamic semantics pimaxh mathematical notion which
designers, implementors and users can refer to when théytaidiscuss about dynamic behaviour
of description with rigour. For example, this would allow tes state with precision whether an
implemented program conforms to the description or not. dynamic semantics is defined using
an intuitive notation,

(o,1) = (')
which says a global descriptidnin a stateo (which is the collection of all local states of the par-
ticipants) will be changed intt/ in a new configuratiors’. This idea comes from the small-step
semantics given to imperative languageks [

The description of interactions in the global calculus cesmibn a notion oessionin which
two interacting parties first establish a private connectimd do a series of interactions through
that private connection, possibly interleaved with othessions. More concretely, processes first
exchange fresh session channels for a newly created sefsaruse them for interactions belonging
to the session (this is equivalent to the more implicit frarmk where identity tokens in message
content are used for signifying a session). This idea haswralaassociation with a simple type
discipline, where we represent a structured sequence exfictions between two parties as an type.
Here “types” mean syntactic annotation on descriptiongitgractions: this annotation describes an
abstract notion of interface of a service (or a shared sermfi@nnel), and is inferred by typing rules
for each description following its syntactic structurer Egample, consider an interaction:

Buyer — Seller : s(RequestQuote, productNamex).

(14) Seller — Buyer : s{(ReplyQuote, productPrice y)

In (14), a Buyer requests a quote for a product, specifyirgptoduct name, through a session
channels: then, through the same channel, a Seller replies with tla¢equalue (one may consider
chto be a socket connection). This interactiors aiin be abstracted by the following session type:

(15) s 1 RequestQuote(St ri ng). s | ReplyQuote(l nt)
The session type in (15) abstracts a sequence of actiorsrped atch, specifying the following
abstract behaviour:

First sends (") a string with operation namerequestQuote, then receives
(* ™) an integer with operation nam®&eplyQuote.

Note this abstraction is given from the Buyer’s viewpoine van equally present the abstraction for
the Seller’s action:
(16) s | RequestQuote(St ri ng). s T ReplyQuote(l nt)

which simply reverses the direction of information flows. tBl¢hat, in this way, there is a natural
notion ofduality associated with session types.

Section 3 and Section 4 complete the presentation of thebtalticulus. The first introduces the
formal syntax of the global calculus, with many illustratso In Section 4 we present the dynamic

28

semantics of the calculus, followed by its static semantite then show a basic relationship be-
tween the dynamic semantics and the static semantics: wbemputation happens in a well-typed
description, the result is always well-typed again.

8.1. Formal Syntax. The formal syntax of the global calculus is given by the staddBNF.
Below symbold, I’, ... denotetermsof the global calculus, also callédteractions Terms describe
a course of information exchange among two ore more part®s & global viewpoint.

I::= A—B:chv$).l (init)
|A—B:s(op, e Y).I (com)
| x@A:=e.l (assign)
| if e@Athen |1 else I (ifthenelse)
[11+12 (sum)
[l]12 (par)
| (vs) I (new)
| XA (recVar)
| rec XA (rec)
|0 (inaction)

The grammar above uses the following symb%ls.

e a b,cch, ... range over a collectioBh of service channel&lso calledsession initiating
channel¥. They may be considered as shared channels of web services.

e s,§,...range over a collectios of session channelSession channels designate commu-
nication channels freshly generated for each session. ddrepe implemented in various
ways: in TCP, the same concept is realised by so-calbemhection(also calledsessioh
In web services, they are realised by sending freshly gésebidentity information as
part of messages.

e A B,C, ... range over a collectior? of participants Participants are those who are en-
gaged in communications with others, each equipped witbwts local state. Each par-
ticipant may have more than one threads of interactiongusinitiple channels.

e XY,z ... range over a collection afariables which are close to variables in the traditional
programming languages such as Pascal and C, in that theertds updatable.

e X,Y,Z,...range over a collection aérm variableswhich are used for representing recur-
rence (loop) in combination with recursioec X.I. Note term variables occur annotated
with participants.

e e ¢€,...range oveexpressionsgiven by the grammar:

e = x|v]| f(e,...,&).

where f ranges over an appropriate set of function symbols (inolgiditandard arith-
metic/boolean operators). Abowew, ... range over atomic values such as natural num-
bers and booleans.

Each construct in the above grammar is illustrated in the siglisection.
8.2. lllustration of Syntax. The initial two constructs represent communications.tFirs
A—B:b(v9).l
indicates thaf invokes a service channiehtB and initiating a new session that will use fresh session
channelss,"followed by interactiorl. Subsequent communicationslibelonging to this session are
done througls {I can have other communications belonging to different sas¥i We assuma and

3As is standard, we assume there is an unbounded supply micdisymbols in each syntactic category.

29

B are distinct As §should be local to the session (i.e. unknown outside), weaehs € §to be
bound inl. Second,

A—B:s(op, e Y)
expresses the sending actionswhose message consists of a selected opesatavith the receiver
B. The value of the expressi@{which can only use variables locatedis assigned to the variable
y (which must be located &). Third, another primitive operation &ssignmentwhich is the typical
basic operation in imperative languages.

X@A :=e.l.

The assignment is a local operation at the specified paatitif\ above), where a variable atis
updated with the result of evaluatimgalso located aé.
We can use conditional to branch the course of actions:

if e@A then |1 else I

which will evaluatee once and, if it evaluates to true, the branghvill be executed, else brandh.
Note the conditiore is located atA. Or, instead of explicitly selecting one of the branches,cae
choose one nondeterministically:

I1+12
which either behaves ds or asl,. The summation operater is commutative and associative, so
that we often writex;l; for the n-fold sum of interactions.

We can also launch two threads of interactions in parallel:

l1]12
denotes the parallel composition. However, unlike the ddesh process calculi, there is no com-
munication betweemy andly: 11|l just means two independent threads of interactions. Amothe
construction:

(vs)
is the restriction (or hiding) of a session channel, wh@® binds free occurrences sfin I. This
is used for designating newly created session channels wisession is initiatedv) | stands for
a sequence of restrictions. Since restriction is only adstbdn an outermost initialisation prefix
reduces, it is natural to stipulate:

CONVENTION 1. Henceforth we only consider terms in which restrictioesaer occur under
prefixes (initiation, communication and assignment) nothey occur in a summand of a summation.

Interaction which can be repeated unboundedly is realigegktursion. We start from a re-
cursion variableX® which has an annotation of a participant name (this anmotasi later used in
end-point projection: in brief, it indicates the princigadrticipant who determines whether to recur
or not). Then the term

rec XA

is the standard recursion construct, whexe XA is calledrecursor, with X binding its free occur-
rences irl. We assume that whenewéroccurs free il of rec XA.1, X should always be annotated
with A (the type discipline we present later automatically gusees this property). This annotation
plays an essential role in our typing later. However, whey thre irrelevant (especially in examples),
we often omit these annotations. Finally,
0

is the inaction, representing the lack of actions (it may dxes@dered empty parallel composition or
the empty/inactive choreography).

For expressions, we assume variables, first-order atorhiesauch as integers, and first-order
operators such as arithmetic and boolean operations. Wetoclude channels and session chan-
nels as expressions for the present inquiry (cf. Se@®)n

“This is a natural constraint if we wish to describe intertiogrants interactions, and is used in the typing
rules we discuss later. By annotating participant nameB wdlditional indices, the typing rules can be easily
adapted so that we allow intra-participant interaction.

30

8.3. Examples.We illustrate the syntax through simple examples. Thesenples will be
used throughout the paper as running examples.

ExAMPLE 1. (Syntax, 1) The following example is from Part I.

{Buyer — Seller : B2ScKQuoteAccept, 100, x).11}
a7) +
{Buyer — Seller : B2ScQuoteReject, XaportNo,) - 12}

This example, as others, uses easy-to-read strings fonellaperator/variable name&uyer and
Seller are participants (which we writd B, ... in the formal syntax)B2Schis a session channel
name (which we writes,s, ... in the grammar); an@uoteAccept and QuoteReject are operation
names (which arep,op,... in the grammar). Thus, as a whole, (17) can be read as follows:

Through a session chanr&2Sch, Buyer selects one of the two options offered

by SellerQuoteAccept and QuoteReject. If the first option is selected, Buyer

sends the quote “100” which will be stored in x by Seller andgareds tol.

In the other case, Seller sends the abort number stored indthable X\portNo

which will be stored in y by the Seller and proceedsto |
Note the sumt is informally interpreted agternal sumfor Buyer (i.e. Buyer initiates this choice)
and asexternal sunfor Seller (i.e. Seller passively waits for one of the braeslfoperators) to be
chosen by the environment). This reading will become forseal when we consider its end-point
projection.

EXAMPLE 2. (Syntax, 2) A refinement of the description above follows.

if Xquote < 1000 @Buyer then

{ Buyer— Seller : B2Scl{QuoteAccept, 100,x, ., 1)1}
else

{ Buyer— Seller : B2ScHQuoteReject,XaportNo, s - 1)2 }

(18)

The description now specifies the “reason” why each brandhkisn. Notice the condition in the
conditional branchx < 1000, is explicitlylocated the description says this judgement takes place
atBuyer. Note also the description is still the external choice feli&: it is Buyer who selects one
of the options, which Seller waits for passively. The dgsttrn becomes self-contained by adding
an initial session invocation at a service channel,dgynd a request for a quote.

Buyer — Seller : ch(vB2SchS2Bcl).
Seller — Buyer : S2BciQuote, 100, y) ..
if Xguote <1000 @Buyer then
{ Buyer— Seller : B2ScH{QuoteAccept,100,x, ., 1)1}
else
{ Buyer— Seller : B2Scl{QuoteReject, xaportNo: Y, -)2 }

(19)

Initially Buyer invokes Seller to initiate a session withdwession channelB2SchandS2Bch The
rest is the same with the previous description.

ExAMPLE 3. (Syntax, 3) A session can have multiple session namesmomainication. This is
the standard practice in business protocols and othewiction-centric applications, and is essential
to have multiple parallel interactions inside a single e#ssAs an example, suppose that the buyer
wants to start a session at a chanaelin which it communicates acceptance of a quote on a session
nameOp and, in parallel, sends its address on a session mzatee This can be expressed as:

Buyer — Seller : ch(vOp,Data).

(20) { Buyer — Seller : Op(QuoteAccept, 100, X).0 |
Buyer — Seller : Data(QuoteAccept, Addressy).0
}
Here, two session channel®p and Data, are communicated at the time of session initiation at
channekh. Using these two channels, we reach

31

Examples of other constructs, such as recursion and hidiitihe given in later sections.

8.4. Comments on Syntax.The syntactic constructs we have presented above onlydeclu
the core part of the global calculus. This is to present thebrend-point projection in a simplest
possible form. Below we discuss basic extensions and aliges of the syntax.

8.4.1. Channel/session passinyalues may as well include channels and session channels.
When session channels are passed around, we need to ob&gimlosgarity constraint, as discussed
in[21].

8.4.2. Variables and binding.We may as well use logical variables rather than imperatare v
ables as receptors of communicated values, so that the dstdmmunication is instantiation of
values rather than assignment. Even in this case we maydedtaperative variables and its assign-
ment, so that we can represent the notion of local stateslglea

8.4.3. Operators. Operatorsf(...) in expressions can become more complex. Among others,
WS-CDL includes operators which query current time and iotlaa, which can involve reference
to distributed states.

8.4.4. Mutual exclusion and atomicityAn important role is played by a mutual exclusion op-
erator. The introduction of awutex operation would incur issues of deadlock which can be taken
care of with a type system. Introducing mutual exclusion Ma@lso imply changing the operational
semantics as we would need to take care of variables accksd) may be blocked by mutex. We
may also introduce a transactional “atomic” statement igigarantees atomicity (noninterference)
of a block from local read and writes by other threads insideedame participant. This may be im-
plemented using two-phrase locking or more optimistica#iing software transaction (however note
interactional nature of concerned descriptions makedaoks more subtle than simple imperative
programs: this issue parallels treatment of input/outpugdftware transactional memories studied
by Harris and others).

8.4.5. Exception, timeout and predicate-based invocatiBart | discusses how exception, time-
out and predicate-based invocation (writtetren e@A do |, which waits for the guaré to become
true and executel unlike the conditional) can become useful for represgnéidvanced forms of
interactions.

8.4.6. Loop and other imperative construct¥he standard while operator can be easily en-
coded in the formalism. The term:

while e@A do |
is encoded into:
rec X.if e@Athen| = X else 0

wherel = X is a syntactic operation which attaches the variabl® the leaves (ends) of abstract
syntax trees im. Similarly the sequencing |’ can be encoded using sequencing (there is a non-trivial
interplay with the parallel construct). Considering thésatures as explicit syntax will be useful
when we need to directly treat practical descriptive lamgsasuch as WS-CDL in an extension of
the present theory.

9. Global Calculus (2): Reduction

9.1. Basic ideas of ReductionComputation in the global calculus is represented by a step-
by-step transition, each step consisting of:

(1) Execution of a primitive operation, which can be comneation, assignment and condi-
tional.
(2) Effects the execution above has on the local state ofvaivied participant.

To formalise this idea, we useanfigurationwhich is a pair of astate(a collection of the local
states of all participants involved) and an interactionittem (o, 1). Formally astate ranged over
by o,d’,..., is a function fromvar x P to Val, i.e. a variable at each participant is assigned a value
in a store. We shall write @A to denote the portion af local to A, ando[y@A — V] to denote a

32

new state which is identical with except that’(y, A) is equal tov. The dynamics is then defined in
the form:
(0, 1) — (o', 1")

which saysl in the configurationo performs one-step computation (which can be assignment, in
teraction, etc.) and becomé&swith the new configuratiom’. The relation— is calledreduction
or reduction relatior® For example, communication action will change both theestaitd the term
shape:

(0, A-B:s(send, 3, x).I) — (0[x@B~ 3], 1)
which indicates:

“A sends a messagend and a value3, which is received by B an8lis as-

signed to a variable x at B as the result, with the residuatiattion I”.
Note communication action happens automatically, witifoat having sending and receiving ac-
tions separately and then having their synchronisatiosighsnent is treated similarly.

(0, x@B:=31) — (o[x@B~ 3|, 1)

Since an assignment is located, orlgt B is updated, and the next interactibis unfolded. Interac-
tion can involve choice, where one of the branches is chosadaterministically, i.e. we can have
either:

(o, (A—B:s(ok, 3, X).11) + (A—B:s(no, 0, y).I2) — (0[x@Bw 3], 1)

or
(o, (A—B:s(ok, 3, x).11) + (A—B:s(no, 0, y).I2) — (oly@B+~ 0], I2)
will take place: both are legitimate reductions.
The conditional depends on how an expression evaluatesexaonple, ifx at A stores 0, then
we have

(o, if X@A = 0then A—B:s(ok, 3, x).Iyelse...) — (o[x@B~ 3], 1)

But if x at A stores say 1, then the second branch will be selected.
For recursion, we expect a recurring behaviour. For exampefollowing is a silly behaviour
which just continues to assign 1 to a variable. In this casenag as well have:

(0, rec XB.x@B:= 1.XB) — (o[x@B — 3], rec XB.x@B := 1.XB)

We shall realise such recurrence through the use of stailatules. Other constructs such as condi-
tionals and choice are standard.
In the following subsection, we illustrate the notion ofwetlon for each construct one by one.

9.2. Reduction Rules.Reduction relation is defined by having one rule for each ook
together with associated rules. First we have a rule forigessitiating communication:

(0, A—>B:b(v§).l)— (0,(v9I)
wheres’is a vector of one or more pairwise distinct session chann€he rule says that, aftek
communicates wittB for session initiation with fresh session chanrglé andB sharesTocacally
(indicated by-binding), and the nextis unfolded. The state stays as it is since no communication
of values takes place.

We have already seen an example of reduction representmgnaaication through a session
channel: the formal rule follows.

(INIT)

oFe@A|vV
(o, A=B:s(op, & x).1) — (c[x@B— V], I)

(Comm)

5The term “reduction” originally came from the-calculus, where the sole purpose of computation is to
reduce to a final answer of calculation. While it is not effirguitable for interaction computation, we use the
term from convention and from our respect to the basic foignalvhich started semantics studies.

33

The premise of the rule above uses the judgement (callatliation judgemeht
oFe@Al v
which says:

Expression e is evaluated into the value v in the A-portiathefstateo.

For example, ifo saysx at A stores 3, then we hawet (x+ x)@A | 6. Thus the expression to be
communicated is evaluated in teeurcepart of the state: and the value communicated is assigned
in thetargetpart of the state.

The formal rule for assignment is given as:

oFe@A|vV
(0,X@A :=e.l) — (O[x@A— V], |)
which updates the state at the participArgnd unfolds the next interaction.
The rules for conditional assumes, again using the evaludtidgement, that the conditional
expression evaluates to either(for truth) orff (for falsity). In the former:
o e@Al tt
(o, if e@Athen | else 112) — (0,11)

(AssIGN)

(IFTRUE)

Symmetrically, when the condition evaluates to the faisity

oF e@A | ff

IFFALSE
() (o, if e@Arthen | else 112) — (o, 12)

The rule for summation is standard:

(0> Il+|2) - (0/> II)

For parallel composition, the rule is defined just by congigginterleaving of two components.
Thus we define:

(Sum) (i=12

(0,11) = (d, 1)
(0,11]12) = (o', 11] 12)
where we reduce the left-hand side. The symmetric rule isxdéfsimilarly (which is again sub-

sumed by the use of the structural rules we stipulate later).
For restriction we have:

(PAR)

(o,1)—(d,1")
(0.v§1) — (o, W)
which says restriction does not affect reduction. For reicur, we use the standard unfolding rule.
(a, I[rec XAI /XA — (d, 1)
(o, rec XAl) — (o', I)

(RES)

(REC)

The rule says that:

If the unfolding ofrec XA.1, I [rec XA.1 /XA] (which substitutesec XA.1 for
each free X in 1) under o reduces to I with the resulting states’, then
rec XA.| itself undero will reach (o, I).

Note the participant annotation plays no role in the rule.w&sshall discuss later, we can use the
structural rule instead to obtain essentially the sameatémiu Finally the inactior® does not have
any reduction. We also use the following rule, which says$ Wizgen we reduce we take terms up to
a certain equality, followingd, 29.

=" (o, 1)=(a, 1) 1'=1"
CADECALR)

(STRUCT)

34

oFe@Al v
(o, A=B:s(op, & x).1) — (c[x@B— V], I)

- oFe@AlV
G ASB OV NS vd) SN G@A—e) = (OR@A Y. 1)

(Comm)

(INIT)

(0,11) = (0, 17)

(0,11]12) = (o', 11| 12)

o e@A | tt

IFTRUE
() (o, if e@Arthen | else 112) — (o,11)

(PAR)

oF e@A | ff -
(0. fe@Atenleise1l) — (0. ™G T = (@ 1)

(IFFALSE)

(i=12)

(0.1) = (', 1)
(.08 1) (o, VI 1)
=" (o,)=(a 1) 1'=1"

(0, 1) = (o, 1)

(g, I[rec XAl /XA) — (d/, 1)

(RES) (0, recXAl) — (a’, I')

(REC)

(STRUCT)

FIGURE 18. Semantics of Global Calculus

where the structural equality is defined by the following rules:

I = I I=ql")
I +1 = |
I1+1o = lo+1q
(li+l2)+13 = I+ (l2+13)
o = I
I1flo = I2]11
(a)ls = 11](12]13)

((ve)l)lz = (vg) (hllz) (s¢fn(l2))

In the last rulefn(l) denotes the free names (including variables, channels esgios channels)
occurring inl. The relations is the least congruence on terms including the above equsativhile
the benefit of the use of structural rules in reduction rueliniited in the present context (in com-
parison with standard process calculi), considering texm = is often natural and adds clarity in
practice. We may also use a structural rule for recursion,

rec XA.1 = Irec XA.1 /XA

to dispense wit{REC) rule given above. Just dREC) does, this rule says the recursion and its
unfolding have identical behaviour. The resulting redurtis identical up to=. In Table 18 we
report the rules all together.

9.3. Examples of Reduction.

EXAMPLE 4. (Reduction: Communication) Recall the following terrarfr Example 1

def {Buyer — Seller : B2Scl{QuoteAccept, 100, x).11} +

(1) lo {Buyer — Seller : B2ScHQuoteReject, XaportNo, Y) - 12}

We infer the reductions df. There is one reduction for each branch. For the first summaadhote
o+ 100@Buyer |} 100 and infer, using (GMM):
(22) (0, lp) — (o[x@Seller — 100, 1)

35

Similarly we have the following reduction for the secondrmia. ASSUM&ppring StOres (say) 28
atBuyer in 0, henceo - Xaporino @Buyer || 28.

(23) (0, Op) — (o[y@Seller — 28], 1)
These are the all reductiohghas up to=.

ExAMPLE 5. (Reduction: Conditional) We deduce reduction for theditbonal, using Exam-
ple 2. First we reproduce the term.

if Xquote <1000 @Buyer then
o def { Buyer— Seller : B2ScHQuoteAccept, 100, x).17 }
o - else
{ Buyer— Seller : B2SchQuoteReject, XaportNo: ¥)-15 }

(24)

If we assumes@Buyer(Xquot e) = 800 then we can infer:
ot (800< 1000 @Buyer |} tt
(0, 1) — (o, Buyer — Seller : B2SchQuoteAccept, 100, x).17)
Further applying Comm) to the resulting configuration, we conclude:
(0,1) — (o, Buyer— Seller : B2ScH{QuoteAccept, 100 X).17)
— (o[x@Seller — 100, I7)

which is the only reduction sequences frém |g) in this case. Assume on the other har@Buyer (Xquot e) =
1200. Then we have

(25) (IFTRUE)

o F (1200< 1000 @Buyer | ff
(0, 1) — (o, Buyer — Seller : B2ScH{QuoteReject, XaportNo, ¥) - 15)

(26) (IFFALSE)

Hence in this case we have:
(0,15) — (o, Buyer— Seller : B2ScH{QuoteReject, XaportNo,) - 15)
— (oly@Seller — 28], 1)
which is again the only possible reduction sequence unéessbumption.
ExAMPLE 6. (Reduction: Init, Par and Struct) We next consider Exandpl
Buyer — Seller : acc(vOp,Data) .

(27) b & { Buyer — Seller : Op(QuoteAccept, 100, X).0 |
Buyer — Seller : Data{QuoteAccept, Waddress, ¥) -0
}
Call two components of the parallel compositidnandJd,. Then by(INIT) we obtain:
(28) (0, Jo) — (0, (vOp,Data) (J1 | J2))
By (ComMm) we have:(o, J;) — (o[x@Seller — 100, 0), hence by(PAR) we arrive at:
(29) (0, 1|J) — (o[x@Seller — 100, 0|Jp)

For the symmetric case, assum@Buyer(Waqdress) = adr (whereadr is a string standing for an
address) Then byComm) we have(o, Jp) — (oly@Seller — adr], 0), hence by(PAR) we arrive
at:

(30) (0’, Jo ‘ Jl) — (o[y@SeIIer = adr], 0 ‘ Jl)
NotingJ; | Jo = Jp | J1, we can now apply(STRuUCT)) to obtain:
(31) (0, 1|) — (oly@Seller — adr], J;)

Note we also simplified the resulting term. In summary, weehiavo sequences of reductions up to

(0, Jo) — (o, (vOp,Data)(J;|J)) — (o[x@Seller — 100, (vData) J;) — (d’, 0)

36

and

(0, J) — (o, (vOp,Data) (J1|J2)) — (o[y@Seller — adr], (vOp) J;) — (d’, 0)

def

where we set’ =' o[x@Seller — 100[y@Seller — adr].

ExAMPLE 7. (Reduction: Recursion) Finally we show an example of ngion, taking the
“silly” example rec XB.(x@B := 1.XB) before. Noting:

def

(x@B := 1.XB)[rec XB.x@B := 1.XB/XE] Xx@B:=1;rec XB.x@B:= 1.XB

hence we have:
(o, recxBx@B:=1x8) — (o[x@B~ 1], rec XB.x@B := 1.XB)
— (o[x@B 1], rec XB.x@B:= 1.x5)

—

as expected.

