
1.1.1. Interaction Life-line

An Interaction completes normally when the message exchange completes successfully.
An Interaction completes abnormally when:

• An application signals an error condition during the management of a request
or within a party when processing the request

• The time-to-complete timeout, identifying the timeframe within which an
Interaction MUST complete, occurs after the Interaction was initiated but
before it completed

• Other types of errors, such as Protocol Based Exchange failures, Security
failures, Document Validation errors

Interaction Syntax
The syntax of the interaction construct is:

<interaction name="ncname"
 channelVariable="qname"
 operation="ncname"
 time-to-complete="xsd:duration"?
 align="true"|"false"?
 initiate="true"|"false"? >

 <participate relationship="qname"
 fromRole="qname" toRole="qname" />

 <exchange name="ncname"
 informationType="qname"? | channelType="qname"?
 action="request"|"respond" >

 <send variable="XPath-expression"?
 recordReference=”list of ncname”?
 causeException=”true”|”false”? />

 <receive variable="XPath-expression"?
 recordReference=”list of ncname”?
 causeException=”true”|”false”? />
 </exchange>*

 <timeout time-to-complete="xsd:duration"|time-to-complete="xsd:deadline"
 fromRoleRecordReference=”ncname”?
 toRoleRecordReference=”ncname”? />?

 <record name="ncname"
 when="before"|"after"|”timeout”
 causeException=”true”|”false”? >

 <source variable="XPath-expression"? | expression=”Xpath-expression”? />
 <target variable="XPath-expression" />
 </record>*
</interaction>

The attribute name is used for specifying a name for each Interaction element declared
within a Choreography.
The channelVariable attribute specifies the Channel Variable containing information of a
party, being the target of the Interaction, which is used for determining where and how to
send and receive information to and into the party. The Channel Variable used in an
Interaction MUST be available at the two Roles before the Interaction occurs.
At runtime, information about a Channel Variable is expanded further. This requires that
the messages in the Choreography also contain correlation information, for example by
including:

• A protocol header, such as a SOAP header, that specifies the correlation data
to be used with the Channel, or

• Using the actual value of data within a message, for example the “Order
Number” of the Order that is common to all the messages sent over the
Channel

In practice, when a Choreography is performed, several different ways of doing
correlation may be employed which vary depending on the Channel Type.
The operation attribute specifies the name of the operation that is associated with this
Interaction. The specified operation belongs to the interface, as identified by the role and
behavior elements of the Channel Type of the Channel Variable used in this Interaction.
The optional time-to-complete attribute identifies the timeframe within which an Interaction
MUST complete after it was initiated.
The optional align attribute when set to "true" means that the Interaction results in the
common understanding of both the information exchanged and the resulting observable
information creations or changes at the ends of the Interaction as specified in the fromRole
and the toRole. The default for this attribute is "false".
An Interaction activity can be marked as a Choreography initiator when the optional
initiate attribute is set to "true". The default for this attribute is "false".
Within the participate element, the relationship attribute specifies the Relationship Type this
Interaction participates in and the fromRole and toRole attributes specify the requesting and
the accepting Role Types respectively. The Role Type identified by the toRole attribute
MUST be the same as the Role Type identified by the role element of the Channel Type of
the Channel Variable used in the interaction activity.
The optional exchange element allows information to be exchanged during an Interaction.
Within this element, the attribute name is used for specifying a name for it.
Within the exchange element, the optional attributes informationType and channelType identify
the Information Type or the Channel Type of the information that is exchanged between
the two Roles in an Interaction. If none of these attributes are specified, then it is assumed
that either no actual information is exchanged or the type of information being exchanged
is of no interest to the Choreography definition.
Within the exchange element, the attribute action specifies the direction of the information
exchanged in the Interaction:

• When the action attribute is set to “request”, then the information exchange
happens fromRole to toRole

• When the action attribute is set to ”respond”, then the information exchange
happens from toRole to fromRole

Within the exchange element, the send element shows that information is sent from a Role
and the receive element shows that information is received at a Role respectively in the
Interaction:

• The send and the receive elements MUST only use the WS-CDL function getVariable
within the variable attribute

• The optional Variables specified within the send and receive elements MUST be of
type as described in the informationType or channelType attributes

• When the action element is set to "request", then the Variable specified within the
send element using the variable attribute MUST be defined at the fromRole and the
Variable specified within the receive element using the variable attribute MUST be
defined at the toRole

• When the action element is set to "respond", then the Variable specified within the
send element using the variable attribute MUST be defined at the toRole and the
Variable specified within the receive element using the variable attribute MUST be
defined at fromRole

• The Variable specified within the receive element MUST not be defined with the
attribute silent set to “true”

• Within the send or the receive element(s) of an exchange element, the recordReference
attribute contains a list of references to record element(s) in the same Interaction.
The same record element MAY be referenced from different send or the receive
element(s) within the same Interaction thus enabling re-use

• Within the send or the receive element(s) of an exchange element, the causeException
attribute when set to “true”, specifies that an Exception will be caused at the
respective Roles. In this case, the informationType of the exchange element MUST be
of Exception Type

