
 1

Web Services Choreography Description
Language, Version 1.0

Editor's Draft, 24 July 2004
This version:

TBD
Latest version:

TBD
Previous Version:

Not Applicable
Editors (alphabetically):

Nickolaos Kavantzas, Oracle, <nickolas.kavantzas@oracle.com>
David Burdett, Commerce One <david.burdett@commerceone.com>
Gregory Ritzinger, Novell <gritzinger@novell.com>

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract

The Web Services Choreography Description Language (WS-CDL) is an XML-
based language that describes peer-to-peer collaborations of parties by defining,
from a global viewpoint, their common and complementary observable behavior;
where ordered message exchanges result in accomplishing a common business
goal.
The Web Services specifications offer a communication bridge between the
heterogeneous computational environments used to develop and host
applications. The future of E-Business applications requires the ability to perform
long-lived, peer-to-peer collaborations between the participating services, within
or across the trusted domains of an organization.
The Web Services Choreography specification is targeted for composing
interoperable, peer-to-peer collaborations between any type of party regardless
of the supporting platform or programming model used by the implementation of
the hosting environment.

 2

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.
This is the First Public Working Draft of the Web Services Choreography
Description Language document.
It has been produced by the Web Services Choreography Working Group, which
is part of the Web Services Activity. Although the Working Group agreed to
request publication of this document, this document does not represent
consensus within the Working Group about Web Services Choreography
description language.
This document is a chartered deliverable of the Web Services Choreography
Working Group. It is an early stage document and major changes are expected in
the near future.
Comments on this document should be sent to public-ws-chor-
comments@w3.org (public archive). It is inappropriate to send discussion emails
to this address.
Discussion of this document takes place on the public public-ws-chor@w3.org
mailing list (public archive) per the email communication rules in the Web
Services Choreography Working Group charter.
This document has been produced under the 24 January 2002 CPP as amended
by the W3C Patent Policy Transition Procedure. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s)
with respect to this specification should disclose the information in accordance
with section 6 of the W3C Patent Policy. Patent disclosures relevant to this
specification may be found on the Working Group's patent disclosure page.
Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

Revision Description

This is the second editor's draft of the document.

 3

Table of Contents
Status of this Document..2
Revision Description ...2
1 Introduction ..4

1.1 Notational Conventions...5
1.2 Purpose of the Choreography Language..7
1.3 Goals ..8
1.4 Relationship with XML and WSDL..9
1.5 Relationship with Business Process Languages10

2 Choreography Model ...10
2.1 Model Overview..10
2.2 Choreography Document Structure ..11

2.2.1 Package ..11
2.2.2 Choreography document Naming and Linking13
2.2.3 Language Extensibility and Binding...13
2.2.4 Semantics..13

2.3 Collaborating Parties ..14
2.3.1 Roles ...14
2.3.2 Participants..14
2.3.3 Relationships...15
2.3.4 Channels ...15

2.4 Information Driven Collaborations ..17
2.4.1 Information Types..17
2.4.2 Variables ...18

2.4.2.1 Expressions ..20
2.4.3 Tokens...20
2.4.4 Choreographies...21
2.4.5 WorkUnits..23

2.4.5.1 Reacting..24
2.4.6 Reusing existing Choreographies..26

2.4.6.1 Composing Choreographies ...26
2.4.6.2 Importing Choreographies ..27

2.4.7 Choreography Life-line ..27
2.4.8 Choreography Recovery..28

2.4.8.1 Exception Block ..28
2.4.8.2 Finalizer Block ..29

2.5 Activities ...30
2.5.1 Ordering Structures ...30

2.5.1.1 Sequence..30
2.5.1.2 Parallel..31
2.5.1.3 Choice ..31

2.5.2 Interaction..31
2.5.2.1 Interaction State Changes ..32
2.5.2.2 Interaction Based Information Alignment32
2.5.2.3 Protocol Based Information Exchanges......................................33

 4

2.5.2.4 Interaction Life-line ...34
2.5.3 Performed Choreography ..38
2.5.4 Assigning Variables...39
2.5.5 Actions with non-observable effects ..40

3 Example...40
4 Relationship with the Security framework ..41
5 Relationship with the Reliable Messaging framework41
6 Relationship with the Transaction/Coordination framework41
7 Acknowledgments..42
8 References ..42
9 WS-CDL XSD Schemas ..43
10 WS-CDL Supplied Functions ...52

1 Introduction 1

For many years, organizations have being developing solutions for automating 2
peer-to-peer collaborations, within or across their trusted domain, in an effort to 3
improve productivity and reduce operating costs. 4
The past few years have seen the Extensible Markup Language (XML) and the 5
Web Services framework developing as the de-facto choices for describing 6
interoperable data and platform neutral business interfaces, enabling more open 7
business transactions to be developed. 8
Web Services are a key component of the emerging, loosely coupled, Web-9
based computing architecture. A Web Service is an autonomous, standards-10
based component whose public interfaces are defined and described using XML. 11
Other systems may interaction with the Web Service in a manner prescribed by 12
its definition, using XML based messages conveyed by Internet protocols. 13
The Web Services specifications offer a communication bridge between the 14
heterogeneous computational environments used to develop and host 15
applications. The future of E-Business applications requires the ability to perform 16
long-lived, peer-to-peer collaborations between the participating services, within 17
or across the trusted domains of an organization. 18
The Web Service architecture stack targeted for integrating interacting 19
applications consists of the following components: 20
• SOAP: defines the basic formatting of a message and the basic delivery 21

options independent of programming language, operating system, or platform. 22
A SOAP compliant Web Service knows how to send and receive SOAP-23
based messages 24