10. Global Calculus (3): Typing

10.1. Session TypesAs briefly mentioned at the outset of Section 3, we use sesgi@s R1]
as the type structures for the global calculus. In advancell services and business protocols, the
structures of interaction in which a service/participantingaged in may not be restricted to one-way
messages or RPC-like request-replies. This is why the& alystraction needs to capture a complex
interaction structure of services, leading to the use ddisaegypes. The grammar of types follow.

0
a

bool |int | ...

Zislop(6i).0; | Zistop(6).0i | a1|0z |t]| recta | end

Above 6,0',... range ovewalue typeswhich in the present case only includes atomic data types.
a,0’,... aresession types\ote session channedss', . .. occur free in session types (this is necessary
because of multiple session channels in a single sessidi21ff We take| to be commutative and
associative, with the identitynd. Recursive types are regarded as regular trees in the sthwag
[36]. Brief illustration of each construct follows.

e 2;s| op(6;).0j is abranching input type at,dndicating possibilities for receiving any
of the operators frorjop } (which should be pairwise distinct) with a value of tyfe

e 2;sTop(6).aj, abranching output type at $s the exact dual of the above.

e (1 | 02 is aparallel composition ofi; and a,, abstracting parallel composition of two
sessions. We demand session channeds iand those i, are disjoint.

e tis atype variable while rec t.a is arecursive typewhererec t binds free occurrences
of t in a. A recursive type represents a session with a loop. We assagterecursion is
guarded, i.e., imec t.a, the typea should be either an input/output typereary parallel
composition of input/output types.

e end is theinaction type indicating termination of a sessioend is often omitted.

Each time a session occurs at a shared service channebrsebsinnels are freshly generated and
exchanged. Thus the interface of a service should indicatector of session channels to be ex-
changed, in addition to how they are used. This is repreddnt@bstract session typer service
type in which concrete instances of session channels in a sefsgie are abstracted, written:

9

wheres’is a vector of pairwise distinct session channels which Ehoaver all session channels in
a, anda does not contain free type variables) binds occurrences of session channels in @,
which induces the standard alpha-equality.

37

Before illustrating these types with examples, we intradacnatural notion of duality. The
co-type or dual, of a, written@, is given as follows.

Zis Top(6).0i = 35 lop(6).ai
Zislop(6).0i = ZisTop(6).op
rect.a = rect.0
t =t
end = end

For example, the co-type of] QuoteReq(string).end issT QuoteReq(string).end, exchanging
input and output. The duality plays an essential role in thEsequent technical development.

10.2. Examples of Session Types.

ExAMPLE 8. (Session Type: basics) Consider the following intecactcf. Example 1), as-
sumingadr and prd are variables oft ri ng type, located at both Buyer and Seller.

Buyer — Seller : s1(QuoteReq, prd, prd).
(32) Seller — Buyer : sp(QuoteRep, 100, y).
Buyer — Seller : s;(Purchase, adr, adr).0

The interface which Seller offers (as far as this interacgoes) can be described by the following
session type:

(33) $1] QuoteReq(string). s, T QuoteRep(i nt). s | Purchase(string). end
the same interaction can be type-abstracted from the viewpbBuyer:

(34) $1 17 QuoteReq(string). sp | QuoteRep(i nt). 511 Purchase(string). end
which is nothing but the co-type of (33). Now let us add a sesBiitiation to (33):

Buyer — Seller : ch(s;s2).

Buyer — Seller : s1(QuoteReq, prd, prd).
Seller — Buyer : sp{QuoteRep, 100, y).
Buyer — Seller : s1{QuoteAcc, adr, adr).0

(35)

Then the service type of Seller at chansiels given as:
(36) (s152) 1] QuoteReq(string). s, T QuoteRep(i nt). 51| Purchase(string). end

which says: firstly, two fresh session chanmgls, (in this order) are exchanged; then, using these
two channels, communication of the represented shape p&es. Thus the service type (36) de-
scribes the whole of the behaviour starting from albeit abstractly.

ExAMPLE 9. (Session Type: branching) Let us refine (32) with brarghin

Buyer — Seller : 51{QuoteReq, prd, prd).
Seller — Buyer : sp{(QuoteRep, 100, y).
(37) Buyer — Seller : s;(Purchase, adr, adr).0
+
Buyer — Seller : s;({Nothanks).0

This can be abstracted, from the viewpoint of Seller:

s1 | QuoteReq(string). s;T QuoteRep(i nt).

(38) (s1] Purchase(string).end + s1| Nothanks().end)

Note the sumt- in (38) means the inputting party (here Seller) waits witb tptions,Purchase and
Nothanks: on the other hand, the co-type of (38) (seen from Buyer's)di:comes:

s1 1 QuoteReq(string). s, | QuoteRep(i nt).

(39) (s17 Purchase(string).end + s17 Nothanks().end)

in which the sumt in (38) means that the outputting party (here Buyer) maycs@lee ofPurchase
andNothanks from the two options.

38

ExAMPLE 10. (Session Type: recursion) Consider the following bé&hayin whichB contin-
uously greets\.

(40) rec XB.B— A : s(Greeting, “helld”, x). XB
We can then abstract this behaviour as, fil@swiewpoint:
(42) recY.s | Greetings(string).Y

whereas folA the same interaction is abstracted as:
(42) recY.s | Greetings(string).Y

which states thah repeatedly receives greetings. As a more meaningful resyrgonsider the
following refinement of (37):

Buyer — Seller : s1{QuoteReq, prd, prd).
Seller — Buyer : sp(QuoteRep, 100, y).
(43) rec XBuver, Buyer — Seller : sp(Purchase, adr, adr).0
J’_
Buyer — Seller : 5;(Nothanks). XBuyer

This behaviour, seen from the viewpoint of Seller, can berabted as the following session type:

s1 | QuoteReq(string).
S 1 QuoteRep(i nt).
(44) rec. s | Purchase(string).end
+
$1 | Nothanks().Y

It may be notable that the following conditional has the sae®sion type as (44).

Buyer — Seller : s1{QuoteReq, prd, prd).
Seller — Buyer : s(QuoteRep, 100, y).
Buyer if reasonablgy)@Buyer then
(45) rec X ’ Buyer — Seller : 1 (Purchase, adr, adr).0
else

Buyer — Seller : 5 (Nothanks). XBuver

One can further prefix (45) with a session initiation, for exde with Buyer — Seller : ch(sysp), in
which case we obtain the service type ébr

s1 | QuoteReq(string).
S T QuoteRep(i nt).
(46) (s1%2) recY. s1 | Purchase(string).end
J’_
$1 | Nothanks().Y

which says that, after initialisation request exchangimg fresh session channels (designated;as
andsp), it first waits for aQuoteReq message a, to which it replies withQuoteRep via s, then it
waits for two optionsPurchase andNothanks ats;: in the former case it finishes this session while
in the latter it recurs to the initial state, waiting for ahet QuoteReq message.

10.3. Typing Rules. A typed termis a term annotated with types following a set of typing
rules. There are two kinds of types we usgession typeare assigned to session channels, while
service typesire assigned to service channels. A typed term, which wecalbtyping judgement,
has the shape:

47 reEls A

wherel™ assigns service types to located service channels Aaggssion types to located session
channels. The former is calleskrvice typing the lattersession typindl" can also include other

39

forms of assignments). The grammar of service/sessiondgpare given byg€onsists of pairwise
distinct session channels):

r = 0 | T, ch@A:(§a | T x@A:Var(®) | I,XA:A
A RES 0 | AFAB:a | AS:L
In a service typing, three forms of assignments are used.
(1) First,ch@A: ($)a says:
A service channel ch is located at A, and ch offers a serviteface repre-
sented by a service tygé)a.
Above “located atA” means the service is offered #ythroughch, waiting for an invo-
cation by other participants. In8)a”, “(8)” act as a binder, binding the occurrences of
“8in a. Hence(§a is taken up tax-convertibility. From the above reading, we regard
ch@A: (§)a as mappinghto a pair ofA and($)a.
(2) The next assignmen@A : Var(0) says:
A variable x located at A may store values of t@e
Unlike service channels, the same variable (gagan be located at different participants,
so thatx@A andx@B are distinct variables. Thus we regat@A : Var(0) as mapping
X@A (a pair of a channel and a principal) to its tyyar(0).
(3) The third assignmert” : A says:
When the interaction recurs to’Xit has a session typing.
Assignment to a term variable becomes necessary when werégpesive behaviour.
Each term variable is assigned a unique principal name st regarck” : A as map-
ping X to a pair ofA andA.

We stipulate:

CONVENTION 2. We hereafter assume a service typing defines a functitowiolg the above
reading. We writd (ch) for a pair of a principal and a service type assignedhol” (x@A) for a
variable type assigned 1@A; andl" (X) for a pair of a principal and a session typing assignex.to
Next. a session typing uses the following primary form ofgssent,sfA, B : o, which says:

A vector of session channeds all belonging to a same session which is be-
tween A and B, has the session tgp&hen seen from the viewpoint of A.

We regards[A, B] : a as mappings fo a direction[A, B] as well asa. As we shall see later, this is the
same thing as mappirgtd the reverse directiofB, A] and the dualr of a. We stipulate:

CONVENTION 3. We hereafter assume a session typing defines a functiowfog the above
reading. We writé\($) for a pair of[A, B and a session type. Further we assume that the domain of
a session typing is disjoint, i.e. wheneves;;$; € dom(A) such thasy# $, we have{$; }N{$} =

As an example of a session typing, given the following inttcen:

(48) Buyer — Seller : 1(Req, prd, prd).Seller — Buyer : $(Rep, price, price).0
one possible assignment is:

(49) 1Sy [Buyer,Seller] : s1| Req(string).s;7 Rep(int). end

which states, simultaneously:

(1) s, ands; belong to a same session;
(2) that session is betwe&uyer andSeller: and
(3) it has the given session type when seen fRuger’s point of view.

The other form of assignmens,: 7L, is used when we know the session typesatill never be
abstracted by session initiation (this is known for sure mvbiee or more of channels s&afe hidden,
see(TREs-1,2) later).

40

We are ready to introduce typing rules. We start from thertgmf session initiation.

r, ch@B: (Satk1>A-§B,A:a
I, ch@B: (S a-A—B:ch(§).l>A

The conclusion (the lower-half) introduces a sessionahsttion prefixch(v §) in the term. Since ~
is to be abstracted as session channels belonging to a seggen, we demand that, in the premise
(the upper-half), that there is a session type assignmeichvelssigns fo a session type. Sinsds”
directed fromB to A, a designates a session type seen fBigwviewpoint: hence we can safely have
ch@B: (§)a in the service typing of the conclusiooh@B: (S)a is also assumed in the premise since
ch may have already been usedlirbased on the assumption that a service channel can be shared
just as the standard URL). Both and B need be mentioned is[B,A] : a in the premise since a
session is always between two parties: however the inféoman A should be erased th@B : ($)
sincech can be used by multiple users (participants).

We next type communication.

Fr-1>A-5§AB]:aj TFe@A:8; THx@B:8; sc{§ jeJ A#B
FFA—B:s(opj, & X).1>A-5[AB]: ZjcysT 0pj(8).qj '

(TINIT)

(TComMm)

In (TComM), our purpose is to type the term in the conclusion,
(50) A—B:s(opj, &, Xj).lj.

To type this,| should contain a session type betwdeandB such that its session channels contain
s. This session typeyj, is to be combined with the type for the communication in tbeatusion.
The remaining session types@will remain unchanged. The communicated vadis typed in the
source A) while the variablex is typed in the targetR), with the same typ®. In the conclusion, we
use a branching type which should include the opergtpwhose value type i6;, and possibly (and
usually) adding other operator names and communicatee ¥ghes. The rule uses the an auxiliary
judgement:

I+ e@A:06

which sayse atA has typed (the judgement is derived in the standard way, starting frorx@A : 6
whenx@A :Var(0) isinT, and e.gl' - 1@A: i nt regardless of andA).

In (TCoMmM), the session type in focus is given with the direction frAro B, i.e. it abstracts
the structure of the interaction in this session from thevpieint of A. While this is consistent, there
is no reason we should view this session from the viewpoirt afe may as well regard it from the
viewpoint of a receiverB. Thus we have the following symmetric variant(@Comm).

F-1>A-§BAl:aj T-e@A:8; TF-x@B:8; sc{§ jelJ

TCOMMINV
() M-A—B:s(opj, & X).1 >A-5[B,A]: Zjeys] opj(0)).T]

The typing of the assignment rule follows.

NIN=x@A:0 THe@A:6 THI>A
NE=x:=e@A.I>A
In this rule, there is no change in the session typin¢as well as in the service typing) since

assignment does not change interaction structure. Notyples ofx ande are taken at locatioA.
For conditionals:

(TASSIGN)

Fr-e@A:bool THIi>A THIZ>A
I+ if e@Athen |1 else o> A
In the premise of this rule, we demamgdand |, has an identical session typing and an identical

service typing. Thus either branch is taken, the type attitraremains identical. Similarly we type
the summation:

(TIF)

FTEhsA THI>A
FElL+l>A

(TSum)

41

The following rule is worth presenting, which is derivablg applying (TComMm) and (TSum)
repeatedly. We use the notation for tiold summation.
Fr-1j>A-5AB]:aj TFe@A:6; TFx;@B:0; sc{§ JCK

TBRA =
() MFZjcsA—B:slop;, €, Xj).1j>A-5[AB] : Zxeksk T 0p(Bk) . ok

In the premise of TBRA), it is implicit from indice symbols thaf ranges oved. In (TBRA), our
purpose is to type the term in the conclusion,

(51) ZjcJA—B:s(op;, €, Xj).lj.

To type this, eaclyj needs to have a session type betwéesnd B such that its session channels
contains. Each of these session types, can be distinct, but they should have the same vector of
session channels, so that we can combine them into a singgerythe conclusion. Other session
types @) should remain common in all branches in the premise. In ¢timelasion, we can combine
session types for different branches into a single sesgjm idding operator names and communi-
cated value types. Note the value typespis typed in the sourced) while the variable; is typed in

the target B). Note(TComM) is a special case ¢ BRA), when then-fold branching is a singleton.
The rule has its inverse variant, correspondingT€oMmINY).

r-1j>A-8BA:a; N-e@A:0; T-x;@B:0; sc{§ JCK
Mk ZjcsA—B:s(op;, &, Xj).1j>A-5[B,A]: Zeksc | ope(Bk) T

(TBRAINV)

To type parallel composition, we use the standard lineaotydition [?].
FTHEIISAL ThI>Ay fo(Ar)Nfe(hy) =0
Ml ‘ lo> A UAy

In the premise, the notatiofe(A) denotes the set of free service/session channefs ifhus the
conditionfc(A1) Nfc(Az) = 0 says session channels are not shared betweserdl,. This effectively
entails each session channel is used linearly at each gogwenting mix-up of communications.
Note different session channels can be used in paralleleveigrvice channels can be shared by
multiple threads of interactions.

For restriction we have three rules. The first one is when vet fiide a session channel in a
session type assignment.

(TPAR)

M4, §s5[AB:a
FrEvs) oA §%: L
To understand the rule, note the hiding is introduced dfiesession initiation takes place ($&eiT)
in Section 9.2). Once this is done, there is no possibiliat these session channels are abstracted
by (TINIT). Hence the session tymeis no longer necessary, so that we replace it withAfter
this, we take off a hidden session channel one by one, and thireis empty, takes it away (below
€ denotes the empty vector):

M1 A §s5: 1
FrE(vs) A §%: L
Next we treat the typing rule for a term variable.

(TVAR)

(TRES-1)

FrM=1>Aje: L
r=©s) A

(TRES-2) (TRES-3)

I, XA:AFXASA
This is one of the two base cases (another is the inactiotettéelow), introducing a service typing
on the left-hand side of the turnstile. This typing shoullibfs Conventions above, and, moreover, it
should contain the assignment for the term variable of @#ie(aboveX), with the same participant
annotation (abova). Since the assumptiok™: A says the behaviour of” should have the session
typing A, and becaus¥” is indeed introduced as a term, we safely introdfi@s the session typing
of XA in the conclusion.

The recursion rule is symmetric {@ VAR):

M-XA:AFI>A

TREC) —mMF———
()F}—recXA.IDA

42

Fr-1>A-5ABj:a; TFe@A:8; THx@B:8; sc{§ jel
F-A—B:s(opj, € X).I1 >A-5[AB]: Zjc3s7 0pj(6)).qj

(TComMm)

r-1>A-§BA:a; TFe@A:8; THx@B:8; sec{§ jel
F-A—B:s(opj, & X).I>A-5[B,Al: Zjc3s] 0pj(6;).Tj

(TCOMMINV)

I, ch@B: (fak1>A-§BA :a
I, ch@B: (ot A—B:chvs).l>A

1A §s5[AB]:a

(TINiT) FFWS) >0, &5 L

(TRES-1)

Fr-e@A:bool THIi>A THI>A
I+ if e@Athen |1 else o> A

M-l A §s8: L

(T1F) FrEs)IcA §%: L

(TRES-2)

Vi£j {§}n{§}=0 (TRes3) FTEIsA e L

(TZERY) F 55 U S A, Bijend IR

FN-x@A:0 TFe@A:6 THI>A Fr-hocA TElasA

(TAssiGN X —e@A.15A (TSUM) —F 1 hma
(TVAR) (TREC) r-x%:4F 1A
M, XA:AFXASA I-rec XA I>A

FEliA; THI>Ay fsc(Ar) Nfsc(Bp) =0
Ml ‘ lo> A UAy

(TPAR)

FIGURE 19. Typing Rules for Global Calculus

Here our purpose is to typec X”.1, with the session typind. For this purpose it suffices that
has session typing under the assumptiod” has that same session typing, following the standard
treatment of recursion.

Finally the typing rule for the inaction follows.

Vi (5} {5} =0
=0 Ui §[A;,Bilend

In the premise, we demand each session typing used in theus@tis for distinct vector of session
channels. Further, in the conclusion, all of these distuectors of session channels are giwerd,
which is intuitively natural since there is no interactidarsed yet. In Figure 19 we report the rules
all together.

10.3.1. Properties of Type DisciplineThe type discipline we have introduced has several basic
properties, which we discuss below. First, standard syictpooperties of typing rules follow. Below
we write e.g.l"-[’ etc. to indicate a disjoint union.

(TZERO)

PROPOSITIONI.

(1) (weakening)T I > A impliesT-T" I > A. With§ be fresh.[- | > A implies
I 1> A-§A Blend.

(2) (thinning) Assumeéc(I'’)Nfc(l) =0. Thenl-I"" | > Aimpliesl | > A.

(3) (co-type)l + I > A-§A Bla impliesl” - | > A-§[B,AJT.

Proof. Each by mechanical induction. A full proof is in Appendix B. O

43

The type discipline has a minimal typing (which is also a gipal typing in the sense that all provable
typings can be deduced from it): this is closely related witkomatic type inference a la ML in the
present typing system. To formulate minimality, we use ti#ving ordering.

DeFINITION 1 (inclusion ordering). Theinclusion orderingon session types, is generated
by:

JcJ Vvielda<«q JcJ Vieldag<a]
Zicyslop(6)).0; < Zicyslop(6;).af ZicssTop(8).a; < Zicyslop(6).af
0 <a) o< — - a<a
ailap < ofa) end < d 1<t recta < rect.a’

We extendk to well-formed session typings by:

AcCHN A</ axd
A<hN AFAB:a < A-§AB:d

Similarly we define:

rcr’ r<r’ a<a
r<r’ r-ch@A: (§a < I-ch@A: (§a’

In brief, o < o’ meansu is the result of cutting off some branches frormat zero or more points. We
can checkk is a partial order (up to alpha-conversion). This order;@lso used in our technical
development in Sectio®? later.

We now establish the existence of minimal (principal) tgpimelow in (2) we writel” | for
r-=1o0.

PROPOSITION2.

(1) (preorder)The relation< is a preorder.

(2) (subsumption)etl < " andA < A'. Thenl - | > Aimpliesl™’ - | > A,

(3) (existence of minimal typingletl - | for somel. Then there existEg such that (1)
o1 and (2) wheneveF’ -1 we have™ g < I’. Moreover sucli g can be algorithmically
calculable from I. We calll g theminimum service typing of.

Proof. A full proof is in Appendix B. O
We now establish subject reduction. A basic lemma followslo® and henceforth we write
I + o when the typing ob conforms tal".

LEMMA 1.
(1) (substitution, 1)f I, XA: A F | > A" andl - I/ > Athenl” = I[I'/XA] > A,
(2) (substitution, 2)f I o, F o(x@A) : 8 andT I v: 6, thenl” - O[x@A — V.

Proof. The complete proof is in Appendix B. O
We can now establish the main theorem for this section.

THEOREML1.

(1) (Subject Congruencdh™ ~ | > Aand I =1’ thenl - I’ > A (up to alpha-renaming).

(2) (Subject Reduction, hssumd a. Thenl + | > Aand(o,1) — (d’,1") implyl o’
andl - | > A for somed'.

(3) (Subject Reduction, Zssumd + o. Thenl 1 and (o,l) — (d’,1") imply [- o’ and
relr.

Proof. The proof is in Appendix B. O

44

10.4. Examples of Typing.
ExamMPLE 11. We conclude the section, by showing how it is possibleype tan example:
consider the buyer-seller case with the following intei@ctescribed in the global calculus.
Buyer — Sel | er : B2SCh(s).Buyer — Sel | er : s|Request For Quot e].
Sel | er —Buyer : s(Quot eResponse, Vquote, Xquote) -
(Buyer — Sel | er : s[Quot eRej ect | +
Buyer — Sel | er : s{Quot eAccept ance].
Sel | er —Buyer : s(Order Confirmation).Sel | er — Shi pper : S2ShCh(s).
Sel | er — Shi pper : &/ (Request Del Detai | s, Buyer, Xgjent)-
Shi pper — Sel I er : §'[Del i veryDet ai | s,DD,Xpp] .
Sel | er — Buyer :s[Del i veryDetai | s, Xpp,Xpp])

Above there are two sessions: the one between the buyer argblier, and the one between the
seller and the shipper. Note that both are initialised byssisa “init” operation and we have also
included the choice. Another notable thing is that in the ta® interactions, the variableyp is
involved three times: the first two times it is indeed the saugable located at the seller and as-
signed with the delivery detailBD, but the third one is another variable located at the buyédchvh
just happen to have the same name, but completely distimgaiiby the semantics of mini-CDL.
But what are the types for channé88SCh and S2ShCh? It can be verified by the rules in Ap-
pendix that the the interactions above can be typed\by B2SCh@Sel | er (s)[Buyer ,Sel | er] :

o - S2ShCh@Shi pper [Sel | er , Shi pper] : o' where

o =s 1 Request For Quot e().s | Quot eResponse(Quot eType).(sT Quot eRej ect ()+
sT Quot eAccept ance().s| Order Confirmation().
s| DeliveryDetail s(DDType))
anda’ =< 1 Request Del Detai | s(PTypg.s | Del i veryDetai | s(DDType).

ExAMPLE 12. In the last example of this section, we give a typing for 20.weld simply
have that” - comm@Seller(B2SchData) : B2Schi (String) | Data 1 (String).

45

11. End-Point Calculus (1): Syntax and Reduction

The end-point calculus, an applied variant of tiealculus B0], specifies local behaviours of
end-points and their composition. For example considefdhewing term in the global calculus
(cf. Example 1):

(52) Buyer — Seller : s{QuoteAccept, 100, x, ., 0).

This global description says that Buyer send3uateAccept message with value 100 to Seller, that
Seller receives it, and that Seller saves this value in italleariablex. The end-point calculus
describes the same situation as combination of local bebgvocated at each end-point. First there
is Buyer’s behaviour:

(53) Buyer[5<1 QuoteAccept(100).0 g,
whereog is Buyer’s local state. Similarly we have Seller's local beiour:
(54) Seller[s>> QuoteAccept(X).0]gg

whereags is Seller’s local state. Interaction takes place when (5@) @4) are concurrently com-
posed, as follows.

