
Integration of Metadata in the Web

Jeremy J. Carroll
Hewlett-Packard Labs

Bristol, UK

jjc@hpl.hp.com

ABSTRACT
The metadata module of XHTML2 is a significant improvement
on previous approaches to metadata in HTML. A set of metadata
attributes can be used throughout the document, and they have a
well-defined mapping to RDF, finally permitting the use of RDF
within HTML Web pages. This paper shows how to extract the
RDF from XHTML2, both with XSLT2 and SAX. It also shows
how to add RDF to an XHTML2 document, either into the head, or
relevant places in the body. Adding metadata to the body is compli-
cated and computationally difficult; some heuristics are described.
These techniques will help bridge the gap between the Web and the
Semantic Web.

1. INTRODUCTION
From the beginning of the Web it has been possible to add meta-

data annotations to the head of HTML documents. However, this
has been one of the least successful parts of HTML.

One of the motivations for the Resource Description Framework
was to provide improved metadata within HTML documents. How-
ever, this goal is still to be achieved, since syntactic problems still
remain unfixed after many years of effort. We still have the posi-
tion where some metadata, in RDF/XML, is added to HTML pages
embedded within comments, because otherwise the HTML would
become invalid, and the RDF/XML would interfere with the page
display.

This paper discusses a new approach to integrating metadata
about Web pages into the markup on the page, which is being devel-
oped for XHTML2 [2]. This approach is called RDF/A [5], and op-
erates by means of attributes for adding metadata on any XHTML
element.

The contribution of this paper is to show how to integrate such
XHTML2 metadata with Semantic Web applications, by:

• Extracting RDF from the attributes in XHTML2
• Adding RDF into the head of XHTML2 documents using

RDF/A
• Adding RDF into the body of XHTML2 documents using

RDF/A

With these functions, when XHTML2 is deployed, it will finally be
possible to integrate high quality machine processible and exten-
sible metadata expressed within the Resource Description Frame-
work, into ordinary Web pages on the Web.

2. RDF METADATA IN HTML
Since the very first version of HTML it has been possible to put

metadata describing the document within<meta> elements within

.

the document head. However, this has been one of the least success-
ful parts of HTML.

There have been a variety of problems, for example:

Clarity of intent It is often not clear what the metadata is meant to
mean. Particularly since metadata is often machine processed
the informal descriptions in the HTML recommendations have
been found wanting.

Extensibility There are a few metadata properties explicitly men-
tioned in the HTML standards. The mechanisms for using
profiles to use new metadata terms are underdeveloped and
not deployed. There is a need for a deployed and function-
ing mechanism which allows new metadata keywords to be
added without a standardization process.

‘Metacrap’ [11] Often the quality of the metadata is very low.
Most document authors simply do not bother to add meta-
data. Worse, they copy-and-paste from an existing document
and have incorrect metadata. Yet worse, they deliberately put
incorrect metadata, often to improve the chances of the doc-
ument being found with search engines. Doctorow [11] says:
‘People lie. People are lazy. People are stupid.’ We can sum-
marize this problem as motivational. There are insufficient
incentives to publish correct metadata.

The Resource Description Framework (RDF) is partially moti-
vated to try and address these problems. It does give an extensible
framework for metadata with a clear machine processable seman-
tics. It does not directly address the ‘metacrap’ problem.

2.1 RDF
The very first paragraph of the 1998 RDF recommendation Model

and Syntax [22] defines the core use case of RDF as ”to describe the
data contained on the Web”. Since most Web data is HTML, this
introduces asyntacticproblem of how to encode metadata about
HTML documents. This in addition to the more general seman-
tic problem, addressed particularly in the RDF Semantics1 [12], of
how to have an extensible formally defined framework for meta-
data.

Such metadata can be placed in the HTML document, indeed
Model and Syntax recommends “simply to insert the RDF [i.e.
RDF/XML] in-line”, or it can be in a separate document, usu-
ally RDF/XML, the recommended XML syntax for RDF [3]. An-
other common approach is to use Dublin Core [6] metadata within
the <meta> tags in the head element of the document, see RFC
2731 [21], and [10], e.g.
<link

rel="schema.DC"
href="http://dublincore.org/qdcmes/1.0/"

1The general reader will find the treatment in the RDF Primer [23]
more accesible.

title="DCMES plus DCMI recommended qualifiers">
<meta name="DC.Identifier"

scheme="URI"
content="http://www.ukoln.ac.uk/metadata/

resources/dc/datamodel/WD-dc-rdf/figure1.gif">
<meta name="DC.Title"

lang="en"
content="A simple RDF assertion">

...
<meta name="DC.Creator"

content="Miller, Paul">
<meta name="DC.Relation.isVersionOf"

lang="en"
content="Figure 1 from RDF Model and Syntax">

While it is possible to read such mark-up as RDF, it is only use-
ful for metadata that conforms with the Dublin Core schema, or
a schema written with interoperation with Dublin Core in mind.
Hence, it lacks the open-endedness of RDF metadata, for which
any schema [7],or no schema at all, can be used.

SHOE [14, 13] is an alternative ontology markup which is not
directly compatible with RDF. This also can be embedded directly
in HTML. SHOE aims to improve on RDF by providing more se-
mantic primitives and better mechanisms for managing schema and
ontology evolution. SHOE also, unlike RDF, provides an XML
Document Type Definition (DTD) for its mark-up. This helps the
use of SHOE within validated HTML.

2.2 Using the Document’s own Metadata
Van Harmelen and Fensel [28] show how HTML span elements

can be used to pick out of the document body the key data that is
the document metadata. An example, is:
<HEAD>

<META NAME="author" CONTENT="#L0">
<META NAME="location"

CONTENT="#L1">
<META NAME="tel" CONTENT="#L2">
<META NAME="room" CONTENT="#L3">

</HEAD>
<BODY>

This page is written by
Frank van
Harmelen.
 His tel.nr. is 47731, room nr.
T3.57

</BODY>

An advantage they pick out for this is that of avoiding duplica-
tion: “A basic tenet of information modeling is that redundancy
inevitably leads to inconsistency”. We note that this practice of in-
cluding the metadata inside the document is one that goes back mil-
lennia, and suggest that supporting such a well-established practice
is a must for a solution to web metadata (cf. [15]). this page, and
the metadata that is automatically distinguished are the same: thus
modifying and author’s name to include a middle initial is done
once, in one place for both purposes.