• WSDL: describes the static interface of a Web Service. It defines the protocol 25
and the message characteristics of end points. Data types are defined by 26
XML Schema specification, which supports rich type definitions and allows 27
expressing any kind of XML type requirement for the application data 28

 5

• UDDI: allows publishing the availability of a Web Service and its discovery 29
from service requesters using sophisticated searching mechanims 30

• Security layer: ensures that exchanged information are not modified or forged 31

• Reliable Messaging layer: provides exactly-once and guaranteed delivery of 32
information exchanged between parties 33

• Context, Coordination and Transaction layer: defines interoperable 34
mechanisms for propagating context of long-lived business transactions and 35
enables parties to meet correctness requirements by following a global 36
agreement protocol 37

• Business Process Languages layer: describes the execution logic of Web 38
Services based applications by defining their control flows (such as 39
conditional, sequential, parallel and exceptional execution) and prescribing 40
the rules for consistently managing their non-observable data 41

• Choreography layer: describes peer-to-peer collaborations of parties by 42
defining from a global viewpoint their common and complementary 43
observable behavior, where information exchanges occur, when the jointly 44
agreed ordering rules are satisfied 45

The Web Services Choreography specification is targeted for composing 46
interoperable, peer-to-peer collaborations between any type of party regardless 47
of the supporting platform or programming model used by the implementation of 48
the hosting environment. 49

1.1 Notational Conventions 50

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 51
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in 52
this document are to be interpreted as described in RFC-2119 [2]. 53
The following namespace prefixes are used throughout this document: 54

Prefix Namespace URI Definition

wsdl http://schemas.xmlsoap.org/wsdl/
WSDL namespace
for WSDL
framework.

cdl http://www.w3.org/ws/choreography/2004/02/WSCDL
WSCDL
namespace for
Choreography
language.

 6

xsi http://www.w3.org/2000/10/XMLSchema-instance
Instance
namespace as
defined by XSD
[10].

xsd http://www.w3.org/2000/10/XMLSchema
Schema
namespace as
defined by XSD
[10].

tns (various)

The "this
namespace" (tns)
prefix is used as a
convention to refer
to the current
document.

(other) (various)

All other
namespace prefixes
are samples only. In
particular, URIs
starting with
"http://sample.com"
represent some
application-
dependent or
context-dependent
URI [4].

This specification uses an informal syntax to describe the XML grammar of a 55
WS-CDL document: 56

• The syntax appears as an XML instance, but the values indicate the data 57
types instead of values. 58

• Characters are appended to elements and attributes as follows: "?" (0 or 1), 59
"*" (0 or more), "+" (1 or more). 60

• Elements names ending in "…" (such as <element…/> or <element…>) 61
indicate that elements/attributes irrelevant to the context are being omitted. 62

• Grammar in bold has not been introduced earlier in the document, or is of 63
particular interest in an example. 64

• <-- extensibility element --> is a placeholder for elements from some "other" 65
namespace (like ##other in XSD). 66

• The XML namespace prefixes (defined above) are used to indicate the 67
namespace of the element being defined. 68

 7

• Examples starting with <?xml contain enough information to conform to this 69
specification; others examples are fragments and require additional 70
information to be specified in order to conform. 71

XSD schemas are provided as a formal definition of WS-CDL grammar (see 72
Section 9). 73

1.2 Purpose of the Choreography Language 74

Business or other activities that involve multiple different organizations or 75
independent processes that collaborate using the Web Services technology can 76
be successful only if they are properly integrated. 77
To solve this problem, a "global" definition of the common ordering conditions 78
and constraints under which messages are exchanged is produced that 79
describes from a global viewpoint the common and complementary observable 80
behavior of all the partiesinvolved. Each party can then use the global definition 81
to build and test solutions that conform to it. 82
The main advantage of a global definition approach is that it separates the 83
process being followed by an individual business or system within a "domain of 84
control" from the definition of the sequence in which each business or system 85
exchanges information with others. This means that, as long as the "observable" 86
sequence does not change, the rules and logic followed within the domain of 87
control can change at will. 88
In real-world scenarios, corporate entities are often unwilling to delegate control 89
of their business processes to their integration partners. Choreography offers a 90
means by which the rules of participation within a collaboration can be clearly 91
defined and agreed to, jointly. Each entity may then implement its portion of the 92
Choreography as determined by the common view. 93
The figure below demonstrates a possible usage of the Choreography Language. 94

 8

 95

Figure 1: Integrating Web Services based applications using WS-CDL 96
In Figure 1, Company A and Company B wish to integrate their Web Services 97
based applications. The respective business analysts at both companies agree 98
upon the services involved in the collaboration, their interactions and their 99
common ordering and constraint rules under which the interactions occur and 100
then generate a Choreography Language based representation. 101
In the case of Company A, relies on a BPEL4WS [18] solution. Company B, 102
having greater legacy driven integration needs, relies on a J2EE [25] solution 103
incorporating Java and Enterprise Java Bean Components or a .NET [26] 104
solution incorporating C#. 105
In this example, a Choreography specifies the interoperability and interactions 106
between services across business entities, while leaving actual implementation 107
decisions in the hands of each individual company. Similarly, a Choreography 108
can specify the interoperability and interactions required to ensure compatability 109
between services within one business entity. 110