(55) Seller[s>> QuoteAccept(X).0 |g | Buyer[3<1 QuoteAccept(100).0 |g,

Let this term be writterM. Then the communication event is represented using thewsity one-
step reduction:

(56) M — Seller[0]gqx—10 | Buyer[0]o,

Note the state at Seller is updated as a result of commuaitalin correspondence with the global
calculus, communication in the end-point calculus is oiggthin the unit of session, where session
initiation is done by communicating fresh channels whildioary, in-session communication is done
via session channels involving operator selection andevplissing, as described above. The formal
syntax and reduction rules of the end-point calculus arsegured in the present section.

Since an input and an output are separately described inntdg@int calculus, it is possible
that there is a communication mismatch between two inteiggtarties. For example, instead of
(55), we may have:

(57) Seller[s> QuoteAccept(X).0 |g | Buyer[3< QuoteReject.0 |g;

Here Seller is expecting a QuoteAccept message with ongdantelue, while Buyer is sending a
nullary QuoteReject message. To avoid such a situation,sgeype discipline. We use the same
syntax of types as in the global calculus. For example, Bellgerface asin (57) is represented by
the following session type:

(58) s@Seller : s | QuoteAccept(i nt).end
while that of Buyer is abstracted as:
(59) s@Buyer : sT QuoteReject().end

Since two signatures, (58) and (59), are clearly incompgtilve conclude the composition (57) is
not well-typed. The session types for the end-point cakuke a notion of subtyping which plays a
central role in the theory of end-point projection. The g@ss$yping for the end-point calculus and
its basic properties are studied in Secti®h

11.1. Formal Syntax. The end-point calculus is an applied form of tteealculus B1] aug-
mented with the notion of participants and their local s(afq2, 14, 18). Session initiation uses

46

bound name passing, while in-session communication usexbles at a local store, in the spirit of
[14]. The following grammar definprocessesranged over b, Q. R,

P = Ich(§).P (init-In)
| ch(v§).P (init-Out)
| s> Ziopi(x)-R (input)
| S<op(e)P (output)
| x:=eP (assignment)
| ifethenPelse Q (conditional)
| P®Q (internal sum)
| PIQ (parallel)
| (v P (res)
| X (variable)
| recX.P (recursion)
| O (inaction)

As in the global calculus (cf. Sectid@®), a, b, ch,... above denote service channels, ... session
channelsx,y,... variables, andX, ... term variables. The symbol “!" in ‘¢h(8).P” (the first line)
indicatesreplication [29], which says that the input channel (herig is available for unbounded
number of invocations.

Processes are located in participants. Participants agiddbmposition are calledetworks
(writtenN, M, ...), whose grammar is given by:

N:= A[P], (participant)
| N|M (parallel-nw)
|(VvS) N (res-nw)
| € (inaction-nw)

Again as in the global calculugy, B, ... denoteparticipant nameswhich are often simply called
participants o,... denote local states, each mapping a finite set of variablegimite set of value§.

11.2. lllustration of Syntax. For session initiation, we use a pair of mutually compleragnt
input and output:

(60) Ich(§).P ch(v9).Q

In the context of web services, the procesis(§).P may be considered as embodying a repeatedly
available service accessible via a certain URL (here denntehanneth): after invocation, it offers
interaction described iR through session channedst has just received. The process(v§).Q in
turn may be considered as an invoker of a service locatet, avhich communicate fresh session
channels and use them for its subsequent interaction,ideddnQ. The structure of communication
within a session will later be abstracted by a session typerdctice, session initiation may as well
be combined with ordinary communication.

In-session communications use operator names, analogousthods in objects.

(61) st Zjop; (%)-P, s<Iop(€).Q

The inputst> Zjopj(X;).P says that it has one or more finite branches (indexed) byhich can
be invoked. Operatorsp; should be pairwise distinct. Wheip; is invoked, then it instantiates a
communicated value in its local variablg and subsequently behaves as describ&l iHerex; does

6Note the same symbol denotes a distributed state in thelgtalmalus: o in the end-point calculus corre-
sponds to local projection of such a distributed state.

47

notbind its occurrences iR. In turn,S<1op(€).Q invokes an input with operatep, communicating
the result of evaluating an expressigrthen behaves &3.
Another prefix operator is assignment:

(62) x:=eP

which assigns the result of evaluatiego a local variablex (of the enclosing participant), and then
behaves aPB.

There are two constructs which represent internal choiciest,Rhe standard conditional is
written as:

(63) if ethen P else Q

whereeshould evaluate to a boolean value. In this case, ecevaluated, we can deterministically
choose betweeR or Q. A more nondeterministic behaviour is embodied by the steshéhternal
sum:

(64) P®Q
which chooses nondeterministical®yor Q and, once chosen, behaves as such.nFfeéd composi-
tion by & is written®;P.

Combining multiple outputs at the same channel but withirisbperator names through the

n-fold internal sum, we can construct an output prefix whickusl to the branching input prefix.
Since such a sum is often useful, we introduce the followioigtion for denoting it.

(65) s<1Zjopi(&).P

Above we assume eaclp; is pairwise distinct. Note neither input branching or outpranching
above have mixed choice, i.e. all the components have tathereaiutputs or inputs (via a common
session channel), but never both. They offer a structurea faf choice which is easily imple-
mentable, even though some form of mixed choice is usefuidiaresenting complex interaction, as
we discussed in Part I.

The syntax for parallel composition is standard:

(66) PIQ
As in the standard process algebras, and unlike paralleposition in the global calculug? and

Q may as well be engaged in communication between them. Tlrictiem also uses the standard
syntax:

(67) (vs) P
which indicatessis local toP. In the present paper we do not consider restriction of serehannels,
whose addition does not pose any technical problem.

For representing recursive behaviour, we start from a teamafble X and, after forming a
processP in which X may occur free, we introduce:

(68) rec X.P

where, inrec X.P, free occurrences of in P (if any) are bound byec X. Behaviourally, each free
X in P denotes a recurring point (i.e. it recursrex X.P again). In contrast to the global calculus,
cf. Section 8.1, variables need no principal annotationaliy the inaction:

(69) 0

denotes the lack of action, and is the unit for parallel cositpm.
Processes are located in a participant as follows:

(70) AlPls

which says a participant namédis equipped with a behaviol® and a local state. Such partici-
pants can be combined by parallel composition:

(71) N|M

48

By the typing rules discussed in the next section, in one otwwo participants never have the
same participant names. Since a session chawet be shared between two participants, we also
need restriction:

(72) (vs)N

Finally for technical convenience we also introduce thestima for networks, denoting the lack of
network.

(73) £
which acts as the unit of parallel composition of networks.
11.3. Examples.

ExampLE 13. Example 1 (page 31) of a global description would be epreed in the end-
point formalism as a network of the shape:

(74) Buyer[P]g(guyer) | Seller[Qlg(selier)

where the processésandQ together realise the behaviour that we expressed in thebgalculus.
As for the Buyer, its behaviour would be represented by thieviing

P = B2SCh«a (QuoteAccept(“100”).P; & QuoteReject (XaportNo) - P2)
whereas the Seller would behave as:
Q = B2SCh> (QuoteAccept(X). Q1 + QuoteReject(y).Q2)
We elaboraté® andQ in the next example.

ExAMPLE 14. Example 2 (page 31) presents the if-then-else congstruathich case we can
elaborate? andQ above as follows.

P =if (XQuote < 1000
then B2SCh« QuoteAccept(*100”). P,
else B2SCha QuoteReject(XaportNo) - P2)
Q = B2SCh> [QuoteAccept(X) . Q1 + QuoteReject(y) . Q2]
Note thatQ has kept the same shape as before: choice because theauealdijtiard is located where
at the Buyer side, i.e. it is Buyer who choses between twodbresy We can further consider the
result of adding session initiation, which is given as theosel description in Example 2, we can
further elaboraté andQ as follows.
P %'ChvB2SChS2BCH.
S2BClixquote)-
if (XQuote < 1000
then B2SCh« QuoteAccept(“100”).Pq
else B2SCha QuoteReject(XaportNo) - P2)

Q %"ichB2schs2Beh.
S2BCH100).
B2SCh> [QuoteAccept(X). Q1+ QuoteReject(y). Qo]
Note an input is compensated with an output and vice vensalgsly a branching with a selection.

49

ExAMPLE 15. Example 3 (page 31) presents the use of parallel inesessimmunications
inside a single session. Using the same skeledon (74) as aewdefind® andQ as follows:

P d:efﬁ(v Op,Data).

(Op<i QuoteAcc(100).P; | Data<i QuoteAcc(adr).Ps)
Q dﬁf!ch(Op, Data).
(Opr> QuoteAcc(x).Qq | Datar> QuoteAcc(y).Qz)
in which Buyer offers two parallel outputs while Seller ra@s them with their dual inputs.

11.4. Reduction Rules.Reduction indicates evolution of processes and netwogksmnmu-
nication and other actions. It is given as a binary relatioermetworks, writterN — M. The first
rule is for initiation of a session via invocation of a shasegvice channel.

(INIT) — —

Allch(§).P|P'l; | Blch(vE).Q| Qs — (V8) (Al'ch(§).P|P[P];|B[Q[Q]y)
Since a service can be invoked from within the same partitjpee also have:

A[lch(3).P|ch(v8).Q|R], — Allch(3).P|(v§) (P|Q)IR],
For in-session communication, we have:

(INIT-LOC)

oFelv
Als>>Zjopj (x;).P [P’ B[S<10pj(e)Q| Q'] — A[P; | P/]o[x»—wj] IB[QIQy
As before, the rule has its local version, which we omit.
Assignment only affects local store:

(Cowm)

okFelv
Alx:=eP|P']; — A[P|P]y
In conditional, we first evaluates the guard expressiom,tdepending on its value, decides which
branch should be chosen.

(ASSIGN)

X—V]

(IFTRUE) ofeltt
Alif ethen Py else P2|P']; — A[P1 | P'],
Felff
(IFFALSE) ofel

Alif ethen Py else P2|P']; — AP | P'],
The internal sunP @ Q has the following standard reduction.

AP & P|R¢ — AR|Rg (i=1,2
The rule say$; @ P, can behave as eith®y or P,.
For parallel composition of processes, we have:

) AlP1|R]; — AP |R]y

A[Pl| P, | R]a - A[P;H P, | R]o
We list the corresponding contextual rules for networks.

M — M M — M
_ RESNW) ———MM
M|N — M’|N (RESNW) VM — (vs) M/

(Sum)

AlPls — AlPly
A[(vs) Plg — A[(vs) P'],

(PAR (RES)

(¢

(PAR-NW)

For recursion, we set:
Plrec X.P/X] — P
REC
() recX.Pp - P
Finally the following rule says we take the reduction up te structural rules:
M=M M’ — N’ N =N
M —N

(STRUCT-NW)

50

where= is the least congruence on networks generated from:

PO = P
PQ = QP
(PIQIR = P|(QR)
POP = P
P&Q = QaP
(PoQ@®R = Pa(Q®R)
(vsi0 = 0
(Vsp) (vs2) P = (vsp) (Vvsy) P
(vs)P)IQ = (vs) (PIQ) (s¢fn(Q))

Note the equations fap allows us to write then-fold sum; P which reduces as, wit|[-] being a
reduction contextC[@;P] — C[R] for eachi. For networks we stipulate:

AlP]; = AQl, (P=Q)
A[(vs) Pl = (vs) (A[P]y)
Mg = M
MIN = N|M
(LIM)IN = L|(MIN)
(vs)e = ¢
(Vvs1) V)M = (vsp) (Vvs)) M
(vs)M)IN = (vs) (M|N) (s¢fn(N))

In Table 20 we report all the reduction rules presented ab®%és concludes the presentation
of reduction rules.

11.5. Examples of Reduction.

ExAamMPLE 16. The dynamic semantics of the end-point calculus maiifilgrd on the fact that
the information contained i in the global calculus is projected and stored, syntadyicat each
participants. If we consider the example shown for the dl@adculus and its translation shown
before, we would have that for a genedicthere would be an interaction applying rule (R&), and
we would end up into one of the following networks

N1 = Buyer[P1]g(guyer) | Seller[Q1]o(selier) x—+1007]

Nz = BuYer[P2]0(Buyer) ‘ Se”er[Q2]G(Seller)[yo—»G(Buyer)(xAbortNo)]
Note that the state of the Buyer does not change in both cases.

12. End-Point Calculus (2): Typing

12.1. Types and Subtyping.As we did for the global calculus, we use session ty®sie.
the typing for controlling the flow of operations and dataothlgh channels. We use the same set of
types as the global calculus, whose grammar is reproduded fher convenience.
0 = bool |int | ...
a = Zislop(6i).0; | Zistop(6i).0; | 1|0z |t] rect.a | end
Above, as beforey, B, ... are calledsession typesAgain as before we taketo be commutative and

associative, with the identitynd. Recursive types are regarded as regular trees in the sthwaa
[36]. We also useservice typesranged over by, Y, ..., given by:

y = (Hoa@A | 2A5a@A
Above, |(5) a @A indicates the service located Atwhich is invoked with fresh session channsls ~
and offers service of the shapewhile AS) a @A indicates the type abstraction for the dual invoca-

tion, i.e. a client of arA’s service which invokes with fresh channalarid engages in interactions
abstracted ag. Note @A indicates the location of servicein both forms.

51

(lNIT) A['Ch(g)P‘ P/]o‘ B[CTT(V§)Q | Q/]a’ — (\)§) (A[‘Ch(g)P| P| P/]a| B[Q | Q/]a’)

N0 et P [chv 8. QIR — ALVS) (P|QIIRl,

oFelv
A[SD ziOPi(Xi)~pl ‘ Pl]o" B[§<] 0pj<e>Q‘ Ql}o’ - A[Pj ‘ Pl]o[x»—»vj] | B[Q | Q/]a’

oFelv
Als>Ziop;(%)-P[5<0pj(€)Q|P'] — AP} | Q[P']gxy;)

(Cowm)

(Com-LoC)

okeltt M — M
PAR-NW) ———————
Afif ethen Py else P2 [P/, — A[Py | P, () MIN — M/|N

(IFTRUE)]

okelff M — M
RESNW) — =~ " ___
AfetenPiose B 1P = AR P, oMW Sgm = wa W

(IFFALSE)

oFelv
Alx:=eP|P']; — AP[P g

APl — AP]y
A[(vS) P], — A[(vs) P’

(ASSIGN) (RES)

lo

A[P1|R]; — A[P1|R]y

Sum
(Sum) PLIP2 Ry — AP} [P2| Rl

A[Pl@F’z\R];H ARR, © (12 (PAR) 5

M=M M -N N=N co Plrec X.P/X] — P/

(STRUCT-NW) M—N (Rec) recX.P — P

FIGURE 20. Reduction Rules of the End-Point Calculus

As before,s should be a vector of pairwise distinct session channelglwbhould cover all
session channels im, anda does not contain free type variablg$) binds occurrences of session
channels irsh a, which induces the standard alpha-equality. We define thétdas:

(5 a @A =250 @A ?(Ha@A=!(5a@A
where the notion of dualitgr of a remains the same.
In the end-point calculus, it is useful to consider a subtgpielation on session types following
[16]. The subtyping is writter < B. 7, Intuitively, a < B indicatesa is more gentle, or duall is
less constrained, in behaviour.
We generate the subtyping using simple inference rulesgtwisi enough for our present pur-
pose. The first rule is:
IDJ aj=B;j
Zigislop(8).ai = Zjeys|opj(6j).B;
which says that if subsequent behaviours of an input are gende, and if it offers more options,
then it is indeed more gentle. As the precise dual, we have:
IcJ ai 2B
ZicisTop(8).ai = ZjcisTopj(8)).Bj

(SuB-IN)

(SuB-OuT)
"The symbol in 16] is used dually, with the same formal content.

52

The remaining cases close the relation under type constricbvariantly.

a=<a B=p -
(SUB-PAR) *7” -
alB=a |p end < end
For recursion we use two simple rules (a more general tragtrisepresented by Amadio and
Cardelli).

(SuB-END)

o< —
%B (SUB-VAR) ——
rect.a <rect.f t<t

Above we treating recursive types up to their standard wairiigls. We c;n easily checK is the
partial order on types.

(SuB-REC)

12.2. Typing Rules. The typing judgement in the local calculus has the form:
Fr-aPo A
which mentions a participant name to be inhabited?bgnd
r-mp A

which is for a network.I" (service typing) and\ (session typing) above are given by the following
grammar.
r = 0| T,ch:y| I x@A:Var(0) | I, X:A
A = 0 | AS@A:a | AS:L
As before, we stipulate that both service and session tgpilegine appropriate functions. In par-
ticular, whenever we write e.d. 1, 2, there areno free channels/session channels/variables shared
between two typings. Some observations:
(1) One basic difference in the grammar above from the onedhferglobal calculus (see
Section??) is that the session type assignment for the local calcslgs/en to the vector
of names at &ingle participant. This is because a session type is now assignedd-
point behaviour, so that one end of a channel should haverahefe session type, rather
than two sides coming together.
(2) When two sides of a session are compatible, we composedhd leave the assignment
of 1 to $in the typing. Sincel is composable with no other types, tleffectively makes
§ unusable in further compositiofhis is the standard linear typing in thecalculus.
(3) In the service typingech: 1(§)a@A is the same thing a&)a@A in the global calculus
(hence we often identity these two). It is callserver type assignmenth: ?(§)a@A
is calledclient type assignmenAs we stipulate below, the compositiondf: ! (§)a@A
andch: ?2(5)a@A becomesh: [(§)a@A, since a service can be usable not only once but
also many times. This is from the standard replicated litygae discipline.
The types control composition of processes and networksitr the following partial algebras.
They say, in brief, session types are treated as linearlyewkrvice types are treated as server-client

types.

DEFINITION 2. Writey ory? to indicatey is a server or client type. Then we set:
?

Voy = v
Ve V o=y
voy = ¥

Otherwisey; ®Y» is undefined. Then we write; < ', when
(1) F1(ch)®T2(ch) is defined for each € fn(1 7).
(2) T1(x) =T2(x) for eachx € fn(I"1 7).
(3) T'1(X) =T2(X) for eachX & fn(I1 7).
Finally whenl"; < ', we setl 1 ® ' as the union of ; andl"» except, for each channeh such that
che fn(l15), the type newly assigned this I'1(ch) © F»(ch). Similarly we set:
acd = L
acB = alp (fe(a)Nfe(p) = 0)

53

Otherwisen; ® a3 is undefined. As above we defing © A, andA; < Ap.

We can now introduce the typing rules. The first rule is foritgpthe inputting side of initiali-

sation.
kA P> S@A:Q

r,ch:1(§a@A Falch(§).P> 0
Note that, in the premise, we do not allow those session @isither than the target of initialisation
to be present in the session typing, nor another servergyipin. The former preventfree session
channels to be under the replicated input, guaranteeinglithear usage: the latter prevents another
service channel to be undei.

The outputting side of initialisation is analogous, exctiyat linearity constraint needs not be
specified.

(TINIT-IN)

I, ch:?2(8§a@B Ha P> A-5@A: o
I, ch:2(3a@B t-a ch(vg).P > A
Above A and B can be identical. The fact we alloeh@B: (§)a to occur in the premise means
(together with (Par) rule) an invocation to a service candigedas many times as needed (as far as it
is type correct).

Next we present typing for in-session communication, stgrfrom input (which involves
branching with distinct operators).
KCJ sef Tkxj:8j TFaPj>A-5@A:q;
[F s> Zjopj(Xj).Pj > A-S@A: Zyek ! opc(8k) - ok
In the rule above, the typing can have less branches tharetiigprocess, so that the process is
prepared to receive (get invoked at) any operation spedifitite type. Dually we have:
jeJCK The:var(§) TFaP>A-S@A:q;
I A S<iopj(e).P > A-S@A: ZyeckST 0pc(Bk) - Ok
Here the typing can have more branches than the real proseshat the process invokes with
operators at most those specified in types. CombifilBRANCH) and (TSEL), an output never
tries to invoke a non-existent option in its matching input.

The rules for assignment is standard.
Fax:06 THe:8 TeaP>A

MNax:=eP>A

(TINIT-OUT)

(TBRANCH)

(TSEL)

(TASSIGN)

The conditional is also standard.
(TI9) M-e:bool THAP>A THAQXA
[Faif ethen Pelse Q> A
Note the session typings are identical Pand forQ in the premise: this is essentially a linearity
constraint, ensuring a linear name (session channel) & preeisely once in each branch. Practical
ramifications are possible: in particular, we can easilynefhe linear typing into the affine one. The
typing of a sum is similar to conditional.
Fr-aP>A THAQDA
MrM-aPeQr>A
The rule for parallel composition reads:
F}—A PDA]_ r }_AQDAZ A]_XAZ
M=a P ‘ QA1 0A;
The introducedL -types are eliminated by restriction.
FFAPD>ASSS: L FrFaP>Ae: L
Fa (VS)P>A S L Mta (VS)Pr>A
In (TRES,2), € denotes the empty vector. The next two rules are for termakées and recursion,
and is standard.

(TSum)

(TPAR)

(TRES,1) (TRES,2)

MX:AFAPDA

(TVAR) FFarecX.P> A

FXAAxca REC

54

The rule for inaction introduces the empty session typing.

TI _
(TINACT) = 550

We may further constraif so that it only contains assignments to term variables, iatpe vari-
ables and client channels (i.e. of the foom@A : (§)a). If we add this constraint to this rule as
well as to(TVAR), we have a property that the existence of an input channéidyip I' implies its
existence in the subject process/network.

To start session typing, we need to introduce inaction typsch represent a terminal point of
a session type together with a recursive variable, whichtieduced in (TVar)).
FrEaP>A {§Nfn(A) =0 FrEaP>A {§iNfn(A)=0

A P>A-8@A: end Fr-aP>AS: L

The next rule links process typing to the typing of a network.
FrFaP>A THO@A

r=A[P];>A
Composition and inaction rules for networks follow.
FENi>A; TENo>Ay A<D

FENL [No> AL OA, M-e>0
Restriction rules are also a precise copy of the correspondiles for processes.
Fr’EM>ASsSH: L FrEMpAe: L
Fr-EVsMp>A§SH: L r-Mp A
We also have an exact copy of the two weakening rules, listémhbfor reference:
r-EMeoA {§infn(A)=0 r’EMe A {§nfn(d)=0
Nr-=Mp>A-S@A: end r’-E=Mo>A-S: L

The list of all the typing rules are given in Figure 21

The standard syntactic properties follow. Below in (#)") denotes all names in, which
include term variables, standard variables and channels.

(WEAK-end) (WEAK-L)

(TPARTICIPANT)

(TPAR-NW) (TINACT-NW)

(TRES-NW, 1)

(TRES-NW, 2)

(WEAK-end-NW)

(WEAK-L-NW)

PROPOSITIONS.
(1) (weakening) T - M > A impliesT-T" - M > A. With § fresh,l = M > A implies
r-Mps>AS: L.
(2) (thinning) Assumeéc(I"’)Nfn(M) = 0. Thenl-I"" = M > Aimpliesl - M > A.
(3) (subsumption)f I',ch@A: (§a - M > A anda < B thenl,ch@A: (B F M > A.
Similarly, ifr - M > A-§@A: a anda < Bthenl H M > A-S@A: B.

Proof. In Appendix C. O

REMARK 1 (subsumption at service channels). The subsumption éxsehvice typing at input
channels does not hold in the present system. Howsseranticallysuch service typing is in fact
sound. Thus we may as well add the following rule:
r,ch@A: (aFMp>A a =P

r,ch@A: (§)BFM>A
A basic consequence of adding this rule is that we have ngt thel minimal typing but also the
principal typing, see Remark 2 below.

(SuBs-SERVICE

The following result says that we can always find a represertéyping for a given process, and,
moreover, we can do so effectively. Such a type is minimumragral assignable typings w.r.t. the
subtyping relation, so that we call it timeinimal typingof a given term.

CONVENTION 4. Atypingl - M > A is strictif all free identifiers in” and A occur in M. We
also writel' M for ' = M > 0, similarly I' Fa P stands fol” Fa P> 0. Further we writel'g < T
andAg < A by extending< point-wise at their service/session channels (for vaealilyping should
coincide).