2.3 RDF/XML as Metadata markup?
A problem that emerged after the publication of the RDF Model

and Syntax Recommendation is that such RDF/XML cannot be em-
bedded in DTD valid HTML 4.0. This and related issues have been
considered by the RDF Core working group, as part of their work
on updating Model and Syntax. In brief, the response is that it
is not possible [25]. Instead, the suggestion is that the metadata
should form a separate document, and can be related to the original
document using a link element in the head. (Not unlike the way that
pictures are included in HTML documents). This can be regarded

as the web equivalent of having a separate card in a card index as
the primary repository of the document metadata. A long tradition
can also be pointed to for this practice.

2.4 Requirements for Metadata markup Syn-
tax

We can summarize this brief survey of the prior art by capturing
the requirements and desiderata for Web metadata markup: These
are:

• Ability to represent Dublin Core metadata
• Ability to represent other (arbitrary) semantic links
• Compatibility with HTML or XHTML
• Compatibility with validated HTML or XHTML
• Compatibility with XML
• Compatibility with XML validated against some DTD or XML

Schema
• Compatibility with RDF
• Ability to refer to the metadata already in-line in the docu-

ment
• Ability to refer to new metadata in the document head

(See also the list of requirements in [1]). None of the examples
already surveyed has all of these properties.

3. OVERVIEW OF RDF
Before proceeding further, we will give a brief summary of RDF,

concentrating on its abstract syntax: the RDF graph [20].
RDF describes resources by means of triples. Each triple iden-

tifies a subject, the resource being described, and describes one
aspect of it, giving the value of some property of that resource. The
property is identified by a URI known as the predicate. The value
of the property is known as the object of the triple, and may be a
literal value, such as a string, or it may be another resource.

So the triple
<http://example.org/>

<http://purl.org/dc/elements/1.1/creator>
"Jane Doe" .

indicates that the resource identified by<http://example.org/>
has the value"Jane Doe" for the property identified by<http:-
//purl.org/dc/elements/1.1/creator> . This last prop-
erty, known as ‘Dublin Core creator’ indicates the name of one of
the creators of the subject resource. To avoid writing long URIs a
common convention in RDF is to use qnames to abbreviate URIs
by the rule that a qname corresponds to a URI formed by the simple
concatenation of the namespace URI with the local name. So this
predicate is usually abbreviated asdc:creator , with dc bound
to the namespace URI<http://purl.org/dc/elements-
/1.1/> .

Resources may be identified by means of a URI, or they may be
unidentified, and are represented by what is called ablank node.
A blank node shows that there is a resource, but it is not given a
global name. i.e. a blank node acts as an existential quantification.

An RDF graph is a collection of subject/predicate/object triples.
The same blank node may appear in multiple triples in a single
RDF graph, indicating that there is a resource with the described
properties in many triples.

A literal may have an explicit datatype, typically one of the sim-
ple types of XML Schema. The datatype too is identified by means
of a URI, again often abbreviated to be a qname. A literal without
a datatype is known as a plain literal. Plain literals may be quali-
fied by a language identifier. Typed literals do not have language
identifiers.

Putting this all together, we can summarize the RDF abstract

syntax, as an RDF graph is a set of triples, where a triple is one of
the following eight possibilities:

subject predicate object
URI URI URI
URI URI blank
URI URI typed literal
URI URI plain literal
blank URI URI
blank URI blank
blank URI typed literal
blank URI plain literal

Each triple acts as a part of a description of the subject resource,
and so an RDF graph acts as a description of many resources. A
formal semantics [12] describing this is part of the RDF recom-
mendation.

For working with XHTML, a particular datatype is highly rel-
evant. This isrdf:XMLLiteral , defined in [20], which is a
datatype for XML content, encoded within RDF graphs.

The other relationship between RDF and XML is that there is an
XML syntax defined for RDF, known as RDF/XML [3].

4. THREE FEATURES OF XHTML2
XHTML2 is the next version of HTML currently being devel-

oped by the World Wide Web Consortium.
A key goal is to have less presentation and more document struc-

ture in XHTML2 than in earlier HTML versions. CSS is now the
preferred way of addressing presentational issues.

The deprecated presentational features of XHTML1 have been
dropped.

In this paper, we are concerned only with three new features of
XHTML2: the <section> and<h> elements; a generalization
of the<a> element; and a new approach to metadata.

In earlier versions of HTML, document sections have been im-
plicit, identified by headings at various levels using the<h1> through
<h6> elements. Some authors make the sections more explicit by
using<div> elements to enclose them.

In XHTML2, while the old heading elements are still supported,
a new better structure alternative is also provided. The<section>
element is used to identify sections and subsections within the doc-
ument, and the<h> element is used for the heading of the section.
The level of the heading is implicit by the number of<section>
ancestors it has. As an example:
<html>

<head><title>An example</title></head>
<body>
<section>

<h>A first level heading</h>
<section>

<h>Contents</h>

<li href="#s1">1.
<li href="#s1.1">1.1
<li href="#s2">2.

</section>
<section id="s1">

<h>1. A second level heading</h>
<section id="s1.1">

<h>1.1 A third level heading</h>
</section>

</section>
<section id="s2">

<h>2. Another second level heading</h>
</section>

</section>
</body>

</html>

The table of contents shows that the<a> element, while still
permitted, is no longer needed in XHTML2. An@href attribute
is allowed on any element, and a same document reference can be
used to refer to an@id on any element.

In previous versions of HTML metadata has been placed in the
head of the document, using<link> and<meta> elements. There
has been no standard way of aligning such metadata with RDF. In
XHTML2 metadata is stored anywhere in the document, using at-
tributes that are permitted on all elements. The metadata is RDF,
i.e. the attributes specify RDF triples, and so each XHTML2 doc-
ument specifies an RDF graph. The next section explains in detail
how these attributes work.

5. ATTRIBUTES FOR EXPRESSING RDF
RDF/A [5], is a set of attributes which can be used by an XML

vocabulary, such as XHTML2, to carry RDF metadata within the
XML vocabulary. The attributes2 are: @about for describing the
subject;@rel , @rev, and@property for describing predicates;
@content , @datatype , @plain for describing literal objects;
@href and@nodeID for describing objects. In addition an@id
can be used to indicate a subject, if no@about is present.