1.3 Goals 111

The primary goal of a Choreography Language is to specify a declarative, XML 112
based language that defines from a global viewpoint the common and 113
complementary observable behavior, where message exchanges occur, and 114
when the jointly agreed ordering rules are satisfied. 115
Some additional goals of this definition language are to permit: 116

 9

• Reusability. The same choreography definition is usable by different parties 117
operating in different contexts (industry, locale, etc.) with different software 118
(e.g. application software) 119

• Cooperation. Choreographies define the sequence of exchanging messages 120
between two (or more) independent parties or processes by describing how 121
they should cooperate 122

• Multi-Party Collaboration. Choreographies can be defined involving any 123
number of parties or processes 124

• Semantics. Choreographies can include human-readable documentation and 125
semantics for all the components in the choreography 126

• Composability. Existing Choreographies can be combined to form new 127
Choreographies that may be reused in different contexts 128

• Modularity. Choreographies can be defined using an "import" facility that 129
allows a choreography to be created from parts contained in several different 130
Choreographies 131

• Information Driven Collaboration. Choreographies describe how parties 132
maintain where they are in the choreography, by recording their exchanged 133
information and the observable state changes caused by these exchanges of 134
information, and also their reactions to them 135

• Information Alignment. Choreographies allow the parties that take part in 136
Choreographies to communicate and synchronize their observable state 137
changes and the actual values of the exchanged information as well 138

• Exception Handling. Choreographies can define how exceptional or unusual 139
conditions that occur while the choreography is performed are handled 140

• Transactionality. The processes or parties that take part in a choreography 141
can work in a "transactional" way with the ability to coordinate the outcome of 142
the long-lived collaborations, which include multiple, often recursive 143
collaboration units, each with its own business rules and goals 144

• Compatibility with other Specifications. This specification will work alongside 145
and complement other specifications such as the WS-Reliability [22], WS-146
Composite Application Framework (WS-CAF) [21], WS-Security [24], 147
Business Process Execution Language for WS (BPEL4WS) [18], etc. 148

1.4 Relationship with XML and WSDL 149

This specification depends on the following specifications: XML 1.0 [9], XML-150
Namespaces [10], XML-Schema 1.0 [11, 12] and XPath 1.0 [13]. In addition, 151
support for importing and referencing service definitions given in WSDL 2.0 [7] is 152
a normative part of this specification. 153

 10

1.5 Relationship with Business Process Languages 154

A Choreography Language is not an "executable business process description 155
language" [16, 17, 18, 19, 20] or an implementation language [23]. The role of 156
specifying the execution logic of an application will be covered by these 157
specifications. 158
A Choreography Language does not depend on a specific business process 159
implementation language. Thus, it can be used to specify truly interoperable, 160
peer-to-peer collaborations between any type of party regardless of the 161
supporting platform or programming model used by the implementation of the 162
hosting environment. Each party could be implemented by completely different 163
languages such as: 164

• Applications, whose implementation is based on executable business process 165
languages [16, 17, 18, 19, 20] 166

• Applications, whose implementation is based on general purpose 167
programming languages [23, 26] 168

• Or human controlled software agents 169

2 Choreography Model 170

This section introduces the Web Services Choreography Description Language 171
(WS-CDL) model. 172

2.1 Model Overview 173

WS-CDL describes interoperable, peer-to-peer collaborations between parties. In 174
order to facilitate these collaborations, services commit on mutual responsibilities 175
by establishing Relationships. Their collaboration takes place in a jointly agreed 176
set of ordering and constraint rules, whereby messages are exchanged between 177
the parties. 178
The Choreography model consists of the following notations: 179

• Participants, Roles and Relationships - In a Choreography, information is 180
always exchanged between Participants within the same or across trust 181
boundaries 182

• Types, Variables and Tokens - Variables contain information about commonly 183
observable objects in a collaboration, such as the messages exchanged or 184
the state of the Roles involved. Tokens are aliases that can be used to 185
reference parts of a Variable. Both Variables and Tokens have Types that 186
define the structure of what the Variable or Token contains 187

• Choreographies - A Choreography allows defining collaborations between 188
interacting peer-to-peer processes: 189

 11

o Choreography Composition allows the creation of new Choreographies by 190
reusing existing Choreography definitions 191

o Choreography Life-line expresses the progression of a collaboration. 192
Initially, the collaboration is started at a specific business process, then 193
work is performed by following the choreography and finally the 194
choreography completes, either normally or abnormally 195

o Choreography Recovery consists of: 196
� Choreography Exception Block - describes how to specify what 197

additional interactions should occur when a Choreography behaves in 198
an abnormal way 199

� Choreography Finalizer Block - describes how to specify what 200
additional interactions should occur to reverse the effect of an earlier 201
successfully completed choreography 202

• Channels - A Channel realizes a point of collaboration between parties by 203
specifying where and how information is exchanged 204

• WorkUnits - A WorkUnit prescribes constraints that must be fulfilled for 205
making progress within a Choreography 206

• Interactions - An Interaction is the basic building block of a Choreography, 207
which results in an exchange of messages between parties and possible 208
synchronization of their states and the actual values of the exchanged 209
information 210