55

Nta P> 8@A:Q
I,ch:1(8§)a@A Falch(§).Pr> 0

(TINIT-IN)

I, ch:(5a@Bta P> A-S@A: a
I, ch:(3a@B t-p ch(v§).P> A

(TINIT-OUT)

KCJ sef Tkxj:6; THaPj>A-3@A:q]
M s> Zjopj(Xj).P; > A-8@A: Zyek !0k (Bk) - 0k

(TBRANCH)

jeJCK Trke:Var(§) IFaPr>A-S@A:Q;
I A S<opj(e).P > A-S@A: ZickS T opc(Bk) - ak

(TSEL)

FEaXx:0 THe:8 TEaAP>A

TASSIG
(IGN MFax:=eP>A

M-e:bool THAP>A THAQDA FTFAP>A THAQD>A

(T1F) [Faif ethen Pelse Q> A (TSUM) — 5 ara

(TPAR) AP DFA'—lA Pr| }g_\DQADl (A;Azﬂl =Ny

TRest) L foreaes T (R AR s

(TVAR) D(:A—W (TREC) % (TINACT) Fraose
e AP IS T80
(TPARTICIPANT) r '_AI'P}—DA[AP]GL'_AG@A

(TPar-NW) Mt DrﬁlNlr‘ ;ZN; Zﬁ; AZAl =82 (TinacT-NW) —
(TRES-NW, 1) FrEMp>AS$SS,: L (TRESNW,2) Fr-Mp Ae: L

r-vVsM>A$SH: L r’-Mpo A

rEMe A {§§nfn(A) =0
EM>A-S@A: end

(WEAK-end-NW)

r’EMe A {§nfn(p)=0
Fr’EM>AS: L

(WEAK-L-NW)

FIGURE 21. Typing Rules for End-Point Calculus

DEFINITION 3 (Minimal Typing). Assume M is typable. Thdmp F M > Ag is the minimal
typing of M if, whenevel™ - M > A is strict, we havd o < " andAg < A.

PrROPOSITION4. (existence of minimal typind)etl o - M > Ag be the minimal typing of M.
Thenl g andAq are algorithmically calculable from M.

56

Proof. This is the standard result in session typing systems. Feraece, Figure 22 gives the
derivation rules. In the rules; denotes taking the join with respect to the subtyping orgeri is
taken so that an output typeand an input typg can be coherent in the following way:

al < p! — a=<p
(note this meansa has more branches th@nat each input point). Similarly for the service typing.

Composition® at service typing then always preserves the input side ofythiag, i.e. assuming

al < BT, we have
def

[(HaoA§p = (o (a=xp)
That the rules derive the minimal typing is by induction oe tigping rules, comparing each rule
with the corresponding one in Figure 21. O

REMARK 2 (principal typing). The minimal typing of a typable netwfprocess is determined
uniquely up to the standard isomorphism on recursive typkesvever this minimal typing magot
be a principal typing, in the sense that even if we HaveM such thaf” is minimal, and if we have
I <I’, it may not be the case we hake- M. This is because of the lack of syntactic subtyping at
service (replicated) channels, as discussed in Remarlgé, §& By adding Suss-SERVICE) noted
in Remark 1, each typable term has a principal typing.

We next prove the central property of the typing rules, thgesxt reduction.

LEMMA 2. (substitution)
(1) KT = A[Plg> AT EX@A:8andl-v: 6, thenl” = A[P]g, > A.
(2) BT, X:A+FaAP>A andl Fa Q> A, thenl F P[Q/X] 1> A.

Proof. Standard. See Appendix C. O
LEMMA 3. (subject congruencd)” - M > Aand M= N thenl" - N > A.
Proof. Standard. See Appendix C. O

THEOREMZ2. (Subject Reduction)f ' = N> A and N— N’ thenl” - N’ > A.

Proof. By Lemmas 2 and 3. See Appendix C. O
Let us sayM has acommunication erroif either:
M = C[si> Zjopj(Xi).P[s<op(.)Q] s.t. op ¢ {opi}
or
M = C[A[sr> Ziopj (%).R|Ro|B[S<0op(.)Q|Ss] s.t. op & {opi}.
whereCJ] is a reduction context (i.e. a context whose hole is not uadanefix). That isM has a
communication error when it contains an input and an outpatammon channel which however do
not match in operator names (we can further add mismatctpiestpf evaluation). A basic corollary
of Theorem 2 follows.

COROLLARY 1. (Lack of Communication Erronif ' = N> A and N—* M, then M never
contains a communication error.

Proof. By Lemma 3 and by noting an incompatible redex is not typable. O
Thus once a process/network is well-typed, it never go irtoramunication mismatch.

12.3. Examples of Typed Terms.

57

rERin P> 5@A:
r,ch:l(§a@A FRinIch(3).P > 0

(TINIT-IN)

I, ch:2(9o@B F" P> A-S@A: B

(TINIT-OUT) I, ch:2(3)(a v B)@B }_Zlin ch(vg.P> A

sef Ikxj:0; TFYN P >A-5@A: Q|
[Fmin s> 3jopj(x)).Pj > A-8@A: Tjcislopj(6)).aj

(TBRANCH)

re:var() IH"Pr>A-3@A:q;

(TSEL) e A
I x" s<opj(e).P > A-S@A: XjcysT opj(8)).q;j

MFax:0 MHe:® RN P>A
MEpin x:=eP>A

(TASSIGN)

Mietbool T FMNPEA T FRN QB Ay

(TIF) =
Mvro }—Z"n if ethen Pelse Q > A1 VA,

M EMM P> A T FRN Q> Ay

(TSum) :
Mvro }—Z"n PoQr> A1VA

FERNP>A TERNQE Ay M=
MV FRINPIQ > A1 A,

(TPAR)

RN PO 8§59 L
FEpn (vs) P> A §%: L

FERNP>AEe: L

(TRES,1) :
[Hrin (vs) P> A

(TRES,2)

MXCARRIN P> A
rHoin recX.P> A

(TVAR) (TREC)

MXCARDN X > A

rERnP>A T'-o0@A

TINACT .
() rEmn A[P];> A

(TPARTICIPANT)

repn o0

FE™ONG > A TE No > Ay Ap <Dy
[pmin Nl‘ No > AL O

(TPAR-NW) (TINACT-NW)

rEmin g Q

CEmnM> A §sSH: L
rEmin (VMDA §SH: L

rEmn M Ae: L
[Fmin M > A

(TRES-NW, 1) (TRES-NW, 2)

FIGURE 22. Minimal Typing Rules for End-Point Calculus

EXAMPLE 17. We can now give a possible end-point version of what wesetdan Example 11:
Buyer [B2SCh(s) . s<1Request For Quot e . s> Quot eResponse (Xquote) -

s<1 (Quot eRej ect +
Quot eAccept s> Order Confirmation.s<iDeliveryDetails)], |

Sel | er [B2SCh(s) . s> Request For Quot e . s<1Quot eResponse (Vquote) -
s> (Quot eRej ect + 58
Quot eAccept .s<1Order Confi rmation.S2ShCh(s).
s <1Request Del Det ai | s (Buyer).s<iDel i veryDetai | s(Xop)
s> Del iveryDetails)]g |

Shi pper [S2ShCh(s') .S > Request Del Det ai | s(xqient) .S<1Del i veryDet ai | s (D)},

Itis simple to verify that the typing we gave in the previoestion for the global view of this protocol
is just good enough for typing the network above.

13. Theory of End-Point Projection (1): Connectedness

In preceding sections, We have presented many examplefispgons both as a global view
in the global calculus and as a local view written in the endpcalculus. In doing so, we always
introduced a global description first, and from that one waovered the corresponding end-point
processes.

From an engineering viewpoint, these two steps — start frgjiobal description, then extract
out of it a local description for each end-point — offer onelad effective methods for designing and
coding communication-centric programs. It is often simgpain to design, implement and validate
an application that involves complex interactions amongcesses and whictogether work cor-
rectly, if we are to solely rely on descriptions of local behaviourkis is why such tools as message
sequence charts and sequence diagrams have been usedraarg piy to design communication
behaviour. In fact, the primary concern of the design/rezgqaent of communication behaviour of an
application would in general be how global information exege among processes will take place
and how these interactions lead to desired effects: thé beteviour of individual components only
matter to realise this global scenario. Thus, in designimdyianplementing communication-centric
software, one may as well start from a global descriptiorxpeeted behaviour, then translate it into
local descriptions. How this can be done generally and umilfip with a formal foundation is the
theme of this section, studied in the distilled setting @ftlvo calculi of interaction.

Translating a global description to its end-point couraerpthe process calleehd-point pro-
jection, can however be tricky, because we can easily produce alglesaription which does not
correspond to any reasonable local counterpart. In othedsyd you do not follow good principles,
our global description doesot in fact describe realisable interaction. But are there gan@inci-
ples for global descriptions which guarantee any globatdetion be uniformly mapped to correct
end-point behaviour as far as it follows them? Such primsghould not be too restrictive, allowing
projection of a large class of global descriptions ontortké#icient local realisations.

In the context of the core calculi we presented in this paperhave identified three simple
descriptive principles, whose technical examination ésghrpose of the present section. These are:

e Connectednessvhich says a basic local causality principle is obeyed itoba descrip-
tion.

e Well-threadednessvhich says a stronger locality principle based on sesgipest

e Coherencewhich says a refined criterion on the basis of well-threagsd, specifying
consistency of description for each “service”.

All these principles are stipulated incrementally on theibaf well-typedness: well-threadedness
does not make sense without an interaction being conneatedicoherence can only be defined
for well-threaded interactions. These three conditionsardy offer natural disciplines for well-
structured description, but also they offer gradually deegalysis of operational aspects of global
description. Connectedness uncovers causal relatioagimng actions, on whose basis well-threadedness
dissects how we can extract atomic chunks of local act&ifgalledthread$ from a global interac-
tion, crucially using the underlying type structure. Cadrare stipulates the condition under which
these threads can be formed and combined to produce a whwdeiber of each participant. The
resulting participants can now realise, when combinedtt@geall and only interactions prescribed
in the original global description. Thus by way of offeringoeecise analysis of the conditions for
local projectability of a global description, these thremgiples let us arrive at the construction of a
formally founded end-point projection. Descriptive piiples are by themselves structural analysis
of the operational content of global descriptions, leadimghe function which maps them to the
corresponding local descriptions.

13.1. ConnectednessConnectedness dictates a local causality principle irraoteon — if
A initiates any action (say sending messages, assignmerds .a result of a previous event (e.g.

59

reception of a message), then that preceding event shdiptace aA. For example, consider:

(75) A—B:s(op1, €1, y1).C—D:S(op2, &, y2).0.

According to the dynamic semantics of the global calculsté is first an execution of the interac-
tion between participantd andB and then an interaction between participab@ndD takes place.
For implementing such a sequence of interactions in a diged setting, we need a hidden notifi-
cation message froB to C. That is. (75) does not describe all of the communicatioruerges
needed to realise the demanded sequencing. So (75) is anptete description of communication
behasviour. This is why we wish to avoid e descriptions violgthe local causality principle such as
(75).

To formalise the local causality principle informally dissed above, we need to say which
participant initiates an action il this participant should be the place where the precedimgtev
happens. This notion is defined as follows.

DEFINITION 4 (initiating participants). Given an interactidrin which hiding does not occur,
its initiating participants denotedop(l), is inductively given as follows.

(A} if 1 ¥'A . B:chvg).1’
(A} if 1 €'A B s(op, & x).1
{A} if 1 2"if e@A then I1 else I
{A} if X@A :=e.l’
def o def A
top(l) % (A} if 1 2%
0 if 1 €0
top(l”) if 1 ©'rec XA.1/
top(l1) Utop(lz) if 1 2Ny |15
top(l1) Utop(lz) if 1 €13 41,

If A€ top(l), we sayA is aninitiating participant of I.

REMARK 3. By Convention 1 (cf. page 30), it is natural to restrict cemed interactions to
terms without restriction.

Givenl, the functionop generates a set of participant. The generated set contt@pstticipants that
initiates the first action df (note we count “sending” actions, which are session initreand sending

a message, as “initiating” actions, but we don’t do so fordbeesponding receiving actions: as we
shall analyse later in Section 13.2-13.3, this is the mdstisboption, though there are alternatives).
The annotation for a term variabla, for XA, has now revealed its role, as a signifier of the initiating
participant of the behaviour embodied Ky We discuss how this allows validation of connectedness
in the presence of recursion. We now present the inductifiaitien of connectedness.

CONVENTION 5 (well-typedness). Henceforth we only consider well-typerms for both
global and local calculi, unless otherwise specified.

DEFINITION 5 (Strong Connectedness)The collection ofstrongly connected interactioase
inductively generated as follows (considering only welled terms, cf. Convention 5).

(1) A— B:ch(vs).l’ is strongly connected whehis strongly connected anap(l’) = {B}.

(2) A—B:s(op, € X).lis strongly connected when | is strongly connectedand!) = {B}.

(3) if e@A then |1 else I, is strongly connected when, Il, are both strongly connected and
{A} =top(l1) = top(I2).

(4) 11+, is strongly connected whep, I, are both strongly connected agé} = top(l1) =
top(l2).

(5) rec XA.1" is strongly connected whefA} = top(l’).

8We can of course insert additional communication missiognf(75). But this is precisely we need a
principle dictating when such an insertion is necessaryhavdthis may be done.

60

(6) XA is always strongly connected.
(7) x@A:=e.l is strongly connected whehik strongly connected anfiA} = top(l’).
(8) 11 12 is strongly connected when bothdnd b are strongly connected.
(9) (vs) Iis strongly connected when | is strongly connected.
(10) Ois always strongly connected.

Note strongly connected implies well-typed. Strong comedeess says that, in communication ac-
tions, only the message reception leads to activity (atebeiving participant), and that such activity
should immediately follow the reception of messages. Vasiaf the notion of connectedness (which
loosen some of the clauses of the definition above) are disdus the next subsection. Among oth-
ers the following variant allows an identical technical el@pment as the notion presented above
while useful in various examples.

As we shall discuss in the next subsection, there are moetoeariants of connectedness
which can be used in its place, allowing all the remainingth&cal development to go through.
Strong connectedness is chosen since it allows a most aeergtheoretical development. Further
we can often encode descriptions following looser priresplising strongly connected interactions
preserving semantics.

The defining clauses of Definition 5 should be naturally ustierd. We only illustrate the
treatment of recursion. Given a recursi@t X”. |’ and its operational semantics (cf. Section 10.3),
each occurrence of the term variablecan be seen as a link back to the beginning of recursion,
i.e. the recursive terrec XA I’ itself. This view suggests that, for guaranteeing conmiss, we
need to make sure that the action preced{rghould be connected to tlheginningof the recursion,
i.e. the initiating participant of. For this to happen, we first annotatewith A, by which we can
statically check its preceding event happen#étahen we demand’, the body of recursion, does
indeed start fromA. This justifies the participant annotation on recursionalzes.

We now show basic properties of strongly connected intemast

LEMMA 4 (Substitution).Let l; and b be two strongly connected interactions such that(1,) =
{A}. Then the interaction(l/X*] is strongly connected anap(l1) = top(l1[lo/X4]).

Proof. By induction on the syntax of the calculus.

e Induction base.

— 0. Vacuous.

— XA, Inthis case, we have thatl,/X#] is exactlyl, which is strongly connected by
assumption antop(X?) = {A}.

¢ Inductive cases.

— A— B:ch(vg).I. In this case, we have by induction hypothesis tligt/X*] is
strongly connected anfB} = top(l) = top(I[l2/X*)). It follows that alsoA — B
ch(v§).1[l,/XA] is strongly connected.

— A—B:s(op, e ¥).l. Similar to previous case.

— X@A :=e.l. Similar to previous case.

— 1| I’. In this case we must apply induction hypothesis to dotimdI’. Then it

follows that it holds also for the parallel composition.

if @A then | else I,. Observing thatop(l1) = top(l2) = {A} we can reduce to
previous case.

I3 +15. As above.

(vs) I. Similar to previous case.

— recX”.1. Similar to previous case.

LEMMA 5 (Strong Connectedness: Subject Congruente).l; and b be two interactions. If
I, =1, and | is strongly connected then is strongly connected.

Proof. We can show that this holds for all cases:

61

o rec XA 1" =1"[rec XA.17 /XA]. In this caserec X*.1” and sd” are strongly connected
with top(1”) = {A}. By Lemma 4, it follows that als®”[rec XA.1” /XA] is strongly
connected.

o (V) I|[I'=(vs) (1|1 (if 5 & fn(l")). Trivial.

e (VS) (vS) I = (vs) (vs) I. Trivial.

PrRoOPOSITIONS (Strong Connectedness: Subject Reductidmgt | be strongly connected and
o be well-typed. Thefo,l) — (o’,1’) implies [is strongly connected.

Proof. By induction on the reduction rules.

e Induction base cases.

— (INIT). In this case we have thér, A — B: ch(v§).l") — (o, (v8) I”) and by defi-
nition of strong connectedness we have that it is connectezheverd” is strongly
connected antbp(l”) = B. Moreover,(v§) I” is strongly connected whenewéris
strongly connected which concludes this case.

— (Cowmm). By applying the rule, we geto,A— B : s{op, €, X).1) — (d’,1) if and
only if o - e@A |} v. By definition of strong connectednélsis strongly connected.

— (AssIGN). This rule states thdo, x@A :=e.l") — (d’,1"). By definition of strong
connectedness we have tivaits strongly connected.

— (IFTRUE) and (IFFALSE). We have thato,if e@A then 1 else 12) — (o,1) and by
definition of strong connectedness we have thatl; is strongly connected.

¢ Inductive cases.

— (PAR). This rule implies thata, |1 | 12) — (o', 11 | I2) ifand only if (o,11) — (0’,17).
Now, by definition of strong connectedness we have thanhdl, are strongly con-
nected. Moreover, by induction hypothesis, we have thés strongly connected.
Finally, by using the definition of strong connectednessragee have that a and
I, are strongly connected then also their parallel compasiltie= 1/ | I is strongly
connected.

— (RES). Applying the rule for restriction we have thét, (v§) 11) — (d’,(v§) I2)
if and only if (g,11) — (0’,12). This implies thatl; is strongly connected and by
induction hypothesis alsi is strongly connected. We can then conclude that also
(v§) 12 is strongly connected.

— (STRUCT). The structural rule is similar to the previous one. We dmdye to make
sure that connectedness is preserved by the structuratuemge and this is ensured
by Lemma 5.

Strong connectedness (as well as its variants) imposesraystructural constraint on the shape
of interactions. One such consequence is the followingrehgien. Intuitively it says that, in each
thread of interactions, there is always one single paditipeady to perform any operation that is not
an input; while the remaining participants are waiting fgout. At any stage of a thread of activity,
there is only one participant performing any operation md eaput. On the contrary, the rest of the
other participant are all performing an input.

DEFINITION 6 (Input-Output Form).Let T - | > A, assume that | structurally equivalent to
SiA—B:s(op;, &, X).ljor A— B:ch(vs).l” and consider the tree generated by unfolding recursion
occurrences. | is innput-output formwhenever for all G£ A, C occurs in each path (towards the
leaves) first as a receiver, then zero or more ifthenelségastents and then as an output.

LEMMA 6. Iflis structurally equivalent t&;A— B: s(op;, &, X} .lj or A— B:ch(vs).l” and,
moreover, it it is strongly connected, then | is always inuputput form.

Proof.Direct from the definition of strong connectedness.
We shall use this observation during our next analysis, iithvtve extract true units of activity from
a global description.

62

13.2. Further Examination of Connectedness (1): Input and Qtput Asymmetry. In strong
connectedness, we regard only a sending action to be tingia Some observations on this point
follows.

First, for session initiation actions, this is a naturalicko The typing of the end-point calculus
is based on the idea that a service channel should alwaysdilatde: in such a setting, the only
feasible choice for guaranteeing the sequencing as spktif@ global description is to use only a
sending party as the one who does an action.

Second, for in-session communication actions, we can thaé®&p the inputting party and
outputting party as an “initiator” of sequencing, at ledwdretically. For example, compare the
following two interactions. The first one is strongly contezt

X@A = 3.
(76) A—B: s(op).

while the second one uses the reverse sequencing.

X@A = 3.
77) B—A: s{op).

By a close look at (76), we observe the following assumption:

In the second actiorB should already be ready to receivesawhile A will
just at this second stegoes the sending action.

Note that, in this assumption, we aret demanding a strict sequencing in the inputting side: rather
it is in the outputting party which takes responsibility the timing of this communication action.
It is not feasible to demand both parties should make reagly tbomplementary actions at the same
time.

If we are to allow (77) and to have local processes obey theritbesl sequencing, the assump-
tion would be:

In the second actiom should already be ready to send (or have seng at
while B will just at this second stepecome ready to receive an action.

Note this argument for “sequencing by input” holds even ia tlontext of asynchronous commu-
nication (either the pure one or the one with arrival ordendeterminism). However (77) isota
good discipline, simply because, when a participant is isgndt should first create a datum: and
this may as well be done as the result of the preceding eveheaender side, not at the receiver's
side. From this viewpoint, (77) neglects a hidden causaliltyciple for message creation, and may
not be a practical choice.

These arguments suggest our assumption that it is a serider than a receiver who realises
a sequencing is a natural idea. We next discuss two basiamarof connectedness based on this
understanding of sequencing.

13.3. Further Examination of Connectedness (2): VariantsoConnectedness.

r-Strong ConnectednessStrong connectedness robust with respect to asynchrony of mes-
sages, i.e.even if we assume all messages are sent asymeigoim end-point processes, the princi-
ple still guarantees strict sequencing. Strong conneetihowever is often too strict. For example,
consider the following description:

Buyer — Seller : QuoteCh(vs).
(78) Buyer — Seller : s(RequestQuote, productNamex).
Seller — Buyer : s(ReplyQuote, productPrice y).0

63

Here a Buyer requests a Seller to start a session througlvigesehannelQuoteCh, exchanging a
fresh session channgl Throughs, the Buyer request a quote with a product name. The Seller the
replies with the corresponding product prﬁ:e.

Sending multiple consecutive messages from one party tihvanim a session is often found in
practice (in both business and security protocols). Fuifi@) may not violate the essential idea of
strong connectedness both logically and in implementafiiost, it is still a reception of a message
which acts as a trigger of an event in a different participaBecond, we can always send such
consecutive messages in one go, so that it still works inrifrastructure which implements each
message flow by asynchronous messaging (note if we sendihresecutive messages separately, we
need to guarantee the order of messages in some way, for whipbse we may use a widely used
transport level protocol such as TCP). We call a refinemerstraing connectedness which allows
such consecutive interactions from the same sender to the seceiver,strong connectedness
relative to repetition, or r-strong connectednessWe give its formal definition below for reference.

DEFINITION 7. We sayl starts from an action from A to Bihenl is prefixed with a session
initiation from A to B or a communication fror to B.

DEFINITION 8 (r-strong connectedness). labeldef:r:strongconneetexi The set of-strong
connected interactionare inductively generated as follows.

(1) A— B:ch(vs).l’ is r-strongly connected wheH is r-strongly connected and either
top(l") = {B} or I’ starts from an action from to B.
(2) A—B:s(op, € X).l is r-strongly connected whelnis r-strongly connected and either
top(lj) = {B} or | is prefixed by an action frorA to B.
For other terms we use the same clauses as in Definition Haiegl “strong connectedness” with
“r-strong connectedness”.

One may note all relative strong connected interactionsbeaencoded into strong connected inter-
actions. For example, (79) can be translated into:

Buyer — Seller : QuoteCh(vs).

Seller — Buyer : S(Ack).

Buyer — Seller : s(RequestQuote, productNamex).
Seller — Buyer : s(ReplyQuote, productPrice y).0

Thus we only have to add one ack between two consecutivenadtiche same directions. For this
reason, in all technical developments which depend on gtommnectedness, we can equally use
r-strong connectedness without any change in essentiafremgts. In particular, the same soundness
and completeness results for the endpoint projection hold.

ConnectednessWe can further loosen relative strong connectedness. Fotting, one may
consider the following description is a natural one.

Broker — Seller : SellerCh(vs).
Broker — Buyer : BuyerCh(v f')s').

(80) Broker — Seller : s(RequestQuote, productNamex).
Broker — Buyer : §'(RequestQuote, productNamey).
Seller — Broker : s(ReplyQuote, productPrice 2)......