URIs are resolved against the current in-scopexml:base [24].
Qnames are mapped to URIrefs using the RDF convention of

concatenating the namespace URI with the local name, URIrefs
which do not end with anNCName[16] cannot be represented as
qnames.

5.1 RDF/A Processing Model
The processing model is declarative. For each element find all

predicates, all subjects, and all objects, according to the rules in the
next section. Take all combinations, with the constraint that some
predicates require literal objects, and others require a resource ob-
ject, i.e. a URIref or blank node. All such combinations are triples
in the RDF graph corresponding to the XHTML document.

5.2 S,P,O Resolution Rules
The detail of the rules is given in the order predicate, object,

subject. This is because the predicate rules are simplest, and the
subject rules the most complicated.

In order to generate a triple, a subject rule, a predicate rule and
an object rule have to be used. Hence, it is possible, for example,
for an object rule to match, but no triple to be generated. Or for
more than one triple to be generated, using the same object, but
different subjects (when more than one than subject rule matches).

5.2.1 Resolution Rules for Predicates with Literal
Objects

@property attribute If present this specifies a predicate for lit-
eral objects by means of a qname.

Implicit predicate If there is an@content , @datatype or @-
plain attribute, and no@property attribute then there is
an implicit property for literal objects ofxhtml2:refers-
ToLiteral .

2Note to referees: the exact selection of attributes, and the
details of the resolution rules, are still being discussed within
the W3C. This paper works from one of the proposals on
the table, http://lists.w3.org/Archives/Public/
www-archive/2004Nov/0001 , which is not quite the same
as those in the cited paper.

5.2.2 Resolution Rules for Predicates with Resource
Objects

@rel attribute If present this specifies a predicate for resource
objects by means of a qname.

@rev attribute If present this specifies a predicate for resource
objects by means of a qname. Any resulting triples have sub-
ject and object swapped, reversing the direction of the triple
in the RDF graph.

Implicit predicate If there is an@href or@nodeID and an@about
or @id attribute, and no@rel or @rev attribute then there is
an implicit property for resource objects ofxhtml2:refers-
ToResource .

5.2.3 Literal Object Resolution Rules

Plain literal with @content If there is an@content attribute
and no@datatype , then the@content value is a plain
literal object, with language specified by the in-scopexml:lang .

Typed literal with @content If there is an@content and an
@datatype attribute, then they specify a typed literal ob-
ject, with lexical form given by the@content and the datatype
URI specified as a qname by the@datatype .

Plain in-line literal If there is a@plain attribute with value"true"
then a plain literal object is formed with lexical form given
by concatenation of text descendent nodes of the element,
and with language given by the in-scopexml:lang .

Typed in-line literal If there is a@datatype attribute and no
@content attribute, then a typed literal object is formed
with lexical form given by the concatenation of text descen-
dent nodes and the datatype URI specified as a qname by the
@datatype .

In-line rdf:XMLLiteral If none of the attributes@datatype ,
@content or @plain are present, then a typed literal ob-
ject is formed with lexical form being the Exclusive XML
Canonicalization [17] of the element content3 and with datatype
beingrdf:XMLLiteral .

5.2.4 Resource Object Resolution Rules

@href If there is an@href attribute present then this gives a URI
for the resource object. If it is relative, it is resolved using any
in-scopexml:base value [24].

@nodeID If there is a@nodeID attribute present, then this gives
a blank node identifier for a resource object.

generated blank node If neither an@href nor a@nodeID at-
tribute are present then a blank node is generated. This is
different from any other blank nodes, but it may participate
in more than one triple, formed using the rules for this ele-
ment, or one of its children.

5.2.5 Subject Resolution Rules

@about If present the@about attribute gives a URI for a subject.
This is resolved using thexml:base rules.

@id If there is no@about attribute present, then the value of an
@id attribute is used as a fragment ID, to generate a URI
for a subject, by resolving the concatenation of"#" and the
value of the@id against the in-scopexml:base value4

3RDF/XML also specifies the formation of rdf:XMLLiteral’s using
exclusive XML canonicalization.
4This is the same as withrdf:ID in RDF/XML.

Subject defined by the parent elementIf the child has neither an
@about nor an@id attribute, then subjects are formed by
reference to the parent element.
Explicit object of parent If the parent has an@href or a

@nodeID (or both) then they specify the subject for
the child, following 5.2.4.

Parent element’s generated objectIf the parent uses a gen-
erated object, because it lacks an explict object, but
does have an@rel or a@rev attribute, then the blank
node generated in 5.2.4 is used as the subject for the
child element.

Parent element’s subject If the parent doesn’t match the pre-
vious cases, i.e. it does not have an@href or a@nodeID
or a @rev or a @rel attribute, but it does have an
@about or an@id (but no@about) then the@about
or @id is used as the subject of the child triple. This
allows idiom like:
<head about="">

<meta property="dc:creator"
content="Jeremy Carroll"/>

</head>
Parent element’s generated objectIf the parent element does

not match any of the above cases, i.e. it does not have
an@href , a@nodeID, a@rev, a@rel , an@about
or an@id attribute then the blank node generated in 5.2.4
is used as the subject for the child element.

6. IMPLEMENTATION GOALS
In this section we consider what a metadata implementation for

XHTML2 might do.
From the perspective of an RDF developers toolkit, such as Jena [9],

it is useful to be able to read the RDF graph from an XHTML2 doc-
ument. A further use case within such a framework is serializing
an RDF graph as a sequence of<link> and<meta> elements to
be placed in the head of an XHTML2 document.

For HTML authors it is useful if authoring tools allow them to
add metadata markup, including the ability to highlight parts of the
body text to include in the metadata (as in [18]). This should results
in triples being added to the body of the XHTML2 document.

Another scenario which involves adding metadata to the body is
where a preexisting XHTML2 document (perhaps created by mi-
grating an HTML4 document) is modified by adding in a separate
RDF graph to make a unified document. To get the full benefit of
the unified document, each triple should be added to the head or
to the body as appropriate. This may be useful for legacy migra-
tion. It may also be useful where a backend server generates both
an XHTML document and an RDF graph but uses different routes
and techniques to generate the two, and wishes to serve a document
that is as amenable as possible to further editing. As an example,
the metadata may be generated using OWL inferences which user
agents may be unaware of, and so performing them server-side will
be most effective.