• Activities and Ordering Structures - Activities are the lowest level components 211
of the Choreography that perform the actual work. Ordering Structures 212
combine activities with other Ordering Structures in a nested structure to 213
express the ordering conditions in which the messages in the choreography 214
are exchanged 215

• Semantics - Semantics allow the creation of descriptions that can record the 216
semantic definitions of every single component in the model 217

2.2 Choreography Document Structure 218

A WS-CDL document is simply a set of definitions. Each definition is a named 219
construct that can be referenced. There is a package element at the root, and the 220
individual Choreography definitions inside. 221

2.2.1 Package 222

The WS-CDL Package aggregates a set of Choreography definitions, provides a 223
namespace for the definitions and through import statements, includes parts of 224
choreography definitions defined in other Packages. 225

 12

The syntax of the package construct is: 226
 227
<package 228
 name="ncname" 229
 author="xsd:string"? 230
 version="xsd:string" 231
 targetNamespace="uri" 232
 xmlns="http://www.w3.org/ws/choreography/2004/02/WSCDL/" 233
 importDefinitions* 234
 informationType* 235
 token* 236
 tokenLocator* 237
 role* 238
 relationship* 239
 participant* 240
 channelType* 241
 Choreography-Notation* 242
</package> 243

The package element contains: 244

• Zero or more Import definitions 245

• Zero or more Information Types 246

• Zero or more Token types and Token Locators 247

• Zero or more Role types 248

• Zero or more Relationship types 249
• Zero or more Participants 250

• Zero or more Channel types 251

• Zero or more, package-level Choreographies 252
The top-level attributes author, and version, define authoring properties of the 253
Choreography document. 254
The targetNamespace attribute provides the namespace associated with all 255
definitions contained in this package. Choreography definitions imported to this 256
package may be associated with other namespaces. 257
The elements informationType, token, tokenLocator, role, relationship, participant 258
and channelType are shared by all the Choreographies defined within this 259
package. 260
The importDefinitions construct allows reusing Choreography types defined in 261
another Choreography package such as Token types, Token Locator types, 262
Information Types, Role types, Relationship types, Channel types and 263
Choreographies. 264

 13

2.2.2 Choreography document Naming and Linking 265

WS-CDL documents MUST be assigned a name attribute of type NCNAME that 266
serves as a lightweight form of documentation. 267
The targetNamespace attribute of type URI MUST be specified. 268
The URI MUST NOT be a relative URI. 269
A reference to a definition is made using a QName. 270
Each definition type has its own name scope. 271
Names within a name scope MUST be unique within a WS-CDL document. 272
The resolution of QNames in WS-CDL is similar to the resolution of QNames 273
described by the XML Schemas specification [11]. 274

2.2.3 Language Extensibility and Binding 275

To support extending the WS-CDL language, this specification allows the use of 276
extensibility elements and/or attributes defined in other XML namespaces. 277
Extensibility elements and/or attributes MUST use an XML namespace different 278
from that of WS-CDL. All extension namespaces used in a WS-CDL document 279
MUST be declared. 280
Extensions MUST NOT change the semantics of any element or attribute from 281
the WS-CDL namespace. 282
Within a WS-CDL document, the optional attribute id provides a distinct name 283
that can be used to uniquely reference a language construct. This attribute MAY 284
be defined inside any WS-CDL language element. 285

2.2.4 Semantics 286

Within a WS-CDL document, descriptions will be required to allow the recording 287
of semantics definitions. The optional description sub-element is used as a 288
textual description for documentation purposes. This element is allowed inside 289
any WS-CDL language element. 290
The information provided by the description element will allow for the recording of 291
semantics in any or all of the following ways: 292

• Text. This will be in plain text or possibly HTML and should be brief 293

• Document Reference. This will contain a URL to a document that more fully 294
describes the component. For example on the top level Choreography 295
Definition that might reference a complete paper 296

• Structured Attributes. This will contain machine processable definitions in 297
languages such as RDF or OWL 298

 14

Descriptions that are Text or Document References can be defined in multiple 299
different human readable languages. 300

2.3 Collaborating Parties 301

The WSDL specification describes the functionality of a service provided by a 302
party based on a stateless, connected, client-server model. The emerging Web 303
Based applications require the ability to exchange messages in a peer-to-peer 304
environment. In these types of environments a party represents a requester of 305
services provided by another party and is at the same time a provider of services 306
requested from other parties, thus creating mutual multi-party service 307
dependencies. 308
A WS-CDL document describes how a party is capable of engaging in peer-to-309
peer collaborations with the same party or with different parties. 310
Within a Choreography, information is always exchanged between Participants. 311
The Roles, Relationship and Channels define the coupling of the collaborating 312
parties. 313

2.3.1 Roles 314

A Role enumerates the observable behavior a party exhibits in order to 315
collaborate with other parties. For example the Buyer Role is associated with 316
purchasing of goods or services and the Supplier Role is associated with 317
providing those goods or services for a fee. 318
The syntax of the role construct is: 319
 320
<role name="ncname" > 321
 <behavior name="ncname" 322
 interface="qname"? />+ 323
</role> 324

Within the role element, the behavior element specifies a subset of the observable 325
behavior a party exhibits. A Role MUST contain one or more behavior elements. 326
The behavior element defines an optional interface attribute, which identifies a 327
WSDL interface type. A behavior without an interface describes a Role that is not 328
required to support a specific Web Service interface. 329