(79)

Here Broker does four consecutive actions which are tadgetéwo different participants. Further
this global description specifies, in the fifth line, that dl&ereplies to a Buyer even though the
immediately preceding action goes to the Buyer. Howeves itatural and easy to consider that
Seller can send its message after the third line, and thiscisived by Broker in the fifth line. The
description still obeys a locality principle, which is ditéy realisable in synchronous communica-
tion. It is also easy to realise this idea in asynchronousrmgonication as far as message sending
order for each target is preserved (if message order is restepved even for the same participant,

%n practice, one may as well describe the initial “sessidtigiton” action and the first RequestQuote action
as one action, as in WS-CDL. One may as well consider (78) egrasentation of this idiom in a formal setting.

64

we may still be able to group messages and send them agaireigmnp to a permutation, even
though this becomes complicated if there is a branchingchvis somewhat similar to permutation
of instructions in pipelining in modern CPUS).

This principle, which we simply cakkonnectednesscan be formalised by accumulating po-
tential initiating participants one by one. For example the first line, it may well be the case
that Broker is the only potential initiating participant.ftér the first line, Seller joins. After the
second line, Buyer further joins. So in the fifth line, Selban indeed invoke an interaction. Sim-
ply connected interactions again allow the parallel techinilevelopment, even though operational
correspondence needs adjustment.

This relaxed variant of connectedness has one issue iségatncing in a global action may
show false dependengyhen projected onto local behaviour. This means, amongthennected
but not r-strong connected descriptions are in general etitthreaded in the sense we shall discuss
later. In spite this observation, we strongly believe tlekaxed version of connectedness will have
a basic role as a structuring principle of global descripgioon which we are intending to explore
elsewhere.

Other Concerns.By introducing other syntactic constructs such as join afien, the notion
of connectedness can further be refined. As far as such awvariposes a reasonable constraint fol-
lowing a locality principle of actions, we believe the capending principle can be used as a sound
substrate for the essentially equivalent technical dgrant we shall discuss in the subsequent
subsections.

14. Theory of End-Point Projection (2): Well-Threadedness

14.1. Service Channel Principle.With strong connectedness, each interaction is a direct con
sequence of the preceding local event. On this basis, a firadysis of interaction is possible, which
allows us to extract a unit of behaviour acting in a globalcdgsion. This unit is calledhread
which plays a pivotal role in the present theory of endponojgrtion.

Before introducing the notion of threads, we first illuséraine subtle point in the way service
channels (which act as initiating points of sessions) gpeesented in the end-point calculus using
an example. Consider the following global description:

A— B:chg(vs).
B — A:chy(vt).
A—B:t(op1, V1, X).
B—A:s{opa, V2, y).0
First we haveA askingB for service (sessiormhg, thenB askingA for servicecha, thenA replying
to B with a value on session namébelonging to sessionohs) and finallyB sending toA a value
using session name(belonging tochg). Now consider the following naive implementation of the
interaction above as communicating local processes, sty ®nA.

(82) Al chg(vs).!cha(t).t<op1(vi).St>o0p2(y).0]g,

The local description (82) directly translatas portion of (81), whereA first asksB for service via
chg, then waits for somebody (heB) to ask for its own serviceha, then sends a value ® over

t, and finally waits for a value to be sent owrls this a faithful way to represent the behavioural
content of (82)?

Suppose another client wishes to use a service availaltlgaatThe projected behaviour (82)
indicates that this service eliy becomes available only whéxfinishes an interaction ata, which
makes availability of service &ha dependent o’s action (the issue becomes worsdivaits for
B’s reply before offeringchy).

Generally, in our formalism and in web-service languageh a1 WS-CDL, a channel used for
initiating protocols gervice channeli our formalism, initial channels for starting choreodnés/sub-
choreographies in WS-CDL, which may as well be public URLrg)iatended to be repeatedly in-
vokable and be always available to those who know the poresaim fact, in the standard practice
of web services, a service is embodied by a shared channtie fiorm of URLs or URIs through

(81)

65

which many users can throw their requests at any time (suaifadmlity at shared ports is maintained
as part of the standard notion of “service” in a service-tddsemework going beyond web service).
This is why the construction of services as found in (82) kaknatural: a service channel should
always be available to clients who know its URL. This may biéedsservice channel principle

In the engineering context, a basic form of service chanriatiple can be found in RPC and
RMI, and its web-service embodiment such as SOAP. In theegbwif theTr-calculus, this notion
is representable as a replicated input who is “receptive®ifgput ready”). We can easily enforce a
more refined discipline so that we can guarantee input shannels to be never under prefix in
the typing for the end-point calculus. If we do so, (82) beesrantypable.

We now present the local representation of (81) which indd®ys the service channel princi-
ple. First we have the following local code far

(83) Al !cha(t).t<opi(v1).0 | che(vs).s>op2(y).0 g,
For B we have:
(84) B[!chg(s).cha(vt).t>op1(x).5<0p2(V2).0 |g,

By tracing reductions of the parallel composition of (83)1484), we can check the interaction does
proceed faithfully following (81).

14.2. Motivation: False Causality in Global Description. We are now ready to illustrate the
notions of threads and well-threadedness. Consider thawiolg global description:
A—B:chg(vs).

B — C:che(vt).

C—A:cha(vu).

A—B:s{op, v, x).1.

(89)

Note the description is strongly connected. However wenttais description is not well-structured,
and is impossible to be faithfully realised as reasonabtegmint processes.

Let us examine the behaviour Afdescribed in (85). Following the service channel pringiple
we can observe the behaviourdhas two different chunks of code, which we (first informalkygll
threads. The first thread starts a fresh session by invattiggn B, and sends a value ®overs.
The other thread is the one which provides the serviceligwhich may be realised ih. Thus the
local behaviour may be represented as:

(86) Al cha(vt).Pa | chg(vs).3<0p(V).Qa],
In the same way, we may consider the following local impletaton of B.
(87) B[chg(s).chc(vt).t>op(X).Ps g,
Finally, let us conside€’s end-point view:
(88) C[che(t).cha(vu).Pe loc
Let us now see how these process interact. AtasksC for servicechc, the processt> op(x) . Pg is
free to react with the terra<top(v).Pa2 in A, even befor€ has interacted witA's other component.
Can we change the local behaviours (86, 87, 88) so that it tzsigely represent the original
global behaviour (85)? We reason as follows.
(1) The service channel principle says that the chadneis replicated and is ready to receive
an invocation.
(2) Now the session channels initiated by a thread a& which is not under chp (since if it
is undercha, how can it be the initial move?).
(3) But for an action asto take placémmediately after invocation at ghit should be under
cha, a contradiction.
Thus we concludét is impossible to impose the global sequencing stipuld8%) by well-typed
local behavioursThis means (85) describedase dependency (sequentialisation) among actions
which cannot be realised by well-typed local interactiofisis examples motivates the main theme of
this section, the descriptive principle calleell-threadednesswhich automatically prevents such

66

false dependency from appearing in global description. Mfeduce this notion formally in the next
two subsections.

14.3. Annotating Interactions with Threads. Let us come back to the first global description
(81), which we found to be realisable by end-point procegse=n in (83) and (84). Let us analyse
these few lines of global description (81) informally, repuced below.

(1) A— B:chg(vs).

(2) B — A:chp(vt).

(3) A—B:t(op1, V1, X).
(4) B—A:s(opa, V2, V).
(5) 0

(1): This initial interaction is initiated byA, which is an output (session initiation) Bis
service channethg: dually the interaction is an input (reception of a sessiutidtion)
for Batchg.
(2): B reactsby an interaction, again with, but which is now an output fd8 and which is
asession initiatiorat A's service channatha. Dually it is aninput actionfor A, receiving
a session initiation at its oweha. For A, this input is donéndependently from the initial
output actionin (1).
At this point we realise, iif2) above, thatbecause B’s output action is a reaction to its own previous
input action the former and the latter should be in the same “code”: wiesaah a causally connected
sequence of actions of the same participatttiy@ad. Up to(2), we have the following three threads.
Thread 1:: which is inA, containing its invocation athg, opening a channel
Thread 2:: which is inB, containing its reception of the invocation above (opergngnd
its subsequent invocation et (openingt).
Thread 3:: which is inA, containing a reception of invocation @ta (openingt).
Note Thread 1 and Thread 3 aseparate threadswhenever a new invocation of a service (or a new
session initiation) is done, this creates a new thread aeitwiving, or service, side.
Let us continue our analysis.

(3): The output ofA is reaction to its previous input, so it is in the same threatha latter,
i.e. Thread 3. Since it uses the session chahmglened byA in its Thread 3 (in the
second line), this also shows this action should be in Th&atlhe same interaction at
the third line is an input foB, which should be Thread 2, because it usepened in the
initial action of Thread 2.

(4): HereB reacts by an output action at Since this is opened in its Thread 2, we know
this action byB should be in Thread 2. Similarly, the dual input actionfghould be in
Thread 1 sincais opened in Thread 1 fdk.

(5): We have no more interaction, concluding the analysis.

As a summary, there are three threads as a whole, twa &d one foB. In A, we have one thread
(Thread 1) starting from an output and another (Thread 3¢l a “service” starting from input at
service channeatha: this is precisely the processes given in (83), reproduetovin

Al 'cha(t)E<opi(v).0 | chg(vvs).s>op2(y).0 g,
Similarly there is one service iB, Thread 2, as given in (84), reproduced below:

B[!chg(s).cha(vt).t>op1(x).5<0p2(V2).0 |g,
Thus extracting “threads” (in an informal sense) from a gladtescription has led to obtaining local
behaviours which faithfully realise it. The analysis of #causality based on threads based on

session types is the main focus of the following discussife. first start from annotating a global
interaction with a notion of threads.

67

DEFINITION 9 (Annotated Interaction). Thread annotated interacti@mssimply annotated
interactionswritten 4, 4’, . . ., are given by the following grammar.

a4 = A" —-B@2:ch§).4
| A"—B@2:s(op, e Vy).4
| x@A':=e.4
| if e@A" then 4, else 4,
| 4+'%
I
Xt
| rec™XA.a
| O
where eachj is a natural number. We catl,T’,... occurring in an annotated interactiothreads

REMARK 4. In the parallel compositiod; |* 4y, there is only one thread annotationObserve
that, by connectedness, if such composition is under pigditk, share the same initiating participant.
The thread to which this participant belongs is the annogati Restricting our attention to such form
does not lose generality because if two independent irtterecwith (say) disjoint participants are
running, then we can treat each thread separately. For the szason we do not have to annotate
the restriction (note the restriction can only occur owsifi prefixes by Convention 1).

An annotated interaction annotates each node of an absymateix tree of a term with threads, which
are given as natural numbers. For example, (81) is annotatefdllowing our previous analysis:
Al — B?:chg(s).
B2 — A3:cha(t).
A3 B2: t(op1, V1, X).
B2 —Al:s(op2, Vo, ¥).0
But we can also annotate the same global interaction withemmisistent annotation:

Al - Bl:chg(s).
B2 — Al:cha(t).

which does not make sense.

14.4. Well-ThreadednessWe have seen at the end of the previous subsection a thread ann
tation may or may not make sense. Finding the condition fositent threading is tantamounts
to finding a consistent way to annotate an interaction witeatls. By our previous analysis, we
need to stipulate whether the causality specified globailly loe precisely realisable locally. For
this purpose we need to analyse the tree structure of amdoiateractions (we shall later show the
same analysis using typing rules: here we treat trees Hirectmake clear a geometric intuition of
wellthreadedness).

We fix some terminology. Regarding eag@has an abstract syntax tree, it hasomstructorat its
root (say prefix or parallel composition), which is annothly either one thread or, if it is initiation
or communication, an ordered pair of threads (the first foidee the second the receiver). Above
the constructor, it has itdirect subtree(s)each of which is another such abstract syntax tree. Each
(possibly indirect) subtree of is dominatedcby each of its (direct and indirect) proper subtrees.

DEFINITION 10 (Basic Terminology for Threads). (1) Ifthe root@fis initialisation/communication
from B to C and is annotated bft1,12), thents (resp. 1) is theactive thread of4 by
B (resp. thepassive thread off by C). If the root of 4 is other constructors, then its
annotatiort is both its active thread and its passive thread.

68

(2) If 4’ occurs as a proper subtree 4f then (the root of)2 is apredecessoof (the root
of) 4. Symmetrically we definsuccessor A direct predecessor/successisra prede-
cessor/successor which does not have no intermediateqa®st®/successor.

Note if the root of 4 is a predecessor of that of’, then the former's execution should indeed
temporarly precedes that of the latter. We can now introdbieeconsistency condition for thread
annotation.

DEFINITION 11 (Consistent Thread Annotation). A thread-annotateghgty connected in-
teraction4 is globally consistentf the following conditions hold for each of its possibly inelct
subtrees, sayt’.

(G1) Freshness Condition:: If 4’ starts with an initialisation, then its passive thread $thou
be fresh w.r.t. all of its predecessors (if any).

(G2) Session Consistency:1f 4’ starts with a communication betweBrandC via (say)s
and another subtre@” of 4 starts with a communication vigor an initialisation which
openss, then the thread b (resp. byC) of A4’ should coincide with the thread &
(resp. byC) of 2",

(G3) Causal Consistency::If 4" is the direct successor of , then the active thread ot”
should coincide with the passive thread @t

A thread annotated interaction liscally consistentf it is globally consistent and if the following
conditions hold for each of its (possibly indirect) subsee
(L) Local Causal Consistency:: Supposed’ is a supertree off and 4 is an initialisation
or a communication, similarly fag’. If both contain the same threacnd, moreoverd
is the first such subtree ot’, then ifT is passive by (sayB thent is active byB and vice
versa.

REMARK 5. For (G2), the well-typedness already guarantees théteie are two commu-
nications vias, or one communication via and an initialisation opening it, then their involved
participants coincide.

(G1) says a fresh thread starts when a service is invoké@) says two distinct interactions in the
same session (which are, by typing, always between the samefgparticipants) should be given
the same threads w.r.t. each participgi@3) says ifA has an input annotated as a (passive) thread
then its immediately following output should be annotatgdHe same (but this time active) threHd.
(L) is a crucial condition which is about local causality. Its#lyat, within the same thread going
through an interaction, a participant acts in a strictlg@altating fashion in initialisation/communication
actions!! To illustrate this condition, let us go back to our initiakemple:
A—B:chg(s).
B— A:cha(t).
A—B:t{op1, V1, X).
B—A:s{ops, V2, ¥).0.
We notice that it works just because for each session, eagtoflnformation from one participant
to another is always followed, if any, by an opposite flow dbimmation, e.g.A starts sessionhg
with names thenB replies toA on s. If not, the causality depicted in the global descriptiom ca
never be realised locally. This) embodies the condition which is the key to local realisgbiif
causality in a global description.
Somewhat surprisingly, global consistency implies Iocn):liscistency‘.2

PROPOSITIONG. If 4 is globally consistent, then it is also locally consistent.

19 we are to work with r-strong connectedness in Section 1tBi&n (G3) should be refined so that if two
consecutiveA to B actions are given they should be annotated by the same thread

14f we are to work with r-strong connectedness in Section 1Bén(L) should be refined so that we treat
consecutiveA to B actions as a single chunk.

12This result is related with what is called “switching conalit’ in game-based semantics.

69

Proof. (outline) Suppose there are two separate input8 Bgnotated by the same threadnd
for which there are no intermediate actions annotated @ifat is, we have two consecutive inputs
within the same thread which are temporarily separated}.tiis is impossible since immediately
after the first passiva, this should lead to its active occurrence in the directraaytwhich contra-
dicts our assumption. Symmetrically suppose there are gparate outputs bB annotated by the
same thread and for which there are no intermediate actions annotated(byat is, we have two
consecutive outputs within the same thread which are teaniyseparated). But this is impossible
since immediatel\peforethe second active, this should be preceded by its passive occurrence in
the direct supertree. O

DEFINITION12. We say is consistentf itis globally consistent or, equivalently, if itis lodsl
consistent.

We can now define well-threadedness. Below we gaig an annotation of when the result of
stripping off annotations fron# coincides withl .

DEFINITION 13 (Well-Threaded Interactions). A strongly connecteantéris well-threaded
when there is an annotatiom of | which is consistent.

Note well-threadedness implies strong connectednessé¢hegell-typedness). In the next subsection
we introduce the type discipline which type all and only wblleaded interactions, via consistent
global and local annotation.

14.5. Examples of Well-Threadednesslt is important to understand now what is the connec-
tion between an interaction and its annotation. In ordelie g sound and deterministic correspon-
dence, we define a function which annotates interactions.ndMetry to explain the rules of the
typing system. Consider the following interaction

A—B:chg(s).
B—A:s(op, € X).
(A—C:che(t) | A—B:s(op, € X))

If we now consider its implementation in the local calcules@ding to our discussion above, we
would get for somey

Alchg(s).s>op(x). (che(t) | s<op(e))]g,
B[! chg(s).s<1op(e). s> 0p(X)]g,
Cltehe(t)]q,
If we now start talking about threads we notice that goingtigh each action we must take a choice

whether to start a new thread or continue a previous one. rlompto the translation we gave into
the end-point calculus we can think about the following dation:

Al — B?: chg(s).
B2—Al:s(op, e X).
(A = C3:che(t) |* AL—B? : s(op, € X))

We now show another case where we also include recursionhanifithen else construct. Consider
the following interaction

A— B:chg(s).
rec XB.B—A:s(op, e x).XB

Without going into the details of a possible end-point repreation, it is clear to see that in here
there is a problem with the notion of well-threadedness. alt,fafterA starts the sessiochg, B
continuously sends to A on session nams This goes against our notion of well-threadedness

70

i.e. an alternation of actions between the two participahts session. Instead, if we add a further
interaction betweeA andB things become good again

A—B:chg(s).
recXB.B—A:s(op, e X).
A—B:slop/, €, y).XB
One last example is given by the following interaction:
Al - B?:chg(s1,s).
(B2 - C3:che(t).C3—B2:t(...)B? AL 5(...)
1
|
B - C*:ch(t).C*—B? (...)B? = Al i 5(...))
14.6. Type Discipline for Well-Threadedness Given a well-typed, strongly connected anno-
tated interaction we can check if it is well-threaded conipmsally using a typing system. We first

present the typing system which chek&l-G3). Then we refine it so that it can validate) . Let
S,S,... range over the set of all finite sets of session channels.

® = 61:S | 6,X:06 | 0
We assumé defines a function.®1,0; indicatesdom(©1) Ndom(G7) = 0. We say® is well-
formedwhen each session channel is assigned to at most two thiHaelfudgement has the form:
OF A4
where® records free session channels used in each thredd We use the following notations:

(1) The functiontopT () takes the active thread ¢f.

(2) The operatior®; ® O is the union 0f®; and©, except for taking the union of session
channels for each thread common@n . If ©1© O, is well-formed then we write
91 = 92.

71

DEFINITION 14 (Type Discipline for Well-Threadednesdjor an annotated strongly connected
(hence well-typed) interactiod, © - 4 is derived by the following rules.
©,11:SwW8,12: 8+ 4 topT(A)=1, S C{8§ SN{5=0

WT-I
(NIT) 0,11:SFAT — B2:ch(§).2

O,11:9,12:SF A s¢fc(0) topT(4)=T12
0,11 : S U{s}, 12: SU{s} -F A1 —B™ : s(op, €, X).4

(WT-Comm)

OF 4 topT(4)=1

WT-ASSIG
(IGN OFX@AT :=e. 4

OF4 topT(&)=1

WT-IFTHENELSE
() O if e@AT then 4, else 4o

OF 4 topT(4)=1
OF 4144,

(WT-Sum)

010 OF4 topT(Z)=1 (i=12)

(WT-PAR) =
0106041 | 4,

O,T:SWASETS 4 topT(4) =1
O,1:Sk(vs) ™4

(WT-RES)

(WT-VAR) (€] weII-formeAd
O,X:0OF X!
O0,X:0F 4 topT(4)=1
OFrec™XA. 4

(WT-REC)

(WT-ZERO) 510

REMARK 6. (well-formedness) By constructio® - 4 implies © is well-formed. This is
not used in the following proofs, but is natural since anysgeschannel can only be used by a
pair of threads in each well-threaded annotated interactidote also, in (WT-Init), the notation
0,11 :SWS, 1, : S impliesty # 1o, similarly for (WT-Com).

THEOREM 3 (WT-typing characterises well-threadednesgn annotated strongly connected
interaction 4 is consistent if and only ® + 4.

Proof. Soundness is direct from the definition. For completenéssphly non-trivial cases are
(WT-Init) and (WT-Par). First observe that, by definitionwall-threaded interaction never assignes
a thread to two actions which both use the thread activeheiéé actions are by distinct participants;
similarly when the thread is used passively. Thus if we ta&esubtree and consider the minimum
© which records the usage of session channels by its occuhiegds, the® is well-formed. The
rest is direct from the definition. O
Below we defingo, 2) — (0,42’ exactly following the original reduction.

THEOREM4 (subject reduction, well-threadednes#) © - 4 and (0, 4) — (¢’,.2') then®' -
4’ for some@'.

Proof. @ is obtained by taking off a free session channel which is el by the reducgtion,
if any.

72

PROPOSITIONY. For each annotated strongly connectel] we can algorithmically check if
OF 4 or not for somed.

Proof. By directly applying the rules starting from the leaves af #ibstract syntax tree. For a
recursion variable sa¥, it suffices to start from the empty set (takiXgas if it were inaction), and
retrospectively assign the free session channels indubed ¥he recursion is met. For the inaction,
we start from the set of threads used for the final (targetptatad interaction. O
The typing rules also offer a transparent proof of Proposit (which says global consistency im-
plies local consistency). We first augméhabove as follows:

0 = 61:(1,9 | 01:(,5 | ,X:06 | 0
Above we add, for each thread, the direction of the lastgtatction in that thread. The judgement
has the same form. The operati@ © ©, now combine this direction, so that it is defined iff the
directions coincide for each common thread: if this failsdoy thread, the composition is undefined.
We then replace (WT-Init) and (WT-Comm) as follows:
0,11:(1,S8S}),12: (1,8) -4 topT(A) =12 S C{§
0,11: (1,9 A1 — B2 :ch(§).4

(WT-INIT)

0,11:(,S),12: (I,S) F A& topT(A) =T, J#0
0,11 (1,5 U{s}),12: (|, U{s}) F At =B : s(op, €, X). 4
In both, the condition on the direction gt is non-trivial. After giving an activity to another thread,
when it comes back insidd, the thread» always starts as an input: it does not voluntarily start its

action. We can check this can only be the case by going threagh rule, thus proving Proposition
6.

(WT-Comm)

14.7. Inferring Well-Threaded Annotation. In the previous subsection we have shown we
can type-check well-threadedness given an annotatecatten. In this subsection we show there is
a simple algorithm which can inductively infer such anniotaif any: thus we simultaneously check
well-threadedness and annotate (non-annotated) ini@nact

We use the following notations.

(1) ¢indicates a sequent®of thread assignmentsvhere a session assignment is of the form
(1,A,9 (which intuitively indicates communications done via arfiysdy A should be in
the thread).

(2) We write¢-¢' etc. for the concatenation of two strings, aftdA, 8) € ¢ when (1,A, %)
occurs inf.

DEFINITION 15 (Annotating Function). Theannotating functiony(l, ¢) is a partial function
which maps a pair of (1) a thread assignment and (2) a wedletyptrongly-connected interaction
which has at most one initiating participant to the corregjilog annotated interaction, defined in-
ductively as follows. In the first line we choose a frashby incrementing the maximum thread in

134 thread assignment contains redundancy, containing ic#raccurrences of a thread assignment, for
the readability of the clauses for annotating functions.

73

y(A_> B: Ch(\)§) A, Z'<T1>A7f>) = A" — B2 Ch(\)g) y(|7 €'<T17A>f§>'<T2> B7§>)
(12 fresh)
y(A*}B:S<Opa €, X>7 £'<T17Avf>) dzEf A" B™ :S(Op,) X>y(|7 €’<T13A7f>’<TZan l”~13~.2>)
((12,B,F1sM2) € £, and 11 # 12)
yx@A=el, t-(LAD) L x@A:=e.y(, £-(1,AD)
vl 1o, (CAD) E (v, €(LAD) [F¥(lz, ¢(TAD)
y(if e@A then 11 else 1, £-(T,AT)) %' it @A then y(l1, ¢-(T,A)) else y(l2, £-(T,AT))
y(|l+|2> €'<T>A7f>) dZEf y(|17 €'<T>A7f>)+y(|2> €'<T>A7f>)
YA Al £ oxp
yrec XA, L AD) L rec ™Ay, ¢-(1,AD)

Otherwise the functio® is not defined. We further set, forwhich is well-typed and strongly con-
nected, which has a unique initiating participant, and Whidoes not contain hiding or free session

channels:
def

W) = v, (ttop(l),€))
Remark. Above in the communication case, the last conditipg: T, guarantees the choice of is
unique.