The rest of this paper discusses the extraction of RDF metadata
from XHTML2, and the creation of XHTML2 markup from RDF
metadata, addressing both the<head> and the<body> cases.

7. XHTML METADATA WITH XSLT
This section describes an XSLT2 [19] implementation, which is

available fromhttp://lists.w3.org/Archives/Public/
www-archive/2004Nov/0001 .

This implementation follows the declarative processing model
of section 5.1. In contrast with more procedural implementations,

such as the SAX implementation discussed in the next section, this
is likely to be slower. (Although that is highly dependent on the
optimizations performed by the XSLT engine).

The declarative approach has the following key advantages:

• Clarity. The implementation follows the specification of sec-
tion 5 in a straightforward fashion.

• Maintainability. As the RDF/A rules are modified during the
standardization process it is easier to modify a declarative
implementation, since the relationship between the rules in
the specification and the rules in the implementation is im-
mediate, rather than implicit.

• Correctness. The clarity of the implementation means that it
is more likely to be correct.

• Cost. A correct implementation is achieved more easily us-
ing declarative techniques. In particular, the cost of debug-
ging and maintenance is reduced. The source code is a total
of 550 lines of XML and XSLT, which is indicative of low-
cost.

Briefly, the rules for subjects, predicates and objects from sec-
tion 5.2 are expressed using XPath [4], in a custom XML format.
These are then combined by a first XSLT transform in all possi-
ble ways, to give rules for matching triples (with subject, predicate
and object). These rules are still in a custom XML format. A sec-
ond XSLT transform then takes these rules to generate the runtime
XSLT transform which implements a mapping from the RDF/A at-
tributes in XHTML2 into RDF/XML.

7.1 Design Overview

7.1.1 S,P,O Rules
Each paragraph specifying a rule for subjects, predicates and ob-

jects from section 5.2 is expressed in a custom XML format. For
example:

If there is an@href attribute present then this gives a URI for
the resource object. If it is relative, it is resolved using any in-scope
xml:base value [24].

is expressed as:

<object
a:object=’resource’
a:match=’[@href]’

rdf:resource=’resolve-uri(@href,base-uri(.))’
/>

The @a:match attribute gives an XPath [4] predicate to be
matched against an XHTML2 element. If it applies then the other
attributes (@rdf:resource in this case) are used in the construc-
tion of the RDF/XML output. The value"resolve-uri(@href,
base-uri(.))" is again expressed in terms of XPath, and im-
plements thexml:base rules. The@a:object attribute indi-
cates this object is a resource object and not a literal object. The
a: namespace is used to indicate information that is manipulated
during the first transform producing the triple rules.

The predicate rules are similar, for instance:
If an @rev attribute is present this specifies a predicate for re-

source objects by means of a qname. Any resulting triples have
subject and object swapped, reversing the direction of the triple in
the RDF graph. becomes:
<predicate

a:reversed=’true’
a:object=’resource’
a:match=’[@rev]’
name=’@rev’

/>

The rules for the@rel and@id attributes are similar:

<predicate
a:object=’resource’
a:match=’[@rel]’
name=’@rel’

/>

<subject
rdf:about=

"resolve-uri(concat(’#’,@id),base-uri(.))"
a:match=

’[@id][not(@about or self::xhtml2:head)]’
/>

In the @id rule we note that both the positive and negative con-
ditions are expressed in the@a:match attribute, and that the fact
that an xhtml2:head has a default value for@about is explicitly
coded.

7.1.2 Forming Triple Rules
The rules for subjects, predicates and objects are combined by

a first XSLT transform. This takes all combinations of subject and
predicate and object rules with the single constraint that the predi-
cate and object rules have the same@a:object value. For each
combination a new triple oriented rule is generated.

The four rules presented above, hence give rise to the following
two triple rules:

<match select=
"xhtml2: * [not(@about or self::xhtml2:head)]

[@id][@rel][@href]">
<subject rdf:about=
"resolve-uri(concat(’#’,@id),base-uri(.))" />
<predicate name="@rel"/>
<object rdf:resource=

"resolve-uri(@href,base-uri(.))"/>
</match>
<match select=
"xhtml2: * [not(@about or self::xhtml2:head)]

[@id][@rev][@href]">
<subject rdf:about=

"resolve-uri(@href,base-uri(.))"/>
<predicate name="@rev"/>
<object rdf:resource=
"resolve-uri(concat(’#’,@id),base-uri(.))" />

</match>

In the first, we see that the@a:match attribute values from
the subject, predicate and object have simply been concatenated
to give a predicate applying toxhtml2 elements. When these
match, the subject, predicate and object of the triple are formed
as shown. In the second rule, we see that the subject and object
have been swapped, and correspondingly the@rdf:resource
attribute has been replaced with an@rdf:about and vice versa,
corresponding to the different ways of expressing subject and ob-
ject in RDF/XML.

152 such triple rules are generated.

7.1.3 Creating the XSLT runtime
A second transform takes such triple rules, and creates an XSLT

transform implementing them. The basic structure of the output
is a transform that processes each element of an XHTML input
document in turn, and transforms each one into an (often empty)
sequence ofrdf:Description elements in an RDF/XML doc-
ument. Each such element is used to specify one triple found in the
input, forming by matching a rule against the current element.

The match of a rule against an element is implemented using an
xsl:if test. The first triple rule above becomes the following
XSLT code:

<xsl:if test="self::xhtml2: * [@id][@rel]

[not(@about or self::xhtml2:head)][@href]">
<rdf:Description>

<xsl:attribute name="rdf:about"
select=

"resolve-uri(concat(’#’,@id),base-uri(.))"/>
<xsl:element name="@rel"

namespace="namespace-uri-for-prefix(
substring-before(@rel,’:’),.)">

<xsl:attribute name="rdf:resource"
select="resolve-uri(@href,base-uri(.))"/>

</xsl:element>
</rdf:Description>

</xsl:if>

While the resulting XSLT file implementing RDF/A is quite long
(about 3000 lines), the source code (the first rules file, and the first
and second transforms) is relatively short (140 lines for 21 rules;
160 lines for the first transform; 247 lines for the second). Lines of
code is a very rough-and-ready measure for XSLT programs.