2.3.2 Participants 330

A Participant identifies a set of Roles that MUST be implemented by the same 331
entity or organization. Its purpose is to group together the parts of the observable 332
behavior that MUST be implemented by the same process. For example the 333
Seller Role in a Buyer-Seller Relationship MUST be implemented by the same 334
Participant that is the Seller in a Seller-Shipper Relationship. 335

 15

The syntax of the participant construct is: 336
 337
<participant name="ncname"> 338
 <role type="qname" />+ 339
</participant> 340

2.3.3 Relationships 341

A Relationship identifies the Role/Behavior Types where mutual commitments 342
between two parties MUST be made for them to collaborate successfully. For 343
example the Relationships between a Buyer and a Seller could include: 344

• A "Purchasing" Relationship, for the initial procurement of goods or services, 345
and 346

• A "Customer Management" Relationship to allow the Supplier to provide 347
service and support after the goods have been purchased or the service 348
provided 349

Although Relationships are always between two Roles, Choreographies involving 350
more than two Roles are possible. For example if the purchase of goods involved 351
a third-party Shipper contracted by the Supplier to deliver the Supplier’s goods, 352
then, in addition to the Purchasing and Customer Management Relationships 353
described above, the following Relationships might exist: 354

• A "Logistics Provider" Relationship between the Supplier and the Shipper, 355
and 356

• A "Goods Delivery" Relationship between the Buyer and the Shipper 357
The syntax of the relationship construct is: 358
 359
<relationship name="ncname"> 360
 <role type="qname" behavior="ncname" /> 361
 <role type="qname" behavior="ncname" /> 362
</relationship> 363

A relationship MUST have exactly two role types defined. 364
Within the role element, the behavior attribute points to a behavior type within the 365
role type specified by the type attribute of the role element. 366

2.3.4 Channels 367

A Channel realizes a point of collaboration between parties by specifying where 368
and how information is exchanged. Additionally, Channel information can be 369
passed among parties. This allows the modeling of both static and dynamic 370
message destinations when collaborating within a Choreography. For example, a 371
Buyer could specify Channel information to be used for sending delivery 372
information. The Buyer could then send the Channel information to the Seller 373

 16

who then forwards it to the Shipper. The Shipper could then send delivery 374
information directly to the Buyer using the Channel information originally supplied 375
by the Buyer. 376
A Channel MUST describe the Role and the reference type of a party, being the 377
target of an Interaction, which is then used for determining where and how to 378
send/receive information to/into the party. 379
A Channel MAY specify the instance identity of a process implementing the 380
behavior of a party, being the target of an Interaction. 381
A Channel MAY describe one or more logical conversations between parties, 382
where each conversation groups a set of related message exchanges. 383
One or more Channel(s) MAY be passed around from one Role to another. A 384
Channel MAY restrict the types of Channel(s) allowed to be exchanged between 385
the parties, through this Channel. Additionally, a Channel MAY restrict its usage 386
by specifying the number of times a Channel can be used. 387
The syntax of the channelType construct is: 388
 389
<channelType name="ncname" 390
 usage="once"|"unlimited"? 391
 action="request-respond"|"request"|"respond"? > 392
 393
 <passing channel="qname" 394
 action="request-respond"|"request"|"respond"? 395
 new="xsd:boolean"? />* 396
 397
 <role type="qname" behavior="ncname"? /> 398
 399
 <reference> 400
 <token type="qname"/>+ 401
 </reference> 402
 <identity> 403
 <token type="qname"/>+ 404
 </identity>* 405
</channelType> 406

The optional attribute usage is used to restrict the number of times a Channel can 407
be used. 408
The optional element passing describes the Channel(s) that are exchanged from 409
one Role to another Role, when using this Channel in an Interaction. In the case 410
where the operation used to exchange the Channel is of request-response type, 411
then the attribute action within the passing element defines if the Channel will be 412
exchanged during the request or during the response. The Channels exchanged 413
can be used in subsequent Interaction activities. If the element passing is missing 414
then this Channel can be used for exchanging business documents and all types 415
of Channels without any restrictions. 416
The element role is used to identify the Role of a party, being the target of an 417
Interaction, which is then used for statically determining where and how to 418
send/receive information to/into the party. 419

 17

The element reference is used for describing the reference type of a party, being 420
the target of an Interaction, which is then used for dynamically determining where 421
and how to send/receive information to/into the party. The service reference of a 422
party is distinguished by a set of Token types as specified by the token element 423
within the reference element. 424
The optional element identity MAY be used for identifying an instance of a 425
process implementing the behavior of a party and for identifying a logical 426
conversation between parties. The process identity and the different 427
conversations are distinguished by a set of Token types as specified by the token 428
element within the identity element. 429
The example below shows the definition of the Channel type RetailerChannel. 430
The Channel identifies the Role type the tns:Retailer. The address of the 431
Channel is specified in the reference element, whereas the process instance can 432
be identified using the identity element for correlation purposes. The passing 433
element allows an instance of a ConsumerChannel to be sent over the 434
RetailerChannel. 435
 436
<channelType name="RetailerChannel"> 437
 <passing channel="ConsumerChannel" action="request" /> 438
 <role type="tns:Retailer" behavior="retailerForConsumer"/> 439
 <reference> 440
 <token type="tns:retailerRef"/> 441
 </reference> 442
 <identity> 443
 <token type="tns:purchaseOrderID"/> 444
 </identity> 445
</channelType> 446