• The request exchange MUST NOT have causeException attribute set to “true”

• When two or more respond exchanges are specified, one respond exchange MAY
be of normal informationType and all others MUST be of Exception Type. There
is an implicit choice between two or more respond exchanges

• If the align attribute is set to "false" for the Interaction, then it means that the:

o Request exchange completes successfully for the requesting Role once it
has successfully sent the information of the Variable specified within the
send element and the Request exchange completes successfully for the
accepting Role once it has successfully received the information of the
Variable specified within the receive element

o Response exchange completes successfully for the accepting Role once it
has successfully sent the information of the Variable specified within the
send element and the Response exchange completes successfully for the
requesting Role once it has successfully received the information of the
Variable specified within the receive element

• If the align attribute is set to "true" for the Interaction, then it means that the:

o Interaction completes successfully if the Request and the Response
exchanges complete successfully and all referenced records complete
successfully

o Request exchange completes successfully once both the requesting Role
has successfully sent the information of the Variable specified within the
send element and the accepting Role has successfully received the
information of the Variable specified within the receive element

o Response exchange completes successfully once both the accepting Role
has successfully sent the information of the Variable specified within the
send element and the requesting Role has successfully received the
information of the Variable specified within the receive element

Within the OPTIONAL timeout element, the time-to-complete attribute identifies the
timeframe within which an Interaction MUST complete after it was initiated.
Alternatively, the deadline attribute identifies the deadline before an Interaction MUST
complete. The fromRoleRecordReference and toRoleRecordReference attributes identifies
references to record element(s) in the same Interaction that will take effect when a timeout
occurs.

The optional element record is used to create or change one or more Variables using
another Variable or an expression. Within this element, the attribute name is used for
specifying a name for it. Within the record element, the source and target elements specify
these recordings of information at the send and receive ends of the Interaction:

• When the action element is set to "request", then the recording(s) specified
within the source and the target elements occur at the fromRole for the send
and at the toRole for the receive

• When the action element is set to "response", then the recording(s)
specified within the source and the target elements occur at the toRole for the
send and at the fromRole for the receive

Within the record element, the when attribute specifies if a recording happens before or
after a send or “before” or “after” a receive of a message at a Role in a Request or a
Response exchange or when a “timeout”, time-to-complete or deadline has expired at a
role.. When the when attribute is set to “timeout”, the record element indicates the record
to be performed when a timeout occurs. If two or more record elements have the same

value in their when attribute and are referenced within the recordReference attribute of a send
or a receive element, then they are performed in the order in which they are specified.
The following rules apply for the information recordings when using the record element:

• The source MUST define either a variable attribute or an expression attribute:
o When the source defines an expression attribute this MUST contain

expressions, as defined in Section 2.4.3. The resulting type of the
defined expression MUST be compatible with the target Variable
type

o When the source defines a Variable, then the source and the target
Variable MUST be of compatible type

o When the source defines a Variable, then the source and the target
Variable MUST be defined at the same Role

• When the attribute variable is defined it MUST use only the WS-CDL
function getVariable

• The target Variable MUST NOT be defined with the attribute silent set to
“true”

• One or more record elements MAY be specified and performed at one or both the
Roles within an Interaction

• A record element MUST NOT be specified in the absence of an exchange or
the timeout element

• At most one record element MAY be specified where the when attribute is
set to “timeout” for fromRole and toRole respectively

• The attribute causeException MAY be set to "true" in a record element if the
target Variable is an Exception Variable

• When the attribute causeException is set to "true" in a record element, the
corresponding Role gets into Exception state

• When two or more record elements are specified for the same Role in an
Interaction with target Variables of Exception Type, one of the Exception
recordings MAY occur. An Exception recording has an non-observable
predicate condition, associated implicitly with it, that decides if an
Exception occurs

• If the align attribute is set to "false" for the Interaction, then it means that
the Role specified within the record element makes available the creation
or change of the information specified within the record element
immediately after the successful completion of each record

• If the align attribute is set to "true" for the Interaction, then it means that
o Both Roles know the availability of the creation or change of the

information specified within the record element only at the successful
completion of the Interaction

o If there are two or more record elements specified within an
Interaction, then all record operations MUST complete successfully
for the Interact to complete successfully. Otherwise, none of the
Variables specified in the target attribute will be affected

The example below shows a complete Choreography that involves one Interaction
performed from Role Type “Consumer” to Role Type “Retailer” on the Channel "retailer-
channel" as a request/response exchange:

• The message “purchaseOrder” is sent from the “Consumer” to the
“Retailer” as a request message

• The message “purchaseOrderAck” is sent from the “Retailer” to the
“Consumer” as a response message

• The Variable “consumer-channel” is made available at the “Retailer” using
the record element

• The Interaction happens on the “retailer-channel”, which has a Token Type
“purchaseOrderID” used as an identity element of the channel. This
identity element is used to identify the business process of the
“Retailer”

• The request message “purchaseOrder” contains the identity of the
“Retailer” business process as specified in the tokenLocator for
”purchaseOrder” message

• The response message “purchaseOrderAck” contains the identity of the
“Consumer” business process as specified in the tokenLocator for
“purchaseOrderAck” message