8. PARSING METADATA WITH SAX
The XSLT approach has some inevitable inefficiencies. It almost

certainly requires building a DOM tree or some similar in-memory
view of the document, and does not take a streaming approach. It’s
output is an RDF/XML document, that must be further parsed using
an RDF parser if the goal is to manipulate, query, or run inferences
over the RDF graph.

In such cases it is more appropriate to build over a streaming
XML interface, such as SAX [27].

Each XML element may give rise to one or more triples. The
triples depend on the attributes of the element, it’s name (since
<head> has a default value@about=""), and its parent (which
may provide the subject of the triple). For some triples, with in-line
literal content, all the children are potential relevant to the object
value: either the text() descendents for plain or typed literals, or all
content (elements, comments, processing instructions, and text) for
rdf:XMLLiteral objects.

This suggests using a stack, similar to how RDFFilter [26] parses
RDF/XML, but with the variation that triples are generated with the
endElement event, after all the children have been processed.

Each time astartElement event fires, a new entry is pushed
on the stack. This stores:

1. The attributes of the element.
2. The element qualified name.
3. A set of string concatenators for text content.
4. A set of exclusive canonical XML [17] concatenators for

rdf:XMLLiteral content.

The first two items are initialized from the SAX event. The last two
items are inherited from the top entry of the stack with the addition
of a text concatenator for this element if there is a@datatype or
@plain attribute or an exclusive canonical XML concatenator if
there is a@property attribute and neither a@datatype nor a
@plain attribute.

The concatenators are used in combination with other SAX events
from the children to build up in-line literal objects, which are fin-
ished when all the child nodes have been processed, i.e. when the
endElement event occurs.

These objects on the stack have lazily evaluated methods im-
plementing the subject, predicate and object rules from section 5.2.
Further methods resolve inscopexml:lang , xml:base and XML
namespaces by reference to the attributes or to the parent.

When processingstartElement events, if the parent, the top
element on the stack, has any exclusive canonical XML concatena-
tors then these are updated with the open tag corresponding to the

event. Attributes and namespaces in the event are included in the
update, sorted as required by [17].

SAX text events are processed by adding the string to all text
concatenators and the XML escaped string to all exclusive canon-
ical XML concatenators which are accessed from the top of the
stack.

Comment and processing instruction events are also added ap-
propriately to the exclusive canonical XML concatenators of the
top element of the stack.

End element events create triples. They do this by invoking the
methods corresponding to the subject, predicate and object rules,
and generating a triple for every appropriate combination.

In this way, the RDF metadata can be extracted from an XHTML2
document.

9. ADDING METADATA TO XHTML HEAD
In section 3 we identified eight different patterns of triples. Ex-

amples of the first, third, sixth and eighth of these, encoded as
<link> and<meta> elements are as follows:
<link about="http://example.org/subj"

rel="eg:prop"
href="http://example.org/obj"/>

<meta about="http://example.org/subj"
property="eg:prop"

datatype="xsd:int"
content="10"/>

<link nodeID="subj">
<link rel="eg:prop" nodeID="obj"/>

</link>
<link nodeID="subj">

<meta property="eg:prop"
xml:lang="eg"
content="lexical-form"/>

</link>

The other cases can be formed similarly.
It is straightforward to use these examples as a template for an

RDF serializer.
Two limitations are:

• Only predicates that can be expressed as a qname can be se-
rialized. This restriction is shared with RDF/XML.

• Only datatype URIs that can be expressed as a qname can
be serialized. In particular, the datatype URIs used in XML
Schema Component Designators [29] cannot.

9.1 Preexisting Metadata
When adding metadata to an XHTML document it may already

have some metadata marked up.
This introduces two issues for adding more metadata. The first

is that the blank node identifiers already in the document may clash
with the blank node identifiers used by the serializer. This is easy to
check for, and the serializer can use other identifiers that have not
been used in the original document. However, this does make any
API for such a serializer more complicated, because the block of
text produced cannot be used in arbitrary XHTML documents. The
blank node identifiers depend on the original XHTML document.

A further issue is which of the following is required, when merg-
ing an RDF/XML file with an XHTML2 file:

1. Leave the preexisting metadata in the XHTML2 unchanged,
and add the new metadata from the RDF/XML.

2. Remove the old metadata in the XHTML2 completely.
3. Do not add metadata from the RDF/XML that is already in

the XHTML2 document, but only add ‘new’ triples, (in the
RDF/XML but not the XHTML2) leaving old triples in place.

4. Add ‘new’ triples (in the RDF/XML but not the XHTML2);
leave triples which occur in both the RDF/XML and the XHTML2
unchanged; delete triples that occur in the XHTML2 but not
the RDF/XML.

Items 2 and 4 update the metadata associated with the XHTML
document to be precisely the graph associated with the RDF/XML
document. Whereas items 1 and 3 form a merge of the metadata of
the two original documents to make a third.

Items 3 and 4 require the ability to compare the metadata in the
original XHTML2 document with that in the RDF/XML document.
The comparison should return a maximal subgraph found in both,
and a remainder. i.e. given two RDF graphsg andh, the algorithm
should return ag′ andg′′ such that:g′ is a subgraph of bothg and
h (and maximal), and thatg = g′ ∪ g′′.

This problem embeds the RDF subgraph isomorphism problem.
This is NP complete, since it is equivalent to the subgraph isomor-
phism problem for classic undirected graphs (following similar rea-
soning to that in [8]). Thus we expect to use a non-deterministic
algorithm. However, the lesson from RDF graph isomorphism [8],
is that good use of the (many)labels within an RDF graph can, in
practice, mean that the non-determinism is kept to a minimum.

10. ADDING METADATA TO XHTML BODY
In the previous section we showed that it is straightforward to use

RDF/A to add arbitrary RDF metadata to the head of an XHTML2
document. However, when that metadata is about the content of
the document then it is more natural to express the metadata within
the body of the document. This section discusses this, substantially
harder, problem.

We start by looking at a few examples of metadata in the body,
exploring the difficulties the problem presents. We then present
some heuristics, and an algorithm implementing them.