2.4 Information Driven Collaborations 447

A WS-CDL document allows defining information within a Choreography that can 448
influence the observable behavior of the collaborating parties. 449
Variables contain information about objects in the Choreography such as the 450
messages exchanged or the state of the Roles involved. Tokens are aliases that 451
can be used to reference parts of a Variable. Both Variables and Tokens have 452
Information Types that define the data structure of what the Variable or Token 453
contains. 454

2.4.1 Information Types 455

Information types describe the type of information used within a Choreography. 456
By introducing this abstraction, a Choreography definition avoids referencing 457
directly the data types, as defined within a WSDL document or an XML Schema 458
document. 459
The syntax of the informationType construct is: 460
 461

 18

<informationType name="ncname" 462
 type="qname"? | element="qname"? /> 463

The attributes type, and element describe the document to be an XML Schema 464
type, or an XML Schema element respectively. The document is of one of these 465
types exclusively. 466

2.4.2 Variables 467

Variables capture information about objects in a Choreography as defined by the 468
variable usage: 469

• Information Exchange Variables that contain information such as an Order 470
that is used to: 471
o Populate the content of a message to be sent, or 472
o Populated as a result of a message received 473

• State Variables that contain observable information about the State of a Role 474
as a result of information exchanged. For example: 475
o When a Buyer sends an order to a Seller, the Buyer could have a State 476

Variable called "OrderState" set to a value of "OrderSent" and once the 477
message was received by the Seller, the Seller could have an State 478
Variable called "OrderState" set to a value of "OrderReceived". Note that 479
the variable "OrderState" at the Buyer is a different variable to the 480
"OrderState" at the Seller 481

o Once an order is received, then it might be validated and checked for 482
acceptability in other ways that affect how the Choreography is performed. 483
This could require additional states to be defined for "Order State", such 484
as: "OrderError", which means an error was detected that stops 485
processing of the message, "OrderAccepted", which means that there 486
were no problems with the Order and it can be processed, and 487
"OrderRejected", which means, although there were no errors, it cannot 488
be processed, e.g. because a credit check failed 489

• Channel Variables. For example, a Channel Variable could contain 490
information such as the URL to which the message could be sent, the policies 491
that are to be applied, such as security, whether or not reliable messaging is 492
to be used, etc. 493

The value of Variables: 494

• Is available to all the Roles by initializing them prior to the start of a 495
Choreography 496

• Common Variables that contain information that is common knowledge to two 497
or more Roles, e.g. "OrderResponseTime" which is the time in hours in which 498
a response to an Order must be sent 499

 19

• Can be made available at a Role by populating them as a result of an 500
Interaction 501

• Can be made available at a Role by assigning data from other information 502
o Locally Defined Variables that contain information created and changed 503

locally by a Role. They can be Information Exchange, State or Channel 504
Variables as well as variables of other types. For example "Maximum 505
Order Amount" could be data created by a seller that is used together with 506
an actual order amount from an Order received to control the ordering of 507
the Choreography. In this case how Maximum Order Amount is calculated 508
and its value would not be known by the other Roles 509

• Can be used to determine the decisions and actions to be taken within a 510
Choreography 511

The variableDefinitions construct is used for defining one or more variables within 512
a Choreography block. 513
The syntax of the variableDefinitions construct is: 514
 515
<variableDefinitions> 516
 <variable name="ncname" 517
 informationType="qname"|channelType="qname" 518
 mutable="true|false"? 519
 free="true|false"? 520
 silent-action="true|false"? 521
 role="qname"? />+ 522
</variableDefinitions> 523

The defined variables can be of the following types: 524

• Information Exchange Variables, State Variables. The attribute 525
informationType describes the type of the variable 526

• Channel Variables. The attribute channelType describes the type of the 527
Channel 528

The optional attribute mutable, when set to "false" describes that the variable 529
information when initialized, cannot change anymore. 530
The optional attribute free, when set to "true" describes that a variable defined in 531
an enclosing Choreography is also used in this Choreography, thus sharing the 532
variable information. When the attribute free is set to "true", the variable type 533
MUST match the type of the variable defined in the enclosing Choreography. 534
The optional attribute free, when set to "false" describes that a variable is defined 535
in this Choreography. When the attribute free is set to "false", the variable 536
resolves to the closest enclosing Choreography, regardless of the type of the 537
variable. 538
The optional attribute silent-action, when set to "true" describes that activities used 539
for making this variable available MUST NOT be present in the Choreography. 540
The optional attribute role is used to specify the location at which the variable 541
information will reside. 542

 20

The following rules apply to Variable Definitions: 543

• If a variable is defined without a Role, it is implied that it is defined at all the 544
Roles that are part of the Relationships of the Choreography. For example if 545
Choreography C1 has Relationship R that has a tuple (Role1, Role2), then a 546
variable x defined in Chreography C1 without a Role attribute means it is 547
defined at Role1 and Role2 548

• The variable with channelType MUST be defined without a role attribute 549

2.4.2.1 Expressions 550

Expressions are used in an assign activity to create new variable information by 551
generating it from a constant value. 552
Predicate expressions are used in a Work Unit to specify its Guard condition. 553
The language used in WS-CDL for specifying expressions and query or 554
conditional predicates is XPath 1.0. Additionally, WS-CDL defines XPath function 555
extensions as described in Section 10. 556