PROPOSITION8 (Soundness and Completeness of Annotating Functidssume | is well-
typed, strongly connected, which has a unique initiatingipgant. and which does not contain
hiding or free session channels. Then an interaction | id-#ekaded if and only if¢(1) is defined.

Proof. By noting the clauses defining the functighprecisely correspond to the typing rules in
Definition 14 except for the strict alternation (taking offilwh does not lose necessary by Proposition
6). O

15. Theory of End-Point Projection (3): Coherence

15.1. Mergeability of Threads. By connectedness and well-threadedness, we have shown how
we can analyse the structure of a global interaction as aaah of different threads that compose
it. In other words, these threads will become, in the endvpoélculus, as constituents of processes
which interact with each others and realise the originalavéur in the global description. In the
present section, which offers the last step of our ongoirayais, we explore how we can consis-
tently construct concrete processes based on these thr€hisconcern immediately leads to the
final well-structuring principle for global description @ghe top of strong connectedness and well-
threadedness.

We first observe it is often necessarynergethreads to obtain the endpoint behaviour which
realises a global interaction. For instance, considerdhiewing parallel compaosition of two inter-
actions.

(89) A—B:ch(vs).B—A:s(op, e X).A—B:s(ops, €1, x1) |
A—B:ch(s).B—A:d(op, g X).A—B:5(op2, €, X2)

If we annotate this interaction we know th&™will be marked with two threads, each corresponding

to one of the twach invocations. When we make the end-point processes, we peaérge these

two threads into one process, since we naturally demand th@nly one service offered eh. The

merging becomes necessary because these two threads s$teventibehaviours:

e In one,A chooses the optioap; which B offers; while

74

e in the otherB chooses the optioap, which B also offers.

We can project these two threads into two end-point prosesse

(1) 'ch(s).s<op(e).s>op1(x1)

(2) !'ch(s).s<op(e).s>op(X2)
In spite of having two behaviours for the same “service”, enéwviour, we can consistently integrate
these two threads into a single behaviour, using a branéhng:
(90) B[!ch(s).s<op(e).s>> (op1(x1) + 0p2(X2))]g,
Indeed, this combined behaviour does act as prescribee igltibal description, when the following
two output threads & invokesB via ch are given.
(91) A[ch(vs).st>op(x).3<1op1(e1).0 | ch(vs).s'>op(x).3<opa(ez).0],,
We can easily observe the compositionAadindB does indeed induce the original global behaviour.
Similarly we can easily extract threads ®randcombine them into a consistent whole.

A—B:ch(vs).B—A:s(op, e X).A—B:s(op1, €1, X1) +

(92) A—B:ch(s).B—A:5(op, e X).A—B:d(op2, &, X2)
Similarly for
93) if €@A then A— B:ch(vs).B—A:s(op, e X).A—B:s(op1, €, X1)

else A— B:ch(s).B—A:S(op, & X).A—B:5(op2, &, X2).

These three cases — parallel composition, sum, and conditie- are the central cases from which
the need to merge threads arises.

However therare cases when we cannot merge two related threads coming frorgla global
description. Consider the following interaction, againdesing orB’s behaviour.
A—B:ch(vs).B—A:s(op, € X) |
A—B:ch(vs).B— C:ch(vt)...

How can we project this description to the end-point behavid B? WhenB is invoked for service
ch, on one thread it replies to the invoke)(while on the other one does something completely dif-
ferent. In fact, we obtain the following two slices (instasg ofB’s behaviour from this description:
(1) !ch(s).s<op(e) and
(2) 'ch(s).ch/(vt)...
which can hardly be merged consisteritly.

Thus we need a formal notion by which we can judge whether tvmare end-point behaviours
are consistently mergeable or not. In the above exampldoitld tells us if the descriptions of
two different invocations for a serviceh, when transformed into end-point processes, are in fact
mergeable to yield a single coherent behaviour. We callrgieion mergeability Before defining
this relation, we first introduce a notion of typed relatipoBwhich mergeability is once instance.

(94)

DEFINITION 16 (typed terms and typed relation). (1) typed term(in the end-point cal-
culus) is a typed sequeht-p P> Aorl' - M > A.
(2) A relation over typed processes or networks (in the emidtpcalculus) istypedif each
related pair of typed terms have the same typing.

Thus typed relations are typed in two ways: they only deahwjped terms, and, moreover, they
only relate two terms of the same typing. In spite of this,donvenience of notations, we stipulate:

CONVENTION 6. Given a typed relatio®, we often leave typings implicit, writing e.¢eR Q
or MRN.

Hopserve the result of directly combining two threads:
Ich(s).(s<top(e) Tl (vt)...)
doesnot conform toeither of the two components of the parallel composition in the glatescriptions.

75

We are now ready to define mergeability.

DEFINITION 17 (Mergeability). Mergeability relation denotedx, is the smallest typed equiv-
alence relation on typed processes generated by the foljowles. In each rule we assume typability
(i.e. we assume each related terms are typed under the spmg, tyicluding in conclusions).

P > Q; for eachi € JNK andopj # op for eachj € J\K,k € K\J
s> 230pj(Xj).Pjpa s> Zkop(X) - Qk

P=Qi(i=12.,n)
C[Py]..[Pn] =1 C[Q1]..[Qn]

P=qP Px=xQ Q=0
PraQ
WhenP < Q, we sayP and Q are mergeable

Note the only non-trivial clause is for the branching inpittsays that, for each common branch,
the behaviour should be essentially identical. In the lakt we may as well use: or even larger
equality than=q (for algorithmic checking, we demand the used relation téelasibly checkable).

The relation checks that two given processes are more or less identitds. “More or less
identical” means that, in brief, their behaviours do nottcadict when they come to the same course
of interactions, i.e. when the same branch is selected bintaeacting party. Thus the rules above
say that we can allow differences in branches which do noti@webut we do demand each pair of
behaviours with the same operation to be identical.

If two end-point behaviours are mergeable in this sense, ametwly merge them: merging-
ing, when applicable, just returns a single process whictukites both of the two behaviours, by
combining missing branches from the both. For instanceptbeess

s> go(x).P
and the process
s> stop(x). Q
are mergeable, and the result of merging is simply:
s> go(x).P + stopx).Q
. The formal definition of merge operation follows.

76

DEFINITION 18 (The merge operator)Ll is a partial commutative binary operator on pro-
cesses, given by:

Ich(s).PUlch(s).Q = !ch(s).(PLUQ)
ch(s).Puch(s).Q = 9).(PLQ)

ot Z.emon)-(RUQ) +
S>> Zicyop (¥i) . A US> Zickopi(¥i) Q= Zica\kOR(Yi) - P +

Ziek\J0p (1) - Qi
x:=e.PUx:=e.Q def e.(PLQ)
if ethen Py else P, LIif ethen Q1 else Q> def if ethen (PLLUQ1) else (P,LUQy)
(PLIP)UPs| Py LT (PP | (PoLIPY)
s @iop(e).PUsadiop(a).Qi gef s<a@iop(e).(RUQ)

recX.PuUrecX.Q def recX.(PLQ)

xux % ox

oo £ o

where, in the right-hand side of each rule, we assume thalyeume the operator is applied to
two processes, say P and Q, we havei®. When this condition is not satisfied, the operation is
undefined.

The merge operator merges two end-point behaviours. Irr éodéhis merging to be successful, this
partial operation requires, for its definedness, that neefecesses are structurally compatible (the
assumption given after the defining clauses). This comifigitits given as the relatiom<. We can
check that when twoc-related processes are merged in any of these clausestsh@ght-hand side
is always well-defined (inductively).

The most significant rule in the above definitionsefis the one for the branching input. They
inspect the two operands which must start with

s> Ziopi (i)

And, if the operatiorop appears in both terms, then the terms after the pré&fiar{dT,’) are merged
as well, which are ensured to be mergeable by the assumptidhe other cases, a new branch is
added to the summaticn

15.2. Thread Projection and CoherenceGiven a consistently thread annotated interaction,
we can project each of its threads onto an end-point prodéss.thread projection is partial opera-
tion again by its use of the merge operator,

DEFINITION 19 (Thread Projection). Assum@ is consistently annotated amds one of its
threads. Then we define a partial operafiof(4, 1) as follows. Below assumeis distinct from
T, 11 and T, and assume the right-hand side is defined iff all expressiotise left-hand side are

77

defined.

b(v§).TP(4, 1) (11 =1)
TP(A" - B2:bv§).4, 1) = 'b(8).TP(4, 1) (T, =1)
TP(A4, 1) (otherwise
s<ople). TP(4, 1) (11=1)
TP(A"—B™:s(op, € X).4, 1) def s>op > ((X)i). TP(A4, 1) (T2=1)
TP(4, 1) (otherwisg
v def x:=e.TP(4, 1) (=1
TP(x@A" :=e. 4, 1) = { TP(4, 1) (T £71)
v def TP(A1, U)| TP(Ap, 1) (=1
LT I A A
TP(if €@AT then 4 else A1) %' {iﬁgﬂgig&&;ﬁe TP(#A2) g/;g
v def TP(A,)& TP(A, 1) (=1
TP+ A 1) = { TP(H. VUTP(D, 1) (' £1)
v def recX.TP(4, 1) (=1
TP(rec™*.2, 1) = { recX.TP(4, 1) (£71)
TPXA 1) L' x
TPO. 1) ¥ o

WhenTP(4, 1) is undefined, we writd P(4, 1) =L.

Some observation:

(1) For each of the initialisation and communication, weehtwee cases:
(@) When the concerned thread coincides with its activeathrim which case we obtain
the corresponding output prefix;
(b) When the concerned thread coincides with its passiveathrin which case we ob-
tain the corresponding input prefix; and
(c) three, when neither applies, in which case we simplyiolttae projection of the
remaining body, which is, by Lemma 6, always in the inputpotiform.
(2) For assignment, parallel composition, conditional dtieenelse, each of which is anno-
tated with a single thread, we have two cases:
(@) When the projecting thread coincides with the threachefinteraction, we simply
carry over these constructors to endpoint processes;
(b) If not, we simply merge these threads (or identity in theecof assignment).
(3) Other cases are defined compositionally.

The previous definition of thread projection already densahdt, if we ever wish it to be well-
defined, the behaviours inside a thread should be built stargly, i.e. whenever we uge the
operator should be defined. The notion of coherence inclidesvell-definedness, and extends it to
inter-thread consistency.

The need to consider inter-thread consistency arises bedha description of the behaviour of
a service (replicated input) can be distributed over moas thne places in one global description.
In this case, we should combine the result of projecting iplelthreads into one code, for which we
use the merge operation again.

78

As an example, recall the projections we have seen in (94k @&, which we reproduce below
with annotations.
AP — Bl:ch(vs).BI—A%:s(op, e X) |
AV — B?:ch(vs).B?2 - C3:cH(vt)...
Call this interactionq. Then we have:

(95)

TP(A4, 0) = ch(vs)si>op(x).0 | ch(vs)...
TP(a, 1) % ich(s).s<0p(e)

TP(a, 2) % ich).cHt)...

TP(a, 3) T).

Clearly !ch(s).3<1op(e) and Ich(s').ch (vt)... are not mergeable. The point of coherence is that, if
there are multiple threads which constitute parts of theabiglur of a permanent service, then they
should be mergeable.

Since each channeh uniquely defines a service, we can collect all threads duutirig to the
behaviour of this service by taking the passive thread ofieassion initialisation interaction véh.
Formally we set:

DEFINITION 20. The maphreads(4, ch) is defined as follows, assumimngy # ch.

threads(A™ — B2 :ch(vs). 4, ch) %' {1,} Uthreads(7/, ch)
threads(A™ — B : ch (vs).4’, ch) def threads(.4’, ch)
threads(A™ — B : s(op, X, .).4’, ch) def threads(4’, ch)
threads(x@A' :=e.. 4’, ch) %' threads(', ch)
threads(if 6@A" then 4] else 45, ch) def threads(4], ch) Uthreads(45, ch)
threads(4] + 45, ch) def threads(4], ch) Uthreads(45, ch)
threads(4] | 45, ch) def threads(4], ch) Uthreads(45, ch)
threads(rec X.4', ch) def threads(4’, ch)
threads(X2, ch) def 0
threads(0, ch) def 0

If two input threads are for the same service channel, they éine equivalent. Belowhannels(4)
indicates the set of service channels occurringlin

DEFINITION 21. Given a well-threaded annotated interactigh for all T € 4, we define the
equivalence clasg]? C N as
[= threads(4, ch) if 3ch € channels(4) such thatt € threads(4, ch)
| {t} otherwise.
Giventy 7 in 4, we writety =4 T, if there exists € 4 such thatry, T, € [172.
DEFINITION 22 (Coherence). Given a well-threaded, consistently atedtinteractior, we
say that4 is coherentf the following two conditions hold:

(1) Foreach threadin 4, TP(4, 1) is well-defined.
(2) For each pair of threads, 12 in 4 with 11 =4 1o, we haveTP (4, 11) < TP(4, T2).
A well-threaded non-annotated interactiois coherentf it has an annotation which is coherent.

79

Note a coherent interaction is by definition well-threadeehce is strongly-connected. Singeis
calculable (the order is linear w.r.t. the sum of the sizenaf terms: when we takes up to = this
becomes exponential), we have:

PROPOSITIONS. There is an algorithm which can check | is coherent or not.

EXAMPLE 18. The interactions (89) in page 74, (92) in page 75 and @®@®gabe 75 are all
coherent, but (94) in page 75 is not.

15.3. Properties of Coherent Interactions.Assume4 is coherent. Assumé hasn-threads,
sayTty,..,Tn. Then athread projection tpgives as an end-point process, Saywvhich is to be located
at some participant. Below we consider the structural agpoedence betweeft andP,, using the
type structure. The key tool we shall use is the mergealvdigtion and the merging operation at the
level of types. Below we overload the corresponding symbmignd-point processes.

DEFINITION 23 (Mergeability of Session Types).Mergeability relation on typesdenotedx,
is the smallest equivalence relation on session types gtteby the following rules. We assume all
types (including those in conclusions) are well-formed.

aj > Bj for eachi € JNK andopj # opy for eachj € J\K, k € K\J
s| Z;0pj(6;).ajea s | Zxopk(6k) - Bk

aj > Bj for eachi € JNK andop; # op for eachj € J\K ke K\J
s1250pj(0)).aja sT Zxkopk(6k) - Bk

aixB (i=12) — o —
a1|agp > B1|B2 toat rec t.a<rec t.p end <l end
Whena i 3, we saya and 3 are mergeable We extend this relation to service types in the way
(§)a@A < (8)B@Aiff a <.

DEFINITION 24 (The merge operator on types).is a partial commutative binary operator on
session types, given by:

def ZicankOp (6).(ai UB;) +
sl 3j0pj(8)).aj U s| Zkop(Bk).Bk = sl | ZieakORm(8i).ai+
|eK\Jon(el) Bi
def ZicankOp (6).(ai UB;) +
sT2y0pj(8)).aj U sT2kop(B).Bk = sT | ZieakOR(8i).ai +
|eK\Jon(el) Bi
(arlaz) U (BalP2) £ (asLipy)(azBy)
tut 20y
rect.allrect.p € rec t.(alUP)
endl/end d:ef end

where, in the right-hand side of each rule, we assume thaydiree L is applied to two types, say
a andf, we havea i 3. When this condition is not satisfied, the operation is unéefi We extend
the operation to service types as follows:

def

(Ha@AU(Ha@A = (§(aLUP)@A
We can easily chectit < 3 impliesa LI is defined and results in a well-formed type. We observe:

PROPOSITIONL0. Supposel; » < B. Thenayaay andag Lidy < B again. Further whenever
o 13 we haven < o L.

80

I, ch@B: (5o Fmin A>A-§[B,A: B
I, ch@B: (5)(aUB) Fmin At — B :ch(v§). 4> A

(MTINIT)

Mmin A>A-§[ABl:aj THe@A:0; THx@B:8; sc{§ jel

MTComm
() I Fmin At — B2 : s(opj, € x). A>A-§[A,B]: ZjcysT opj(8)).qj

M1 Fmin Za>01 Tobmin 2> Ao fSC(A]_) ﬂfSC(Az) =0

(MTPAR) 7
MUl Fin A1 |° A2>D1UDp

Mibminl1>A1 Tobmin l2>A2

MTSum
() MUl Fmin 1+ l2>A1UAS

Vi# . {§}n{§}=0

(MTZERO) 05 U § A, Bilend

vi£] {§)n{§) =0

MTVAR
() T, XA:0Fmin XA Ui §[Ai, Bilend

F-XA:0Fmin A>A

MTREC
() [Fminrec XA . 4> A

FIGURE 23. Minimal Typing Rules for Global Calculus (main rules)

Proof. Direct from the definition. O

We now ask the question: how the typing.@fand itst-projection (assuming is its thread)
relate with each other? For this purpose we introduce twntypystems. The first system derives
minimal typing of annotated coherent interactions (antimta do not play any role in this typing
system: they are needed for their correspondence with thietyylging system). W.l.o.g., we only
consider interactions without hiding, and assume the gnougf free session channels is determined
implicitly (the grouping of initialised session channedsdietermined by the binder at the initialisa-
tion). In the rules, we extensh andLI pointwise to session/service typings.

Other rules follow easily. I{TZeroO) and (MTVAR), we choose the introduced empty type
assignment based on the implicit grouping of session chanWée observe;

PrRoPOSITIONLD. If I i A > Athen itis the minimal typing ofl in the sense of proposition
2. O

Proof. By induction we show whenever we havé- 4> Athere is the corresponding deduction
for Mg Fmin A > Ag such thattg < I andAg < A. Further it is easy to show, again by induction,
o Fmin A> Ag impliesTo - 41> Ag. O
We next introduce a typing system which derives minimalgpior theportion of an interaction
associated with a threadThe typing rules is a simple refinement of what we have se&ettion
10.3, which we list in Figure 24. We only list the main rulelse temaining rules are easily guessed
from the given rules. All rules assume occurring annotateeractions (including those in the con-
clusions) are coherent. In the rule (TVar), the underlyidgai is that we are stipulating only the
T-portion of the behaviour oK in A.

LEMMA 7. Assume we havig; F' 4> A (i = 1,2) and, moreoverA; > respectively contain
§[A, BJay o neither of which are empty. Then = as.

81

I, ch@B: (Soatr' A>A-§B,A:B TeE {11,T2}
I, ch@B: (§)(aUB) T At — B :ch(v§). 4> A

(TINIT-S)

r='asA {8§nfc(d)=0 1¢ {11,172}

(TINIT-0) - @B (§a T AT — B - chve). AL A

r-'AasA-5[ABl:a; N-e@A:8; FT-x@B:06; se{8 jel te{11,12}

TCoMM-S
() IFTATL— B2 :s(opj, € X).A>A-S[AB]: ZjcysTop;j(6)).aj

rM-'AasA FFe@A:0; M-x@B:0; s¢fc(d) 1¢&{11,T2}

TComMm-O
() I At— B :s(opj, € X). A>A

Fl Ft .ﬂ1I>A2 Fl Ft -%ZDAZ

TSum
() MUl 2+ 4> 0 UN

M2 >0 ToF 2N, fSC(A]_) ﬂfSC(Az) =0

(TPAR) =
MUl 4 |° 4> A UAD)

vi#] {§)n{§) =0

(TZER) 40 Uy ST, Bilend

vi#] {§10{5) =0

TVAR
() M, XADFT XASA

Fr-XA: 0" 4>A

TREC) —————F+———
() MTrec XA 4 A

FIGURE 24. Threaded Minimal Typing Rules for Global Calculus (mailes)

Proof. Since in this case precisely the same set of prefixes aredtface; andt,, which is
direct from the reasoning for the previous proposition. O

PROPOSITION12. Let4 be coherent and leffti} be the set of threads iA. If, for eacht;, we
havelj F' 4> Aj, then we havelilT Fpin 4> Lid.

Proof. By induction of the derivation of ; ' 4 > A; for eachi (simultaneously). The base
cases are trivial. For induction, the initialization uses identical session types by Lemma 7 for the
two concerned threads to lift the session typing to the sertyiping. Since the former is the minimal
typing we are done. Communication is trivial. Other casesadso easy. O
We move to the relationship between the per-thread minigmahg for interaction and the minimal
typing of the corresponding thread projection. Below wetevti (A) for the result of turning each
session type assignment of the fosfA,B] : a to §: L.

PROPOSITION13. Let 4 be coherent and lefti} be the set of threads iA. Then, for each;,
M FY 4> 4 impliesTi = TP(A4, 1) > L(4).

82

Proof. By induction of the derivation of; - 4 > A;, referring to each clause of Definition 19,
the corresponding rule of Figure 24, and the minimal typinigs for end-point processes given in
Figure 22. O
Finally for end-point processes, we observe:

PROPOSITION14. Letlj Fa P12 4 (i = 1,2) are minimal typings for P, and, moreover,
P>t Po. Thenl 1 LUT 2 a4 PLUP> > A1 LA, is again the minimal typing of {1 Ps.

Proof. By induction on the definition ak, referring to the minimal typing rules for end-point
processes given in Figure 22. O

16. Main Results: EPP Theorems

16.1. The Projection. We now present the endpoint projection, the full encodingvefl-
typed, strongly connected, well-threaded and cohereatantions into end-point processes. In the
sequel we call an interactidnrestriction-freewhenever it contains no terms of the fows) I’ as
its subterm.

DEeFINITION 25 (End-Point Projection) Let | be a restriction-free, well-typed, strongly con-
nected, well-threaded and coherent interaction with fregston nameS and let2 = y(1, (11,A,()))
be its consistent annotation. Then the end point projecif¢u$) | undergc, denotedEPP((v§) I, o),
is given as the following network.

(V9 Macparey AN L] TP(A, T)lo@a
el

wherepart(l) denotes the set of participants mentioned in I.

ExAMPLE 19. We now consider a slight modification of the interaction édered throughout
the whole paper, i.e. where we have the strong connectegnessrty

Buyer — Sel | er : B2SCh(s).Sel | er — Buyer : s/AckSessi on].
Buyer — Sel | er : sRequest For Quot e].
Sel | er —Buyer :s(Quot eResponse, v, quot e,Xquot e) -
(Buyer — Sel | er :s|Quot eRej ect] +
Buyer — Sel | er : s[Quot eAccept].
Sel | er —Buyer :s(Order Confirmation).Buyer —Sel | er :s(AckConfirmation).
Sel | er — Shi pper : S2ShCh(s).Shi pper — Sel | er : s/AckSessi on].
Sel | er — Shi pper :s(Request Del Det ai | s, Buyer, Xgient)-
Shi pper — Sel | er :g[Del i veryDet ai | s,DD,xpp).
Sel | er — Buyer :s[Del i veryDet ai | s,Xpp,Xop))

83

Note that we basically added few more interactions, jusetpkthe whole interaction strongly con-
nected. By this we can then give the encoding

Buyer {B2SCh -ny(s).s>>AckSessi on-ny.
s<1Request For Quot e-n3.sp> Quot eResponse- Ny (Xquote) -
s<(Quot eRej ect -ns |
Quot eAccept -ng.s>Order Confirmati on-ny;.s>AckConfirmation-ng.
s<iDeliveryDetails-ni)},|
Sel | er {B2SCh - ny(s).s>> Request For Quot e-n3.s<AckSessi on-ny.
s<qQuot eResponse - Na(Vquote) -
st> (Quot eRej ect -ng +
Quot eAccept -ng.s<tOrder Confirmati on-n;.s<tAckConfirmation-ng.
S2ShCh -ng(s').s> AckSessi on-ny3.
s <Request Del Det ai | s-njo(Buyer).s<iDel i veryDet ai | s-ny1(Xpp)
s>>Del i veryDetails-np)lg|
Shi pper {S2ShCh - ng(s).s<1AckSessi on- 3.
s >Request Del Det ai | s-nyg(Xgient).S<tDel i ver yDet ai | s~n11(DD)}y
Note that the flow property allows to give up all the synchsations that we had in the previous
encoding.