10.1 Examples

10.1.1
Consider the XHTML document:

<html xml:base="http://example.org/doc">
<head>

<title>A Document</title>
</head>
<body>

<section>
<h>A Document</h>
<p>Editor: Jeremy J. Carroll</p>
<section id="contents">

<h>Contents</h>

<li href="#first">First Section
<li href="#second">Second Section

</section>
<section id="first">

<h>First Section</h>
<p>Author: Jane Doe</p>

</section>
<section id="second">

<h>Second Section</h>
<p>Author: Jeremy J. Carroll</p>

</section>
</section>

</body>
</html>

and the RDF metadata:
<http://example.org/doc>

dc:creator "Jeremy J. Carroll" .

<http://example.org/doc>
dc:title "A Document" .

eg:first dc:creator "Jane Doe" .
eg:second dc:creator "Jeremy J. Carroll" .
<http://example.org/doc> egs:contents _:s .
_:s rdf:type rdf:Seq .
_:s rdf:_1 eg:first .
_:s rdf:_2 eg:second .
eg:first dc:title "First Section" .
eg:second dc:title "Second Section" .

These can be put together like this:
<html xml:base="http://example.org/doc"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:egs="http://example.org/schema#"

>
<head about="" >

<title property="dc:title"
plain="true" >A Document</title>

</head>
<body>

<section>
<h>A Document</h>
<p>Editor: <span about="" property="dc:creator"
plain="true"> Jeremy J. Carroll </p>
<section id="contents">

<h>Contents</h>
<ul about="" rel="egs:contents" >

<link rel="rdf:type" href="&rdf;Seq" />
<li rel="rdf:_1" href="#first"

>First Section
<li rel="rdf:_2" href="#second"

>Second Section

</section>
<section id="first">

<h property="dc:title"
plain="true" >First Section</h>

<p>Author:
<span about="#first" property="dc:creator"
plain="true"> Jane Doe </p>

</section>
<section id="second">

<h property="dc:title"
plain="true" >Second Section</h>

<p>Author:
<span about="#second" property="dc:creator"

plain="true"> Jeremy J. Carroll </p>
</section>

</section>
</body>

</html>

A number of aspects should be noted:

• Most of the metadata is expressed by adding attributes to pre-
existing elements.

• We often use literal strings that were already the textual ele-
ment content in the original document. e.g. “A Document”.

• We often use URIrefs that were already present in the docu-
ment. e.g.href="#first" .

• Sometimes we need to add a to enclose a specific
textual string. e.g. “Jane Doe”.

• The blank node did not need to have an explicit identifier,
because we could arrange all the triples involving it in the
same part of the document.

• In one case, we add a<link> element to add further meta-
data. i.e. the first<link> child of the element.

• The triple added with the<link> and that added on the
 element could have been swapped around:
<ul about="&rdf;Seq" rev="rdf:type" >

<li rel="rdf:_1" href="#first"
>First Section

• Or both of those two triples could have been added with
<link> elements:

<link rel="rdf:type" href="&rdf;Seq" />
<link rev="egs:contents" href="" />
<li rel="rdf:_1" href="#first"

>First Section
• Some triples with both subject and object occurring in the

document could be expressed using that pre-existing markup,
for both subject and object: e.g.eg:first dc:title
"First Section" .

• Some triples with both subject and object occurring in the
document could not be expressed using that pre-existing markup.
In these cases, we anchored the triple in the body using a
literal object, and repeated the subject. e.g.eg:first
dc:creator "Jane Doe" . This reflects that the occur-
rence in the document of the subject is too far away from the
occurrence of the object.

• Theabout="" on the<head> element, is the default value,
and could have been omitted.

• Looking at the two occurrences of “Jeremy J. Carroll”, for
the first we gave the subject"" , for the second"#second" .
This was more natural than the other way around, because
both subjects had occurred nearby in the document.

A key to these observations is that some of the nodes in the RDF
graph are already present within the XHTML, and we just need
to add attributes and maybe some<link> , <meta> , or
<div> elements to express the appropriate triples. We will call
such nodesrealisednodes.

Realised nodes can occur in a number of ways:

• URIref nodes from@about or @id or @href attributes.
• Literal lexical forms from the text content of nodes. The

literals can be plain (as long as the in-scope@xml:lang
is appropriate) or typed (by the addition of an@datatype
attribute).

• If the document already has some metadata in it, and we use
the subgraph isomorphism techniques described at the end of
section 9, then this produces a mapping from (some of) the
blank nodes in the XHTML2 document into the blank nodes
of the RDF graph being added. Using the inverse of this map-
ping blank nodes to be added may be realised as@nodeID
attributes, or as the blank node implicit in the absence of an
explicit@href or@nodeID. The mapping corresponding to
a subgraph isomorphism is not uniquely defined in all cases.

• While we are adding triples into the body, we may add a new
realisation of the subject or object.

Nodes can be realised in multiple places in the XHTML2 docu-
ment.

10.1.2 Tethered Paths
A short, poorly marked-up, description of the United States could

be:
<div id="US" xml:lang="en">

<h2>The United States of America</h2>
<p>Name: (English) United States of America,

(Italian)
Stati Uniti.</p>

</div>

and the RDF metadata:
eg:US egs:hasName _:a .
_:a rdfs:label "United States of America"@en .
_:a rdfs:label "Stati Uniti"@it .

The metadata has a simple tree structure that can be superim-
posed on the XML structure like this:
<div id="US" xml:lang="en">

<h2>The United States of America</h2>
<p rel="egs:hasName">Name: (English)
<span property="rdfs:label" plain="true"

>United States of America,
(Italian) <span xml:lang="it"

property="rdfs:label" plain="true"
>Stati Uniti.</p>
</div>

But with a richer use of XHTML mark-up, such as
<div id="US" xml:lang="en">

<h2>The United States of America</h2>
<table>
<tr><td>English</td>

<td>United States of America</td></tr>
<tr><td>Italian</td>

<td xml:lang="it">Stati Uniti</td></tr>
</table>

</div>

we find that it is not possible to avoid explicitly labelling the blank
node, e.g.
<div id="US" xml:lang="en" rel="egs:hasName"

nodeID="s">
<h2>The United States of America</h2>
<table>
<tr nodeID="s"><td>English</td>

<td property="rdfs:label" plain="true"
>United States of America</td></tr>

<tr nodeID="s"><td>Italian</td>
<td xml:lang="it" property="rdfs:label"

plain="true">Stati Uniti</td></tr>
</table>

</div>

One aspect of the problem is that the path in the RDF graph from
eg:US to "Stati Uniti"@it is of length two; but in the XML
document, there are three intervening XML elements.