2.4.3 Tokens 557

A Token is an alias for a piece of data in a variable or message that needs to be 558
used by a Choreography. Tokens differ from Variables in that Variables contain 559
values whereas Tokens contain information that defines the piece of the data that 560
is relevant. For example a Token for "Order Amount" within an Order business 561
could be an alias for an expression that pointed to the Order Amount element 562
within an XML document. This could then be used as part of a condition that 563
controls the ordering of a Choreography, for example "Order Amount > $1000". 564
All Tokens MUST have a type, for example, an Order Amount would be of type amount, 565
Order Id could be alphanumeric and counter an integer. 566
Tokens types reference a document fragment within a Choreography definition and 567
Token Locators provide a query mechanism to select them. By introducing these 568
abstractions, a Choreography definition avoids depending on specific message types, as 569
described by WSDL, or a specific query string, as specified by XPATH, but instead the 570
the query string can change without affecting the Choreography definition. 571
The syntax of the token construct is: 572
 573
<token name="ncname" informationType="qname" /> 574

The attribute informationType identifies the type of the document fragment. 575
The syntax of the tokenLocator construct is: 576
 577
<tokenLocator tokenName="qname" 578
 informationType="qname" 579
 query="XPath-expression"? /> 580

 21

The attribute tokenName identifies the name of the token type that the document 581
fragment locator is associated with. 582
The attribute informationType identifies the type on which the query is performed 583
to locate the token. 584
The attribute query defines the query string that is used to select a document 585
fragment within a document. 586
The example below shows that the token purchaseOrderID is of type xsd:int. The 587
two tokenLocators show how to access this token in "purchaseOrder" and 588
"purchaseOrderAck" messages. 589
 590
<token name="purchaseOrderID" informationType="xsd:int"/> 591
<tokenLocator tokenName="tns:purchaseOrderID" informationType="purchaseOrder" 592
query="/PO/OrderId"/> 593
<tokenLocator tokenName="tns:purchaseOrderID" informationType="purchaseOrderAck" 594
query="/POAck/OrderId"/> 595

2.4.4 Choreographies 596

A WS-CDL document defines agreed between parties, of alternative patterns of 597
behaviorA Choreography allows constructing global compositions of parties by 598
explicitly asserting their common and complementary observable behaviors. 599

A Choreography defined at the package level is called a top-level Choreography, 600
and does not share its context with other top-level Choreographies. A 601
Choreography performed within another Choreography is called an enclosed 602
Choreography. A Package MAY contain exactly one top-level Choreography, that 603
is explicitly marked as the root Choreography. The root Choreography is the only 604
top-level Choreography that MAY be initiated. The root Choreography is enabled 605
when it is initiated. All non-root, top-level Choreographies MAY be enabled when 606
performed. 607
A Choreography facilitates recursive composition, where combining two or more 608
Choreographies can form a new enclosing Choreography that may be re-used in 609
different contexts. 610
A Choreography MUST contain at least one Relationship type, enumerating the 611
observable behavior this Choreography requires its parties to exhibit. One or 612
more Relationships MAY be defined within a Choreography, modeling multi-party 613
collaborations. 614
A Choreography acts as a name scoping context as it restricts the visibility of 615
variable information. A variable defined in a Choreography is visible in this 616
Choreography and all its enclosed Choreographies, forming a Choreography 617
Visibility Horizon. 618
A Choreography MUST contains one Activity-Notation. The Activity-Notation 619
specifies the enclosed actions of the Choreography that perform the actual work. 620

 22

A Choreography can recover from exceptional conditions and provide finalization 621
actions by defining: 622

• One Exception block, which MAY be defined as part of the Choreography to 623
recover from exceptional conditions that can occur in that enclosing 624
Choreography 625

• One Finalizer block, which MAY be defined as part of the Choreography to 626
provide the finalization actions for that enclosing Choreography 627

The Choreography-Notation is used to define a root or a top-level Choreography. 628
The syntax is: 629
 630
<choreography name="ncname" 631
 complete="xsd:boolean XPath-expression"? 632
 isolation="dirty-write"| 633
 "dirty-read"|"serializable"? 634
 root="true"|"false"? > 635
 636
 <relationship type="qname" />+ 637
 638
 variableDefinitions? 639
 640
 Choreography-Notation* 641
 642
 Activity-Notation 643
 644
 <exception name="ncname"> 645
 WorkUnit-Notation+ 646
 </exception>? 647
 <finalizer name="ncname"> 648
 WorkUnit-Notation 649
 </finalizer>? 650
</choreography> 651

The optional complete attribute allows to explicitly complete a Choreography as 652
described below in the Choreography Life-line section. 653
The optional isolation attribute specifies when a variable information that is defined 654
in an enclosing and changed within an enclosed Choreography is visible to its 655
enclosing and sibling Choreographies: 656

• When isolation is set to "dirty-write", the variable information can be 657
immediately overwritten by actions in other Choreographies 658

• When isolation is set to "dirty-read", the variable information is 659
immediately visible to other Choreographies 660

• When isolation is set to "serializable", the variable information is visible to 661
other Choreographies only after this Choreography has ended 662
successfully 663

The relationship element within the choreography element enumerates the 664
Relationships this Choreography MAY participate in. 665
The optional variableDefinitions element defines the variables that are visible in 666
this Choreography and all its enclosed Choreographies and activities. 667