16.2. Need for Pruning. Consider the following very simple global description.

(96) A—B:b(vs).0.

If we EPP this interaction with environmeat we obtain the following network:
(97) A[h(vS).0]gga | BICN(S)-0]o@p

Now (96) reduces as:

(98) (0,A—B:b(vs).0) — (0,0)

while (97) reduces as

(99) A[ch(vS).0loga | B[ch(S)Ologs — Al0lg, | BIch(S).0]sgs

Note (98) results in the empty configuration, while in (982 8ervice ath still remains, because
it is replicated. Note there is a discrepancy between twaictons: before reduction, the end-
point behaviour is indeed the EPP of the global descriptidrile after reduction, the former is no
longer the EPP of the latter. However, as far as “active” bigha (i.e. those who induce immediate
reduction) goes, there is a precise match: that is, as fareatake off the replicated service as a
garbage (since it is no longer of the use from inside this goméition), there is an exact match.

As another, and more subtle, example, consider the follguviteraction:
A—B:b(vs).B—A:s(ack).A—B:s(go).0 +
A— B:b(vs).B—A: s(ack).A—B: s(stop).0

The projection of this interaction is, omitting trailingdations:

(100)

A[Ch(vs).s>> acks<1go @ ch(vs).si> ack3<istop g |
B[ch(s).s<1ack.(st> oksp> stop];ap

After one step which takes the left branch, (100) reducebkeddllowing configuration:
(102) A—B:b(vs).B—A:s(ack).A—B: s(go).0

(101)

84

The corresponding reduction for (101) leads to:

Alch(vs).s>>acks<igo]s@a |

(103) B[ch(s). s<ack.(s> gost> stop|;@p

Now take the EPP of (102):

Alch(vs).si>acks<igo],g@a |
B[ch(s).s<ack.s>> gol;@p

There is again a discrepancy between (104) and (103): theefofor its original, (102) hal®st one
branch, while (103) naturally keeps it. But again we reatige lost branch is inessential from the
viewpoint of the internal dynamics of the resulting confifion: the branch “stop” is never used in
in (102).

In summary, a global interaction can lose information dgirieduction which is still kept in the
corresponding reduction in its EPP, due to persistent bebaat service channels. This motivates
the introduction of the following asymmetric relation thaé shall use to state a property of the
end-point projection. Below we writeRwhenR is an-fold composition of replications.

(104)

DEFINITION 26 (Pruning). Assume we have Fp P > A, IN,I" a4 Q > A and, moreover,
I Fa P> Ais a minimal typing. If further we hav® = Qp|'R wherel Qo > A, I’ -4 Rand
P >1 Qg, then we write:
FrFaP < Q> A
or P < Qfor short; and say prunes Q undeF ;A or P prunes (for short.

REMARK 7. Writing simplyP < Q does not in fact lose any precision since we can then always
reconstruct appropriate typings.

The pruningP < Q indicatesP is the result of cutting off “unnecessary branches@fin the light

of P’s own typing. < is in fact a typed strong bisimulation in the sense that Q means they have
precisely the same observable behaviaxsept for the visible input actions at pruned inputs, githe
branches or replicated channelShus in particular it satisfies the following condition.

LEMMA 8 (pruning lemma).
(1) < is a strong reduction bisimulation in the sense that it deg#sthe following two
clauses:
(@) IfM < N and M— M’ then M— N’ such that M < N’.
(b) If M < N and M— N’ then M— M’ such that M < N'.
(2) <« istransitive,i.e. M< N and M< Rimply M< R.

Proof. (1) is because, iM < N, the branches pruned froM can only be among those which
are never used byl. (2) is by noting: if we prundk to makeM following the minimal typing oM,
and pruneM to makeM following the minimum typing oM, then we can surely take off all branches
and replicated inputs froR in the light of the minimal typing oM, and obtain itself. O
As we just observed< satisfies the much stronger property of being indeed a stosigulation
w.r.t. all typed transitions (w.r.t. the minimal typing dfe left-hand processes). In a later version we
shall present the full account of this bisimulation.

16.3. EPP Theorem.We can finally state and prove the main results of this papelovBwe
write ' - o when the stored values mfollow the typing inl™ in the obvious sense.

THEOREMS (End-Point Projection). Assume | is well-typed, strongly connected, well-threaded
and coherent. Assume further- | > A andl” - 0. Then the following three properties hold.

(1) (type preservationf ' F | > Ais the minimal typing of I, thef - EPP(Il, o) > L(A)
where L (A) is the result of replacing each occurrence of type assigrinel says[A, BJ :
o, with§: L. In particular, if T F 1 andT" + o hold then we havé + EPP(I, o).

(2) (soundness)f EPP(I, o) — N then there exists’ Isuch that(o, 1) — (¢’, I’) and
EPP(l’, o) <N.

(3) (completenessf (o, 1) — (d’, I') thenEPP(I, o) — N suchthaEPP(l’, ¢’) < N.

85

Proof.; For type preservation, take the consistent annotafiaand assumét; } is t_he threads
of 4 (which we assume does not include free term variables foplgiity). Sincel” F™" 4 > A,
we have:

(105) i brin A > A
for eachr; € {1} for which, by Proposition 12, we have

(1) =T and

(2) uip =A.
By Proposition 13, we also have, for eagte {1i}:
(106) M F™N TP(4, 1) > A
Now consider4 conatinst; 3 as the threads for a serveratand consider
(107) Mk A b (i=1,2,3)
as well as
(108) M ™ TP(A, 1) > 4 (1=1,2,3)
By Proposition 14 we have
(109) Uierr2ay i F™" Uieqrg TP(A, 1) > Uicqr23)4i
gives the replicated input ah. Now
(110) Uie{1.2,3Ti

gives the service typing &h and zero or more client typings, in addition to assignmenétiables.

For soundness, suppose there is a redexHR (A4, o). The only non-trivial cases are condi-
tional, sum and initialisation. Here we treat the case of mamication and initialisation. First, if
there is a communication in the projected network, theretieone active output thread and its dual
input thread. Since an active output cannot come fr@axcept at its root, we know this comes from
a top-level active thread (a thread whose first action is ndeuany other constructor except parallel
composition). For simplicity assume

(111) 2 %' Au L B%:s{op, v, X).2
and consider:
(112) (0.4) — (olx—V, 4)

Corresponding reduction is:
(113) A[TP(4, 1)|P] | B[TP(A, 12)|Q] — A[TP(A, 1)|P] | B[TP(Z,)R
Since other threads of’ stay intact, we have the same set of threads in the projectrcept we

lose the initial actions ofy », which let us lose these initial actions from their projeos, hence doe.
For initialisation, assume an initialisation reduces ia tay:

(114) EPP(4, 0) — P

We again have a top-level active output and a replicated indEPP (4, o). Suppose this replicated
input comes from two threads:

(115) TP(4, 1j) (i=12)

Let the output thread bg) which is paired withrq:

(116) TP(4, 1) (i=0)

that is, we have (again for simplicity not considering piedaiomposition at the top-level):
(117) 2 %€ A Bu:chvy.a’

This reduces as:

(118) (0,4) — (o, (v9A)

86

In 4’, we have the same threads exceptry. First, 1g loses its first action, otherwise the same as
before. This does not change the projection. fothe redex of the projection has:

(119) Ui=12TP(4, 1) |R

whereR is the result of taking off the first input frof Lii—_1 > TP(A, Ti). While the projection of
4’ atchloses therq-part; further the projection off’ att; only has ther;-part of the code, losing
its To-part, if any. Thus this changed part has the shape:

(120) TP(4, 1) |R

such thaR' < R. Since we also havéP (4, 12) < Li—12 TP(4, T;) and because all other threads
remain identical betweed and4’, we have

4, o) <P
(121) EPP(4 P

as required. Other cases are similar.

Completeness is by induction on the derivation of reductiothe global calculus. This is
essentially the reverse (and easier) arguments of thoged@oundness. The main point is showing
that translating into the end-point calculus and then perfiog the corresponding reduction by using
the annotated threads. After the reduction, the commupitaind assignment again yields a precise
match: initialisation, conditional and sum can lead to & lokthreads for one or more services (at
certain service channels) by reducing in the global cakubwt otherwise with precisely the same
collection of threads. By compensating the former withwe obtain the simulation.

Formally, we have the following cases:

¢ Rule (INIT). Applying this rule, we must have that= A — B: ch(v$) .I’ ando’ = o. If
we then apply the end-point projection, we first have thattmeotation of | is

A" — B™2: Ch(Vg) ~V(|/, - <T17A>t~§> : <T2, B7§>)

where, further on, we fix@’ = y(I’, ¢" - (11,A,f8) - (12,B,9)). If we now end-point project,
assuming all the restricted session channel names aretior@ave have

v&) (AL [] ch(®).TP(A, 1) | Nz L] TP(A, Dlogal

T€(Ty) Telt]
B[|| 'ch(¥.TP(A, 12) [Nyspy || TP(A Dlsasl
€[ty el
Negrag ClN L TP(A, ¥)]sac)
Te)

From the definition of the merge function, we can deduce thevitng network
(V&) (A[ch(§). || TP(A, 1) Nz L] TP(A Dlogal

1€y el
B[!ch(§). | | TP(A, 12) | Myspy L] TP(A, Dlsasl
1€(1y) el
Negiag ClN L TP(A, ¥)]sac)
Telt]

If we now apply the reduction rule {iT) (together with the rule (Rs) and structural
congruence) we havd =

(v8s) (Al || TP, 1) |Npsny L] TP(A, Dls@al

1€ty ve(t]

87

Bl || TP(A, 12)|

€[]

Ich(§). | | TP(A, 12)|

T€(Ty)

Mty L] TP(A Ulogs!

el
Megag; ClMpy |_[|]TP(/‘4,)]o@c)
Teft

On the other hand, from the definition of end-point projectid we take(vss) I’ and
we end point project it by choosing an annotatiori ‘ofvhich is equal ta2’ (and this is
obviously possible by annotating with - (11, A {8) - (12, B, §)) we getM =

v8s) (Al || TP,)| Nz Ll TP(A, Dlo@al

1€y el
Bl || TP(A, 1) [Myziy L TP(A Dloesl
€[ty e[t
Meggap) ClMy |_[|]TP(/'47)]o@c)
Teft

Itis now straightforward to show th&l < N.
e Rule (Comm). In this case we have= A—B:s(op, €, x) .| as(c, A—~B:s(op, € X).1) —
(o[x@B — V], I). Applying the annotating function, we gétequal to
A-[l;) BTZ : S<Op, ea X> 'y(|/7 E” : <T13A7f> : <T27 B,F))
and fix 2" = y(I', " - (11,At) - (12,B,)). From this we get the following end-point
projection:
(v8) (Als<op(e). TP(A, 1) | Mry, TP(A, T)]o@al

B[SD Op(X) . Tp(ﬂ/7 TZ) ‘ HT#TZTP(-%7 T)]O@B‘

Meg(ag)ClMTP(A, 1)]sac)
Now, if we apply the reduction rule for the end-point calauthe term above will reduce
to

(v8) (A[TP(A', 1) | Moy, TP(A, T)o@nl

B[TP(A, 12) [Myr, TP(A, T)]@pixy|

McgaClMTP(A, 1)]sac)
Finally, we can see that if we annotatevith 2’ we then have that it's end point projection
is exactly the term above.

e (Sum). This rule statega, 11 +12) — (0’, I;) so we havd = I +1,. Annotatingl we
have the tern
V(Il> 2 <T7A>f>) +y(|27 2 <T7A>f>)

. In the sequel we shall call the two branches withand 4, respectively. If we now
end-point project, we have

(v8) (MAAIMTP(A, T)]5@a)
e All other cases are similar and straightforward.
O

COROLLARY 2. Assume | is well-typed, strongly connected, well-threeateti coherent. As-
sume furthef” - | > Aandl” F 0. Then the following three properties hold.

88

(1) (error-freedomEPP(I, o) does not have a communication error (in the sense of Section
12.2).

(2) (soundness and completeness for multi-step reduciidePP (I, o) —" N then there
exists [such that(o, 1) =" (d’, I’) andEPP(I’, ¢’) <« N. Symmetrically, ifo, 1) —"
(d’, I’) thenEPP(I, o) —"N such thaEPP(l’, ¢’) < N;

Proof. (1) isimmediate from Theorem 5 (1) and Corollary 1 (page §2)is by Lemma 8 (1,2)
and Theorem 5 (2, 3). O
Note we can strengthen the reduction-based simulation @oiem 5 and Corollary 2 by annotating
reduction with associated constructors, e.g.

(A,B,s,0p,V,X)
—_

(o, A—B:s{op, v, X).l") (Olx— V], 1)

similarly for the end-point calculus. This account, as veslffurther discussions on applications and
extensions of these results, will be discussed in a futurgiae of this paper and its sequels.

16.4. EPP for Non-Connected Global DescriptionsNote that there are many alternatives to
the encodings introduced in this document. Itis alwaysaetctf between restrictions to the allowed
interactions and complexity of the encoding. In the lastbelitog we could also have introduced an
extra restriction, i.e. assuming that in every sum the dpmra are distinct. That would have allowed
the possibility of removing the fresh names during annotetifor the summation. We report a
possible full encoding without restriction on connectesinim the appendix of this document.

17. Extension and Applications

17.1. Local variable declaration. We consider extensions and applications of the theory of
EPP. First, we augment the syntax of global/local calcuthwine useful constructocal variable
declaration

newvar X@A :=ein | newvar X.:=ein P
This construct is indispensable especially for repeatetiycable behaviours, i.e. those of services.
Suppose a bookseller is invoked by two buyers simultangpaakth asking a quote for a different
book. If these two threads share a variable, these two resjug get confused. The use of local
variable declaration can avoid such confusion. The dynsiamidl typing of this construct are standard
[36]. For endpoint projection, it is treated just as assignment

17.2. Intra-Participant Interaction. In §10.1, we demanded that, in the grammar of service
typing, A # B in §A, B]. This means well-typed global terms never have an intréigigant interac-
tion. This is a natural assumption in a business protocatkvpiimarily specifies inter-organisational
interactions: however it can be restrictive in other cotgexJnder connectedness (whose definition
does not change), we can easily adapt the EPP theory to thusimt of intra-participant interac-
tions. First, the typing rules in Table 19, page 43, takeg B€oMINV) and refineg TCoM) so that
the typingsfA, B] : a always reflects the direction of the interaction just inéekr This allows us to
treat the case wheA andB are equal. The key change is in well-threadedness. WherB, the
condition (G2) (session consistency) in the definition ofltveeadedness is problematic since we
do not know which of the two threads should be given to whiatigipant. However stipulating the
following condition solves this ambiguity:

Local Causal Consistency: If there is a downward sequen@etibns which starts from an active
threadt and ends with an action in whiahoccurs for the first time (i.et occurs in no intermediate
actions in the sequence), then the latterccurs passively.

We also note this condition is@nsequencef (G1-3) in the theory without intra-participant inter-
action so that we are not adding any extra constraint to-jpéeticipant interactions.

89

17.3. Name PassingAn extension which is technically significant and practicalseful is
the introduction othannel passingChannel passing is often essential in business protoéslan
example, consider the following refinement of Buyer-Sdiestocol.

Buyer wants to buy a hardware froreller, but Buyer knows noSeller’'s ad-
dress on the net, i.e. it does not kneeller's service channel. The only thing
Buyer knows is a service channbérdware of a DirectoryService, which will
send back the address ofSaller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situationBuyer has no prior knowledge of not only the seller's channel bsbdhe par-
ticipant itself. In a global description including its tyyj, participant names play a basic role. Can
we leave the name of a participant and its channels unknodstiihhave a consistent EPP theory?
This has been an open problem leftin WS-CDL’s current speatifin (which allows channel passing
only for a fixed participant). Below we restrict our attemtito service channel passing, excluding
session name passing (which poses an additional techsesta P1]).

First, at the level of he endpoint calculus, it suffices to tieechannel passing in the standard
T-calculus.

DirectoryService(s).s(y).y(t).P

which describes the initial behaviour Bfiyer. Notey is an imperative variable, so thgft).P first
readsthe content of then uses it for communication. The typing rules are extdraeordingly.

In the global calculus, we introduce a syntactic variablealled aparticipant placeholderfor
denoting anonymous participants. For example we can write:

A=Y xS Y =Y :slop, € y).I
The newly added — Y : x§8.1 intuitively says:

A starts a session with session nanSesn the service channel stored in x at
the location A.

The participant at which the service is offered is left unkndy placing a placeholdéef. However
this will be instantiated once the variabla@t A is inspected. For examplefis evaluated teh@B
in the store, the interaction takes place aé\ir B: chS. 1.

As an example, we present the buyer-seller-directory seedescussed above:

Buyer — Directory : hardwares.
Directory — Buyer : s(sell, hware@amazon.co.uk, X).
(Buyer — Y : xg.Y — Buyer : §(OK, data, y) |
Buyer — Directory : S(more, ™, 2).
Directory — Buyer : s(sell, hardware @pcworld.co.uk, X).
Buyer — Y’ : xd’ .Y’ — Buyer : §' (OK, data, y))
Note that, depending on the channel sent fidinectory, Y andY’ are assigned to different partici-
pants.
The dynamics of the global calculus adds the rule which gfer

(o0, A=Y :x5.1) = (0,(v8) I[B/Y])
whenever we have @A(x) = ch@B.
For types, we first extend the basic tyfewith (§)a. We then add, with the obvious extension
to the syntax of types:
IEx@wW : (5a FrElsA-SWo, W]t a
FrMN=-wWy —WwWo:x8.1>A
Other typing rules can be extended to deal with terms coinigithe participant variabl¥ in the
same manner.

90

Finally, for the EPP theory, we need no change in the notiosooinectedness. For well-
threadedness, we first annotate placeholders regardmgd e- Y : x8.1 as the start of a new thread
forY, so we annotate it a8t — Y2 : x3. | with 1, fresh. The definition of well-threadedness remains
the same. Coherence however needs additional considerdie variablex@A can store different
channels from different participants. For this purpose e @& typing system which records a possi-
ble set of assignment, in the shag@W; : C whereC is a set of channels which may be instantiated
into C. If some concrete channel is @ the behaviour of that channel becomes constrained by co-
herence. This s& is inferred, starting from some fixed set, by addaigas inx@w : CU{ch@B})
when we infer, e.gW, —W5 : s(op;, ch@B, x).l, whereW can be either of participants or place-
holders.

We give a flavour of how this extension works by the end-poiojgztion of the example above.
We first consider the annotated interaction for placehalder

Buyer! — Y3 :xd.Y3— Buyer! : §(OK, data, y)

In the projection of this thread, we have placed a holhich should be substituted with the appro-
priate service channels.

TP(4, 3)=!_(5).9 <OK(data)
Thus, checking coherence consists in updating the definitiche functionthreads which induces
the thread equivalence classes. But what equivalencesslas®uld threads 3 and 4 belong to? We
can use the prediction of all the possible valyesn assume at runtime, i.sware@amazon.co.uk
andhardware @pcworld.co.uk. We have to make sure that thread 3 belongs to thottads(4, hware)
andthreads(4, hardware). Then, if we are end-point projecting &mazon.co.uk we will substitute
hware to _ in both thread projections, and if we are end-point projegficworld.co.uk we will sub-
stitutehardware instead.

17.4. Conformance.By relating global descriptions to their local counterpaine presented
theory allows us to make the best of the rich results from thdysof process calculi. One such
application isconformance checkinand its dynamic variant, runtime monitoring), discussed i
Introduction. Our purpose is to have a formal criteria to s communication behvaiour of a
programP conforms to a global specificatidn

Conformance concerns the possibility of checking whetlreexisting system tallies with a
given specification. In process algebra and concurrencyeirel, this way of reasoning usually
leads to system relations such as (inverse of) simulatiobigimulation. Given an implemented
system, say, the idea is to check wheth& conforms to a well-typed specification in the global
calculus. Then, using the end-point projection, we can iggaean end-point network (which is
in the same language as the given implemented system). Uiggests that we must perform our
comparison in the end-point calculus.

One interesting mechanism to be exploited is the typingesysthe end-point projection gen-
erates not only a network consistent with the global spetifa, but also a type for the generated
network. This can already be used for a first comparison vaighgiven system: if this does not type,
then the given system does not conform to the specification.

Unfortunately, there are cases where types may reveal dsroorsystems which are not. Our
solution is to adopt a notion of typed bisimulatidh #]. Thus, the given system must be simulated
by the specification with its minimal type in order conformito

Let us clarify this with an example in the buyer-seller sgemd_et P be the process

QuoteCh(V's).st> Quote(X) .
if (x < 100) then S<1 Accept() else S<I Reject()

Consider now a system (already implemented) with the faligvend-point processes (referred to as
System):

Buyer[P] | Seller[! QuoteCh(s).S<1Quote(300).
s> (Accept() + Reject() + Restart())]

91

Suppose we want to check that the system aloovdormsto a specification given in the global
calculus. The following specification says that the buytregiaccepts or rejects the quote.

Buyer — Seller : QuoteChs.
Seller — Buyer : s(Quote, 300, X).
Buyer — Seller : s{(Accept) + Buyer — Seller : S(Reject)
We recall the end point projection of the specification ab@eéerred to aspec)::

Buyer|[QuoteCh(Vs). s> Quote(X) .
(5<aAccept() ®S<Reject())] |

Seller[! QuoteCh(s).5<1 Quote(300) .
s> (Accept() + Reject())]

Assuming we have a type for the specification, we can deduos) the projectiong, the
minimal type forQuoteCh, equal to

s! Quote(int) s | (Accept(nul|) + Reject(null))

Notice thatQuoteCh : (s)a, even though it is not minimal, types the netw@¥stem as well
(its minimal type is instead obtained by adding an extraawptd the branching corresponding to
the operatiorRestart). This observation gives a hint thaystem is conform to the specification. In
fact, this is true as all the options specified in the type arioked by theSpec (so the specification
simulates the implementation).

In order to show that checking only the type is not enoughusetonsider another system, say
System2, where the buyer’s behaviour is insteBd P. In this case, the network is still typed by
QuoteCh : (s)a but, because d? occurring twice System2 is not type-simulated bgpec and then
not conform to the specification.

In summary, let be a global description consisting Afand other participants. SuppoBds
a program which implement&’s behaviour. Then we can check the conformanc® afjainst the
specificationl by projectingl to A, which we callS, and checkP conforms toS; the relation P
conforms toS’ can be taken as, for example, the converse of the weak sityilaith respect to
typed transitions under the minimal typing &f We can use this notion via either hand-calculation
(coinduction), model checking (e.g. mobility workbenchjechanical syntactic approximation, or
as a basis of runtime monitoring.

18. Related Work

As far as we know, this work is the first to present the typeduak based on global description
of communication behaviour, integrated with the theorymdgoint projection. Global methods for
describing communication behaviour have been practiceseweral different engineering scenes
in addition to WS-CDL (for which this work is intended to seras its theoretical underpinning).
Representative examples include the standard notationr§gtographic protocols33], message
sequence charts (MSC)4], and UML sequence diagram34]. These notations are intended to offer
a useful aid at the design/specification stage, and do net fffi-fledged programming language,
lacking in e.g. standard control structures and/or valssiog. Petri-nets4b] may also be viewed
as offering a global description, though again they are meeful as a specification/analytical tool.

DiCons (which stands for “Distributed Consensus”), whishindependently conceived and
predates WS-CDL, is a notation for global description arejpimming of Internet applications in-
troduced and studied by Baeton and oth&fsDiCons chooses to use programming primitives close
to user’s experience in the web, such as web server invegatimail, and web form filing, rather
than general communication primitives. Its semanticsvemgiby either MSCs or direct operational
semantics. DiCons does not use session types or other dHzaseal typing. An analogue of the
theory of endpoint projection has not been developed in diméext of DiCons.