• The “consumer-channel” is sent as a part of “purchaseOrder” Interaction
from the “Consumer” to the “Retailer” on “retailer-channel” during the
request. Here the record element makes available the “Consumer-
channel” at the “Retailer” Role. If the align attribute was set to "true" for
this Interaction, then it also means that the “Consumer” knows that the
“Retailer” now has the contact information of the “Consumer”. In
another example, the “Consumer” could set its Variable "OrderSent" to
"true" and the “Retailer” would set its Variable "OrderReceived" to "true"
using the record element

• The exchange “badPurchaseOrderAckException” specifies that an
Exception of “badPOAckType” Exception Type could occur at both
parties

<package name="ConsumerRetailerChoreography” version="1.0"
 <informationType name="purchaseOrderType" type="pons:PurchaseOrderMsg"/>
 <informationType name="purchaseOrderAckType" type="pons:PurchaseOrderAckMsg"/>
 <informationType name=”badPOAckType” type=”xsd:string” exceptionType=”true”/>

 <token name="purchaseOrderID" informationType="tns:intType"/>
 <token name="retailerRef" informationType="tns:uriType"/>

 <tokenLocator tokenName="tns:purchaseOrderID"
 informationType="tns:purchaseOrderType" query="/PO/orderId"/>
 <tokenLocator tokenName="tns:purchaseOrderID"
 informationType="tns:purchaseOrderAckType" query="/PO/orderId"/>

 <roleType name="Consumer">
 <behavior name="consumerForRetailer" interface="cns:ConsumerRetailerPT"/>
 <behavior name="consumerForWarehouse" interface="cns:ConsumerWarehousePT"/>
 </roleType>
 < roleType name="Retailer">
 <behavior name="retailerForConsumer" interface="rns:RetailerConsumerPT"/>
 </roleType>

 <relationshipType name="ConsumerRetailerRelationship">
 <role type="tns:Consumer" behavior="consumerForRetailer"/>
 <role type="tns:Retailer" behavior="retailerForConsumer"/>
 </relationshipType>

 <channelType name="ConsumerChannel">
 <role type="tns:Consumer"/>
 <reference>
 <token type="tns:consumerRef"/>
 </reference>
 <identity>
 <token type="tns:purchaseOrderID"/>
 </identity>
 </channelType>

 <channelType name="RetailerChannel">
 <passing channel="ConsumerChannel" action="request" />
 <role type="tns:Retailer" behavior="retailerForConsumer"/>
 <reference>
 <token type="tns:retailerRef"/>
 </reference>
 <identity>
 <token type="tns:purchaseOrderID"/>
 </identity>
 </channelType>

 <choreography name="ConsumerRetailerChoreography” root="true">
 <relationship type="tns:ConsumerRetailerRelationship"/>
 <variableDefinitions>
 <variable name="purchaseOrder" informationType="tns:purchaseOrderType"
 silent="true" />
 <variable name="purchaseOrderAck"
 informationType="tns:purchaseOrderAckType" />
 <variable name="retailer-channel" channelType="tns:RetailerChannel"/>
 <variable name="consumer-channel" channelType="tns:ConsumerChannel"/>
 <variable name=”badPurchaseOrderAck”
 informationType=”tns:badPOAckType” role="tns:Consumer"/>
 <variable name=”badPurchaseOrderAck”
 informationType=”tns:badPOAckType” role="tns:Retailer"
 silent="true" />
 </variableDefinitions>

 <interaction name=”createPO”
 channelVariable="tns:retailer-channel"
 operation="handlePurchaseOrder" align="true"
 initiate="true">
 <participate relationship="tns:ConsumerRetailerRelationship"
 fromRole="tns:Consumer" toRole="tns:Retailer"/>

 <exchange name="request”

 informationType="tns:purchaseOrderType" action="request">
 <send variable="cdl:getVariable(“tns:purchaseOrder”, “”, “”)" />
 <receive variable="cdl:getVariable(“tns:purchaseOrder”, “”, “”)"
 recordReference="record-the-channel-info" />
 </exchange>

 <exchange name="response”
 informationType="purchaseOrderAckType" action="respond">
 <send variable="cdl:getVariable(“tns:purchaseOrderAck”, “”, “”)" />
 <receive variable="cdl:getVariable(“tns:purchaseOrderAck”, “”, “”)" />
 recordReference=" recordBadPurchaseOrder " />
 </exchange>

 <exchange name="badPurchaseOrderAckException”
 informationType="badPOAckType" action="respond">
 <send variable="cdl:getVariable(“tns:badPurchaseOrderAck”, “”, “”)"
 causeException=”true” />
 <receive variable="cdl:getVariable(“tns:badPurchaseOrderAck”, “”, “”)"
 causeException=”true” />
 </exchange>

 <record name="record-the-channel-info" when="after">
 <source variable="cdl:getVariable(“tns:purchaseOrder, “”,
 “PO/CustomerRef”)"/>
 <target variable="cdl:getVariable(“tns:consumer-channel”, “”, “”)"/>
 </record>

 </interaction>
 </choreography>
</package>