Thus we introduce the concept oftethered pathto be a path in the
RDF graph whose end-points are both realised in the XHTML doc-
ument, but whose intermediate points are not. If a tethered path is
shorter than the shortest path through XML elements between two
nodes corresponding to its end-points, then it cannot be expressed
using RDF/A attributes involving those nodes. A tethered path can
consist of a single triple. Each triple in the path fromeg:US
to "Stati Uniti"@it is directed in the same way: subject,
predicate, object. Whereas in the tethered path from"United
States of America"@en to "Stati Uniti"@it , one of
the triples is directed object, predicate, subject. We will call a teth-
ered path in which each triple is directed subject, predicate, object
adirectedtethered path.

In many cases realizing a tethered path, by adding appropriate
RDF/A attributes to the XHTML, prevents the realization of some
other tethered path. Here is an example:

Consider adding
eg:p1 egs:prop _:a .
eg:p3 egs:prop _:a .
eg:p2 egs:prop _:b .
eg:p4 egs:prop _:b .

to
<body>

<p id="p1">para1</p>
<p id="p2">para2</p>
<p id="p3">para3</p>
<p id="p4">para4</p>

</body>

We can add the first two triples, like this:

<body>
<p rev="egs:prop" id="p1">para1</p>
<p id="p2">para2</p>
<p rev="egs:prop" id="p3">para3</p>
<p id="p4">para4</p>

</body>

or like this:
<body>

<div>
<p rev="egs:prop" id="p1">para1</p>
<p id="p2">para2</p>
<p rev="egs:prop" id="p3">para3</p>

</div>
<p id="p4">para4</p>

</body>

But if we do, then that prevents adding the similar markup to in-
clude the last two triples. To add all four triples at least one of the
blank nodes needs to be given an explicit label in the XHTML. e.g.
<body>

<p rev="egs:prop" id="p1">para1</p>
<p id="p2" rel="egs:prop" nodeID="b">para2</p>
<p rev="egs:prop" id="p3">para3</p>
<p id="p4" rel="egs:prop" nodeID="b">para4</p>

</body>

In summary there are lots of choices involved with adding RDF
to the body, including:

• For each RDF node which is realised more than once in the
XHTML2 document, which of these realisations to use for
each triple?

• If there is preexisting metadata some of which is subgraph
isomorphic to the required metadata, which of the (poten-
tially multiple) maximal subgraph isomorphisms to use?

• When realising more than one tethered paths which cannot
both be realised simultaneously, which to realise and which
to not realise?

• For a triple with one realised node, in some cases there is a
choice between adding a@rev attribute on that node, or a
new child with a@rel attribute (or vice versa).

An ‘optimum’ solution could perhaps be achieved by having
some goodness function that evaluated how clear a particular ex-
pression of the RDF in the body is, and then use a nondeterministic
approach to explore the choice space and maximise the goodness
function. It is highly likely that such an approach would have ex-
ponential complexity.

Such an ‘optimum’ solution appears to be very hard to achieve,
and too expensive both in terms of runtime complexity and speed,
and software complexity and cost, both development cost and main-
tenance cost.

A better solution is to identify some heuristics which allow the
identification of good ways of choosing which triple to add next
from the metadata to be added, and where to add it. This heuristics
guide adding triples in a deterministic way.

The heuristics suggested from the examples are:

1. prefer adding directed paths
2. prefer adding short tethered paths
3. dislike using the@rev attribute
4. dislike adding new elements

These heuristics are used by the following deterministic algo-
rithm, which adds the triples from an RDF graphg to an XHTML2
documentd

1. For lg from 1 to 3
(a) SetT to be the set of paths fromg of lengthlg tethered

in d.

(b) If ∃directedt ∈ T which can be realised ind by adding
only @rel , @property , @datatype and@plain
attributes: modifyd by addingt, and modifyg by re-
moving t. Continue outer loop 1. (Note: these paths
follow and XML path from an element, to a child ele-
ment, a grandchild element ...)

(c) If ∃ directedt ∈ T which can be realised ind by adding
only@rel , @rev, @property , @datatype and@-
plain attributes: modifyd by addingt, and modifyg
by removingt. Continue outer loop 1.

(d) If ∃t ∈ T which can be realised ind by adding only
@rel , @property , @datatype and @plain at-
tributes: modifyd by addingt, and modifyg by re-
movingt. Continue outer loop 1.

(e) If ∃t ∈ T which can be realised ind: modify d by
addingt, and modifyg by removingt. Continue outer
loop 1.

2. While g contains a triple with a subject or object realised in
d

(a) While∃triple ∈ g which can be added to body ofdwith
either subject or object realised, using a@property
or @rel attribute, addtriple to d, and removetriple
from g.

(b) If ∃triple ∈ g which can be added to body ofdwith
either subject or object realised, using a@rev attribute,
addtriple to d, and removetriple from g and continue
outer loop 2.

(c) If ∃triple ∈ g which can be added to body ofdwith
literal object realised, using a new element,
addtriple to d, and removetriple from g and continue
outer loop 2.

(d) While∃triple ∈ g which can be added to body ofdwith
subject realised, using a new<link> or <meta> ele-
ment with a@rel or @property attribute addtriple
to d, and removetriple from g. If object of triple is a
resource, i.e.@rel was used, continue outer loop 2.

(e) If ∃triple ∈ g which can be added to body ofdwith
subject realised, using a new<link> element with a
@rev attribute addtriple to d, and removetriple from
g. Continue outer loop 2.

3. Add all triples ing to head of document, as in section 9.

The ordering of the steps that add various types of paths and triples
to add to the body of the document shows a prioritisation between
the possibilities.

The algorithm restarts after each addition of a triple that may
result in an earlier (higher value) heuristic applying. (These are the
various ‘continue outer loop’ instructions) Coding techniques such
as memoization can be used to avoid excessive recomputation.