The present work shares with many recent works its dire¢tiarards well-structured communication-
centred programming using types. Pi8f] is the programming language based on thealculus,

92

with rich type disciplines including linear and polymorphypes (which come from the studies on
types for thercalculus discussed in the next paragraph). Polyphohj@]Qises a type discipline for
safe and sophisticated object synchronisation. Compagbazani, Gay, Vasconcelos and others
have studied interplay of session type disciplines witlfiedént programming constructs and pro-
gram properties]1, 15, 16, 21, 44, 46 The EPP theory offers a passage through which these studie
(all based on endpoint languages and calculi) can be reflect® global descriptions, as we have
demonstrated for session types in the present work. In théegbof session types, the present
work extends the session structure with multiple sessionasawhich is useful for having parallel
communications inside a session.

Many theories of types for the-calculus are studied. In addition to the study of sessipegy
mentioned above, these include input/output ty@€s 37, linear types R0, 2§, various kinds of be-
havioural types2, 5, 6, 22, 23, 42, 43, 3@&nd combination of behavioural types and model checking
for advanced behavioural analysg&9] 44, to name a few. Among others, behavioural types offer an
advanced analyses for such phenomena as deadlock freederareVigurrently studying how these
advanced type-based validationon techniques on the bi8ie present simple session type disci-
pline will lead to effective validation techniques. Agahese theories would become applicable to
global descritpions through the link established by the Efe®ry.

Gordon, Fournet, Bhargavan and Corin studied securigtedlaspects of web services in their
series of works (whose origin lies in the security-enhangiedalculus called spi-calculud]). In
their recent work 9], the authors have implemented part of WS-Security lilesirising a dialect of
ML, and have shown how annotated application-level usagfeesk security libraries in web services
can be analysed with respect to their security propertiesanslation into thetcalculus [L0. The
benefits of such a tool can be reflected onto the global deseripthrough the theory of EPP, by
applying the tool to projections.

Laneve and Padovari27] give a model of orchestrations of web services using amesitas of
Te-calculus to join patterns. They propose a typing systengé@ranteeing a notion of smoothness
i.e. a constraint on input join patterns such that their ecisj (channels) are co-located in order to
avoid a classical global consensus problem during comratinit. Reflecting the centralised nature
of orchestration (cf. footnote 1), neither a global calsufwr endpoint projection is considered. A
bisimulation-based correspondence between choreograpthyrchestration in the context of web
services has been studied i3] by Busi and others, where a notion of state variables is used
the semantics of the orchestration model. They operatirelhte choreographies to orchestration.
Neither strong type systems nor disciplines for end-poinjgetion are studied in their work.

93

Bibliography

[1] M. Abadi and A. D. Gordon. A calculus for cryptographicapocols: The spi calculudnformation and
Computation 148(1):1-70, Jan. 1999.
[2] R. Amadio, G. Boudol, and C. Lhoussaine. The recepti&rithuted pi-calculus. IfProc. of the FST-TCS
'99, volume 1738 of NCS Springer-Verlag, 1999.
[3] J. Baeten, H. van Beek, and S. Mauw. Specifying interpglieations with DiCons. Ir'SAC 0] pages
576-584, 2001.
[4] N. Benton, L. Cardelli, and C. Fournet. Modern concuagmbstractions for CHACM Trans. Program.
Lang. Syst.26(5):769-804, 2004.
[5] M. Berger, K. Honda, and N. Yoshida. Sequentiality aneltfcalculus. InProc. TLCA'01 2001.
[6] M. Berger, K. Honda, and N. Yoshida. Genericity and thegliculus. InProc. FOSSACS’'Q2003.
[7] J. A. Bergstra and J. W. Klop. Algebra of communicatinggessesTheoretical Computer Scienc&7:77—
121, 1985.
[8] G. Berry and G. Boudol. The Chemical Abstract Machif€S 96:217-248, 1992.
[9] K. Bhargavan, C. Fournet, and A. Gordon. Verified refeeimplementations of WS-Security protocols.
To appear in WS-FM '062006.
[10] B. Blanchet. An efficient cryptographic protocol vegifibased on Prolog rules. RSFW pages 82-96,
2001.
[11] E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Corresgence assertions for process synchronization in
concurrent communicationgournal of Functional Programmindl5(2):219-247, 2005.
[12] G. Brown. A post at pi4soa forum. October, 2005.
[13] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. ZavatiaChoreography and orchestration conformance
for system design. ICOORDINATIONvolume 4038 of-NCS pages 63-81, 2006.
[14] M. Carbone, M. Nielsen, and V. Sassone. A calculus fasttmanagement. IRroc. of the FST-TCS '04
volume 3328 oLLNCS pages 161-173. Springer-Verlag, 2004.
[15] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, andC8ossopoulou. Session Types for Object-Oriented
Languages. IfProceedings of ECOOP'Q&NCS, 2006.
[16] S. Gay and M. Hole. Subtyping for session types in theghtwdus. Acta Informatica 42(2-3):191-225,
Nov. 2005.
[17] C. A. Gunter.Semantics of Programming LanguagbHT Press, 1995.
[18] M. Hennessy and J. Riely. Resource access control iesgsof mobile agents. IRroceedings of HLCL
'98, volume 16.3 oENTCS pages 3-17. Elsevier Science Publishers, 1998.
[19] C. Hoare.Communicating Sequential Processeeentice Holl, New York, 1985.
[20] K. Honda. Composing processes Hroceedings of POPL'96ages 344-357, 1996.
[21] K. Honda, V. T. Vasconcelos, and M. Kubo. Language pim$ and type discipline for structured
communication-based programming. HSOP '98 pages 122-138. Springer, 1998.
[22] K. Honda, N. Yoshida, and M. Berger. Control in tfeealculus. InProc. Fourth ACM-SIGPLAN Continu-
ation Workshop (CW’'04)2004.
[23] A. Igarashi and N. Kobayashi. A generic type system Hier pi-calculus. IiPOPL, pages 128-141, 2001.
[24] International Telecommunication Union. RecommeimteZ.120: Message sequence chart, 1996.
[25] N. Kavanztas. A post at petri-pi mailing list. Augus@a5.
[26] N. Kobayashi, B. Pierce, and D. Turner. Linear types arahlculus. InProceedings of POPL'9fpages
358-371, 1996.
[27] C. Laneve and L. Padovani. Smooth orchestratorso®SaCS '06LNCS, pages 32—-46, 2006.
[28] R. Milner. A Calculus of Communicating Systenw®lume 92 ofLecture Notes in Computer Science
Springer, Berlin, 1980.
[29] R. Milner. Functions as process&4SCS 2(2):119-141, 1992.

95

[30] R. Milner. The polyadicrecalculus: A tutorial. InLogic and Algebra of SpecificatiorSpringer-Verlag,
Heidelberg, 1993.

[31] R. Milner, J. Parrow, and D. Walker. A calculus of mohil®cesses, | and linformation and Computatign
100(1):1-40,41-77, Sept. 1992.

[32] R. Milner, M. Tofte, and R. W. HarpeT'he Definition of Standard MIMIT Press, 1990.

[33] R. M. Needham and M. D. Schroeder. Using encryption fghentication in large networks of computers.
Commun. ACM21(12):993-999, 1978.

[34] OMG. Unified modelling language, version 2.0, 2004.

[35] PI4SOA. http://www.pi4soa.org.

[36] B. C. PierceTypes and Programming Languagd8iT Press, 2002.

[37] B. C. Pierce and D. Sangiorgi. Typing and subtyping fashite processesMathematical Structures in
Computer Sciencé(5):409-453, Oct. 1996.

[38] B. C. Pierce and D. N. Turner. Pict: A programming langei®ased on the pi-calculus. Rroof, Language
and Interaction: Essays in Honour of Robin Milnd&dIT Press, 2000.

[39] J. Rehof. Lacking. IfPOPL, 2004.

[40] J. Rehof. Lacking. IPOPL, 2004.

[41] S. Ross-Talbot and T. Fletcher. Ws-cdl primer. Unpshiid draft, May 2006.

[42] D. Sangiorgi. Uniform receptive. IlCALP, 2004.

[43] D. Sangiorgi. Modal theory. IFCALP, 2005.

[44] K. Takeuchi, K. Honda, and M. Kubo. An interaction-bé&idanguage and its typing system.PARLE’'94
volume 817 ofLNCS pages 398-413, 1994.

[45] W. van der Aalst. Inheritance of interorganizationabrikflows: How to agree to disagree without loosing
control? Information Technology and Management Jourt24B):195-231, 2002.

[46] V. T. Vasconcelos, A. Ravara, and S. J. Gay. Sessiorstfgrfunctional multithreading. ICONCUR '04
LNCS, pages 497-511, 2004.

[47] W3C. Choreography description language, w3-cdl, wedrvises choreography working group.
http://www.w3.0rg/2002/ws/chor/.

[48] W3C WS-CDL Working Group. Web services choreographysatiption language version 1.0.
http://iwww.w3.0rg/TR/2004/WD-ws-cdl-10-20040427/.

[49] G. Winskel.The formal semantics of programming languadds$T Press, 1993.

[50] N. Yoshida, M. Berger, and K. Honda. Strong Normaligatin thet-Calculus. InProc. LICS'01 pages
311-322. IEEE, 2001. The full version to appeaddaurnal of Inf. & Comp.

96

Appendix

APPENDIX A

Summary of Reduction and Typing Rules

(INIT)

(0,A—B:ch(§).1)— (o,(v8)

oFe@A|v o =0[x@B;— V|

(0,ZiA —Bj 1 si{opi,ei,xi, -, 1)i) — (0, 1i)

ocke@Alv o =0x@A— V|
(o, x@A:=e.l)— (d,1)

ok e@A | tt ot/ e@A | ff
(IFTRUE) (o,if e@Athen | else I’) — (o,1) (IFFALSE) (o,if e@Athen | else I’) — (o,1”)

(Comm)

(ASSIGN)

(07|1) - (OJ’I:D
(0,11]12) = (0,11 | 12)

(g,1) — (d,1")
(0,(v§ 1) — (o', (v§ ')
I=1” (o) —(al) I'=1"

(0-7|//) — (0—/7|///)

(PaR)

(RES)

(STRUCT)

TABLE 1. Dynamic Semantics of Global Calculus

a=<da B=p

(S-ENnD) —— (S-PrR) alp=a [P

1<1

(S-Comm) kiske 1. k-G 205 AS =) A0p = 0pj ABj <6
Tic1 kS 10p(8).0i = Zj_1 kSj T0pj(6)).q;j

(S-CoComm) ki <k Jj1,...,]k 0 2aj; AS =Ssj AOp = 0pj; A6 X 6j
Zic1.kS Lop(8).0ai 2 Zj—1 kS L opj(8)).aj

TaBLE 2. Rules for the local calculus subtyping relation

99

KCJ sef I(xj)xVar(8;) FraPj>A-f@A:q|

TCHOICE o =
() I s> Zjegop; - (Xj) .Pj >A-T@A: Zyextk | ope(Bk) - ak

JCK sef T(xj)=Var(®j) TFaP>A-f@A:qj
M Fas<®jesfijej).Pj>A-T@A: Zyextk T ope(B) . Ok

M -AP>A-S@A: a Mr-aAP>A-S@A:a

(TOuT)

(THNT) I,ch(§):akach-A(§Pr>A (TOINIT) I,ch(§) :atach-iA(§.P>A
(TIF) MFpe: b00||- |_Z }[—e/]\:glfA MFA QA (TVAR) rriAxPSAA
Tres LR (o AP TG (1 T Tl
TAaBLE 3. Typing rules for the end-point calculus: protocols
(TPRIN) 7FF—'X\[FE)]E>AA (TNETPAR) r '_r’\}llElA‘ll\IZLleinAz (TNETRES) 7“__?\;% SD:X

TABLE 4. Typing rules for the end-point calculus: networks

100

APPENDIX B

Proofs for the global calculus type system

In this appendix, we shall prove the properties of type gigee for the global calculus, mainly
the proof of Theorem 1. Moreover, we will go through sometimtediate results. We shall start from
the proof of Proposition 1.

Proposition 1.

(1) (well-formedness)” + | > Aimplies” andA are well-formed.
(2) (weakening, 1) Assumé-I" is well-formed. Therf” - | > AimpliesI-I"" - | > A.
(3) (weakening, 2) Len be well-formed ands are fresh. Thed + | > A impliesT +
| > A-§A, Blend.
(4) (thinning) Assuméc(r)Nfc(l) =0. Thenl-I" | > AimpliesT - | > A.
(5) (co-type)l - 1 > A-§A,Bja impliesl” - | > A-§B,AT.
Proof.

(1) By induction on the typing rules. We only analyse in detaine cases.

e (TZERO). In this case we have= 0 for ' - 0> [J; §[Ai, BiJend. From the rule we
can deduce thdlt is well-formed. Moreover, asi # j. {§} N {§j} = 0 alsoA is
well-formed.

e (TINIT). By this rule we assumg’, ch@B: (§)a - A — B: ch(§).1 > A and then
I, ch@B: (§)a 1 >A-§[B,Al: a. Now, by induction hypothesi§, =", ch@B :
(§)a is well-formed. As forA it is trivial to prove its well-formedness as a conse-
quence of the well-formedness £f §[B, A] : a.

e (TCowmMm). In this case we havE - A— B : s(opj, € X).1>A-§[AB]: Zjess T
op;j(8j).aj. Now, asl - 11>A-S[AB]: aj, by induction hypothesi§ andA -
§[A,B] : aj are well-formed. As a consequence, als@[A,B] : Zjc3s1 0pj(8)).q]
is well-formed.

(TComMINV). Similar to previous case.

(TREs-1). Similar to previour cases.

(TIF). Trivial, by induction hypothesis.

(TAsSIGN). Trivial, by induction hypothesis.

(TSum). Trivial, by induction hypothesis.

(TVAR). Trivial, by rule assumption.

(TREC). From the hypothesik - X : A | > A we deduce that both andA are
well-formed.

e (TPAR). By induction hypothesis, it is a consequence of the astionmg
(2) Straightforward, by induction on the typing rules.

(3) Similar to previous case.
(4) By induction on the typing rules, similar to previous ess
(5) By induction on the typing rules, similar to previous ess

We then give the proof of Proposition 2.
Proposition 2.

(1) (preorder) The relatior is a preorder.
(2) (subsumption) Lef < " andA < A'. Thenl” - | > Aimpliesl™ - | > 4.

101

(3) (existence of minimal typing) Ldt + | for somel’. Then there existEg such that (1)
Mok 1 and (2) whenevelf’ - | we havel o < I". Moreover suchi g can be algorithmically
calculable froml. We calll' o theminimum service typing of |

Proof.

(1) Itis straightforward to show that the relatieq is reflexive and transitive.
(2) Easy from the shape of the proof rules.
(3) Bydirectly constructing minimum session/service hgs inductively (for a typable term),
using a session typing in which groupings by vectors arentaeso that it is a finite set
of assignments of the fori\, B](a,..,0n): this is because the grouping may prevent a
term from having a minimum session typing (this suggests \ag as well take off the
groupings from the type discipline: the present form is @mofor clarity of presentation).
When session initialisation is done, we group session adaniSince, at each step, we
can check the obtained typing is smaller than any otherifegie type derivation, we
know the final typing we obtain is the minimal/principal tppi
O
And then proof of Lemma 1.
Lemma 1.
(1) (substitution, 1) T, XA: A+ | > A andl - I/ > Athenl - I[I'/XA] > A,
(2) (substitution, 2) I -0, - o(X@A) : 8 andrl’ - v: 6, thenl” - O[x@A — V.
Proof.

(1) The proof is direct from the typing rules.
(2) Itisimmediate from the typing rules.

Finally the main theorem for this section.
Theorem 1.

(1) (Subject Congruence)[F+ | > Aandl =1’ thenl - I’ > =¢ A.
(2) (Subject Reduction, 1) Assuriie- a. Thenl” | > Aand(o,l) — (o’,1") imply I - o’
andl - | > A’ for somed'.
(3) (Subject Reduction, 2) Assunig- . Thenl 1 and(a,1) — (d’,1’) imply I - ¢’ and
relr.
Proof.

(1) We shall prove this by induction on the structural comgree rules.

e The proof is trivial for all cases that defifh@nd+ to be commutative monoids.

e When (vs) | |I" = (vs) (I | I’) whenevers ¢ fn(l’), suppose thaf + (vs) | |
I’>A. Now, by rule (TRR), we have that there exigt; and A, with fsc(Aq) N
fsc(Ay) = 0 such that™ - (vs) | >A; andl - I/ > Ay andA = A; UA,. Now, ac-
cording to which rule we can apply for gettifig- (vs) | > A, we have three cases:
(TREs-1), (TRes-2) and (TRes-3). We only analyse the first one as the other two
are very similar. If we apply (TRs-1) then we have that there existsdasuch
thatA; = A, §%: 1L andl - 1> 4, §s5[AB]: a. Now, applying again rule
(TPAR), we can deduce thdt | | 1> 4", §s5[AB]:a U A, if we can prove
thatfsc(4, §1S%[A,B] : o) Nfsc(Ap) = 0. Asfsc(Ar) Nfsc(Az) = 0, we only have to
make sure thafisc(Az) N {s} = 0 and this can be ensured by alpha-renamingl the
andA; in case there is clash (extended bound name convetion).robégoncludes
by applying the rule (TRRs-1) again.

(2) In order to prove this, we shall prove a stronger resaltfi.- | > A and(o,1) — (d’,1’)
imply I - 1 > A’ and one of the following statements is true:

o A=/

e A=NA1,§AB]:aandd =A;,§AB]:a’.

102

(122)

Note that if this is true, we have that

fsc(A) C fsc(d)

The proof proceeds by induction on the depth of the derivadi(o, 1) — (a’,1”).

Basic cases.

(Comm). By hypothesis, we have,A—B:s(op, €, x).1) — (d’,1) andl' - A—B:
s(op, €, X).I >A. Now, the only applicable rules are (B®M) and (TGOMMINV).
The cases are similar, so we shall inspect only the first one. th¥n have that
A=A;-8[AB]:ZjcysT opj(8j).aj andl -1 >Aq-§[A B : aj.

(INIT). We have(o,A— B:ch(v§).1) — (o,(v§) I;). By applying the rule (ThIT),
we have thaf’, ch@B: (§at-A— B:ch(§).I>Afor =T’ ch@B: (§a and
I, ch@B: (§)a 1 1>A-5[B,A] : a. Now, by applying rule (TRs-1) repeatedly,
we havel’, ch@B: (§)a - (v8) I >A-¢:L and by rule (TRs-3), we can get
I, ch@B: (§)a - (v§) | >A.

(REC). We have(a,rec XA.1) — (g, l[rec XA.1/XA]) andl Frec XA.1 > A. The
only applicable rule is (TRC), which impliesr - XA : A+ 1 : A. But, by Lemma 1,
we have thaf F 1[rec XA.1/X] > A.

(IFTT). From this semantics rule it follows théd, if e@A then |1 else I2) — (0, 11)
and from the hypothesIst- if e@A then |1 else I2>A. Applying rule (TIF) we have
rElisA.

e (IFFF). Similar to previous case.
e (Sum). Similar to previous case.
e (AssIGN). We have thato,x@A :=e.l) — (d’,1) andl" - Xx@A :=e.l > A. Now,

applying the rule (TASIGN) we getl - | > A.

Inductive cases.

(PAR). By this rule, as we assunte, |1 | 12) — (0,17 | I12), we get(o, 11) — (d',17).
Moreover, there exish; andA, such thath = AjUA, andl 4 | 121> A, and such
that, applying rule (TBR), I' - 11> A1 andTl™ 1 > Ay with fsc(Aq) Nfsc(Az) = 0.
Now, by induction hypothesis, it follows that there exiAfssuch thaf” 17 > A/,
and by rule (TRR) again, it follows that” - 17 | I>> A} UA, because of what
observed in (122).

e (STRuUCT). It follows from first point of this theorem.
e (RES). In this case we have

(0,1) = (0',1")
(0,09 1) = (0w 1)
There are three possible cases for typing restriction, leutmly analyze rule (TRs-
1) as the other cases are similar. By applying this rule wet imgel™ - (vs) | >A =
A1, §%: L ifand only if
FH1>A, §S5A B
Now, as(a,1) — (d’,1’), by induction hypothesis, we have tiiat |’ > A” and three
possible cases:
(@) A" =N1,555[AB]: . If we now apply again rule (TRs-1), we get that
Fr=ws) l'>sM5%: L.
(b) A1 =0,,8[C,D]: 0’ andA” =A,,§[C,D]: 0”5 55[A,B] : a. Now, applying
again rule (TRes-1), we get thaf - (vs) I’'>A,,8[C,D]: 0”58 : L.
(€) A =A1,555%[A,B] : a and we trivially get™ - (vs) I'>A15% 1 L.

(3) Easy to prove from the previous point.

103

APPENDIX C

Proofs for the end-point calculus type system

In here, we give the proofs for the end-point calculus tygeigiine. Mainly we give proofs for
Theorem 2.
Proposition 3.
(1) (well-formedness) + M > A impliesl” andA are well-formed.
(2) (weakening, 1) Assumie T is well-formed. Therd™ + M > AimpliesT-I" = M > A.
(3) (weakening, 2) Lef be well-formed ands are fresh. Thed - M > A impliesT” +
Mp>AS: L.
(4) (thinning) Assuméc(l'’)Nfn(M)=0. Thenl-[" - M > AimpliesT - M > A.
(5) (subsumption, 1) IF,ch@A: (§)a - M > A anda < B thenl,ch@A: (9B - M > A
(6) (subsumption, 2) IF F M > A-S@A: a anda <X Bthenl F M > A-S@A: B.
Proof.

(1) By induction on the typing rules. The proof is similar keetglobal case.

(2) This proof proceeds by induction on the typing rules. d@efthis we need to prove that
the result holds also for processes i.et-p P > A impliesI -’ 5 P > A. Also in this
case, the proof proceeds by induction on the typing rulesissttaighforward. We are
now able to prove the result for any network.

e (TPARTICIPANT). In this rule we have thdt - A[P] > Aifand only if " -4 P> A.
By what we proved above, we have tHatl’ 5 P > A and then, again by rule
(TPARTICIPANT) we havel - T’ + A[P]; > A.

e (TPAR-NW). We have that' - Ny | No> A1 © Ay if and only if ' = Ny > Az and
I - Np > Ap. By induction hypothesis we g&t- T’ - Ny > A andl - = Np > A
and by rule (TRR-NW) again we gef -T" = Np | N> A1 ©Ap

e (TRES-NW,1), (TRES-NW,2), (WEAK-end-NW) and (WEAK-_L-NW). Similar to
previous case.

(3) The proof proceeds by induction on the typing rule. Ashia previous proof, we need to
prove something similar for the procesges

(4) By induction on the typing rules.

(5) By induction on the typing rules, the results is a diremhsequence of the rules typing
communication.

(6) By induction on the typing rules. Similar to previous eas

We then give the proof of Proposition 4.

Proposition 4. (existence of minimal typing) Ldig be theminimal service typing of MThen, if

I - M > Athenwe havég - M > Ag such thaf’ - M > A’ andA’ using the same vectors of free
session channels dsimplies o < " andAg < A'. Proof. (outline) By typing, we knowM has all
session channels abstracted by initialisation actionst®reason we already know the grouping of
bound session channelshh determining uniquely vectors used in the introductioemd-types (for

1 types an arbitrary grouping of session channels is eno®thjting from them, we can inductively

105

construct minimum typings following the syntaxdf. The second clause is its simple generalisation
(note grouping of free session channels should be givenddgdiod to construct a typing). O
And then proof of Lemma 2.

Lemma 2.
(1) ¥ EA[P];> A, TEx@A:6andl -v: 6, thenl” = A[P]g,, .\ > A.
(2) Fr,X:AkFa P> A andl Fa Q> A, thenl F P[Q/X] > A.
Proof.
(1) Trivial, from typing rules.
(2) This proof is similar to the global case i.e. by inductamthe typing rules.

Below the proof for Lemma 3

Lemma 3. (subject congruence) - M > AandM = N thenl" - N > A.
Proof. By rule induction of the generation rules f O
Finally the main theorem for this section.

Theorem 2.1f T - N> A andN — N’ thenl - N’ > A,
Proof. Standard, using Lemma 2. O

106