In summary, we have seen that adding RDF to the body is diffi-
cult. HTML editing software, which wishes to support such func-
tionality, would also need to use similar heuristics to place metadata
around the text it refers to.

11. SOME ISSUES WITH RDF/A
The previous section has shown that there are lots of choices with

adding RDF/A to elements in the body.
Experience with RDF/XML suggests that many people get con-

fused with too many options, some of which are rarely used, and
hence unfamiliar. For example, the property attribute construction
in RDF/XML, is useful in some cases, but does lead to significant
confusion.

These two observations suggest that despite simplifications from
the initial proposals, RDF/A might still be too complex. Possible

further simplications could be:
• Dropping the@rev attribute.
• Dropping default predicate rules.

Another aspect of RDF/XML that some people find difficult is
to know when to use a qname and when to use a URI. This prob-
lem is repeated in RDF/A, with predicates and datatypes expressed
by qnames, and subjects and objects with URIs. This might be a
mistake which could cause confusion.

A further problem was that adding structure to an XHTML doc-
ument by putting in container elements such as a<div> without
any RDF/A attributes may modify the meaning of RDF/A attributes
on the child elements. This could be avoided by changing the rules
for finding the subject for an RDF/A element without aabout or
id to not just look at the parent node, but to search up the XML
tree until some ancestor node with an explicit object or subject is
found.

12. CONCLUSIONS
RDF/A and its integration into XHTML2 is a big step forward

in integrating high quality metadata into Web pages. It allows the
combination of the power of Semantic Web techniques with the
HTML Web.

Some of the difficulties and choices with adding arbitrary RDF to
the body of XHTML2 pages reflects a mismatch between the graph
structure of the metadata and the tree structure of the document. In
practice, only that part of the metadata that respects the same tree
structure as the document, can be added by just using attributes and
no additional metadata elements.

The techniques developed in this paper can be used by devel-
opers of Web and Semantic Web tools to provide support for this
combination by extracting metadata from XHTML2 pages to be
combined with other knowledge in Semantic Web applications and
knowledge bases, and to take metadata from such Semantic Web
sources and add it, in an appropriate way, to XHTML2 pages.

13. REFERENCES
[1] M. Altheim and S. B. Palmer. Augmented Metadata in

XHTML. http://infomesh.net/2002/augmeta/ ,
2001.

[2] J. Axelsson, B. Epperson, M. Ishikawa, S. McCarron,
A. Navarro, and S. Pemberton. XHTML 2.0.
http://www.w3.org/TR/xhtml2 .

[3] D. Beckett. RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/rdf-syntax-grammar/ ,
2004.

[4] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez,
M. Kay, J. Robie, and J. Simon. XML Path Language
(XPath) 2.0.http://www.w3.org/TR/xpath20/ .

[5] M. Birbeck and S. Pemberton. RDF/A Syntax:A collection
of attributes for layering RDF on XML languages .
http://www.formsplayer.com/notes/rdf-a.html , 2004.

[6] D. U. Board. DCMI Metadata Terms.http:
//dublincore.org/documents/dcmi-terms/ ,
2004.

[7] D. Brickley and R. V. Guha. RDF Vocabulary Description
Language 1.0.
http://www.w3.org/TR/rdf-schema/ , 2004.

[8] J. J. Carroll. Matching RDF Graphs. InISWC, LNCS.
Springer, 2002.

[9] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: Implementing the
semantic web recommendations. WWW2004, 2004.

[10] S. Cox, E. Miller, and A. Powell. Recording qualified
Dublin Core metadata in HTML meta elements, 2000.

[11] C. Doctorow. Metacrap: Putting the torch to seven straw-men
of the meta-utopia.http:
//www.well.com/ ∼doctorow/metacrap.htm ,
2001.

[12] P. Hayes. RDF Semantics.
http://www.w3.org/TR/rdf-mt/ , 2004.

[13] J. Heflin, J. Hendler, , and S. Luke. SHOE: A Blueprint for
the Semantic Web. InSpinning the Semantic Web. MIT
Press, 2003.

[14] J. Heflin and J. Hendler. Semantic Interoperability on the
Web. InProceedings of Extreme Markup Languages 2000,
2000.

[15] M. Hemrich and Schafer. XML-based linking concepts. In
Proceedings of 23rd International Online Information
Meeting, 1999.

[16] D. Hollander, A. Layman, and T. Bray. Namespaces in XML.
http://www.w3.org/TR/1999/REC-xml-names-19990114 ,
1999.

[17] J. R. J. Boyer, D.E.Eastlake 3rd. Exclusive XML
Canonicalization Version 1.0.http:

//www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/ ,
2002.

[18] A. Kalyanpur, J. Golbeck, M. Grove, and J. Hendler. An
RDF Editor and Portal for the Semantic Web. InSemantic
Authoring, Annotation & Knowledge Markup Workshop
(ECAI), 2002.

[19] M. Kay. XSL Transformations (XSLT) Version 2.0.
http://www.w3.org/TR/xslt20/ .

[20] G. Klyne and J. J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf-concepts/ , 2004.

[21] J. A. Kunze. RFC 2731: Encoding Dublin Core metadata in
HTML, 1999.

[22] O. Lassila and R.R.Swick. Resource Description Framework
(RDF) Model and Syntax Specification .
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ ,
1999.

[23] F. Manola and E. Miller. RDF Primer.
http://www.w3.org/TR/rdf-primer/ , 2004.

[24] J. Marsh. XML Base.
http://www.w3.org/TR/2001/REC-xmlbase-20010627/ ,
2001.

[25] B. McBride. RDF Issue List, HTML Compliance.
http://www.w3.org/2000/03/rdf-tracking/
#faq-html-compliance , 2002.

[26] D. Megginson. RDFFilter.
http://rdf-filter.sourceforge.net/ .

[27] D. Megginson. Simple api for xml.
http://sax.sourceforge.net/ .

[28] F. van Harmelen and D. Fensel. Practical Knowledge
Representation for the Web. In D. Fensel, editor,
Proceedings of the IJCAI’99 Workshop on Intelligent
Information Integration, 1999.

[29] A. S. Vedamuthu and M. Holstege. XML Schema:
Component Designators.http:

//www.w3.org/TR/2004/WD-xmlschema-ref-20040716/ ,
2004.