 23

The optional root element marks a top-level Choreography as the root 668
Choreography of a package. 669
The optional Choreography-Notation within the choreography element defines 670
the Choreographies that MAY be performed only within this Choreography. 671
The optional exception element defines the Exception block of a Choreography 672
by specifying one or more Exception Work Unit(s). 673
The optional finalizer element defines the Finalizer block of a Choreography by 674
specifying one Finalizer Work Unit. 675

2.4.5 WorkUnits 676

A Work Unit prescribes the constraints that must be fulfilled for making progress 677
within a Choreography. Examples of a Work Unit include: 678

• A Send PO Work Unit that includes Interactions for the Buyer to send an 679
Order, the Supplier to acknowledge the order, and then later accept (or 680
reject) the order. This work unit would probably not have a Guard 681

• An Order Delivery Error Work Unit that is performed whenever the Place 682
Order Work Unit did not reach a "normal" conclusion. This would have a 683
Guard condition that identifies the error – see also Choreography 684
Exceptions and Transactions 685

• A Change Order Work Unit that can be performed whenever an order 686
acknowledgement message has been received and an order rejection has 687
not been received 688

A Work Unit can prescribe explicit enforcing the constraints that preserve the 689
consistency of the collaborations commonly performed between the parties. 690
Using a Work Unit an application can recover from faults that are the result from 691
abnormal actions and also finalize completed actions that need to be logically 692
rolled back. 693
A Work Unit specifies the data dependencies that must be satisfied before 694
enabling one or more enclosed actions. These dependencies express interest(s) 695
on the availability of variable information that already exists or will be created in 696
the future. 697
Work Units interest(s) are matched when the required, one or more variable 698
information become available. Availability of some variable information does not 699
mean that a Work Unit matches immediately. Only when all variable information 700
required by a Work Unit become available, in the appropriate Visibility Horizon, 701
does matching succeed. Variable information available within a Choreography 702
MAY be matched with a Work Unit that will be enabled in the future. When the 703
matching succeeds the Work Unit is enabled. 704
A Work Unit MUST contain an Activity-Notation, which is enabled when its 705
enclosing Work Unit is enabled. 706

 24

A Work Unit completes successfully when all its enclosed actions complete 707
successfully. 708
A Work Unit that completes successfully MUST be considered again for matching 709
(based on its Guard condition), if its repetition condition evaluates to "true". 710
The WorkUnit-Notation is defined as follows: 711
 712
<workunit name="ncname" 713
 guard="xsd:boolean XPath-expression"? 714
 repeat="xsd:boolean XPath-expression"? 715
 block="true|false" > 716
 717
 Activity-Notation 718
</workunit> 719

The Activity-Notation specifies the enclosed actions of a Work Unit. 720
The optional guard attribute describes the reactive interest on the availability of 721
one or more, existing or future variable information and its usage is explained in 722
section 2.4.5.1. 723
The optional repeat attribute allows, when the condition it specifies evaluates to 724
"true", to make the current Work Unit considered again for matching (based on 725
the guard condition attribute). 726
The block attribute specifies whether the matching condition relies on the variable 727
that is currently available, or whether the Work Unit has to block for the variable 728
to be available and its usage is explained in section 2.4.5.1. 729
The WS-CDL functions, as described in Section 10, MAY be used within a guard, 730
and a repeat condition. 731

2.4.5.1 Reacting 732

A Reaction Guard describes a Work Unit’s interest for reacting on the availability 733
of variable information when a constraint condition, which based on the variable 734
information, is being satisfied. 735
The following rules apply when a Work Unit uses a Guard for reacting: 736

• When a Guard is not specified then the Work Unit always matches 737

• When a Guard is specified then: 738
o One or more variables can be specified in a Guard, using the WS-CDL 739

functions, as described in Section 10. Variables defined at different Roles 740
can be combined together in a Guard using only an “and” logical operator. 741

o When the block attribute is set to "false", then the Guard condition 742
assumes that the variable information is currently available. If either the 743
variable information is not available or the Guard condition evaluates to 744
"false", then the Work Unit matching fails and the Activity-Notation 745
enclosed within the Work Unit is skipped. 746

o When the block attribute is set to "true" and one or more variable(s) are not 747
available, then the Work Unit MUST block waiting for the variable 748

 25

information to become available. When the variable information specified 749
by the Guard condition become available then the Guard condition is 750
evaluated. If the Guard condition evaluates to "true", then the Work Unit is 751
matched. If the Guard condition evaluates to "false", then the Work Unit 752
matching fails and the Activity-Notation enclosed within the Work Unit is 753
skipped. 754

• When the WS-CDL function isAligned() is used in the Guard, it means that the 755
Work Unit that specifies the Guard is waiting for an appropriate alignment 756
Interaction to happen between the two Roles. When the isAligned() WS-CDL 757
function is used in a Guard, then the Relationship within the isAligned() MUST 758
be the subset of the Relationship that the immediate enclosing Choreography 759
defined in the example below, the Guard specifies that the enclosed Work 760
Unit is waiting for an alignment Interaction to happen between the customer 761
Role and the retailer Role: 762
 763

guard("cdl:isAligned("PurchaseOrder", "PurchaseOrder", 764
 "customer-retailer-relationship")") 765

The examples below demonstrate the possible use of a Work Unit: 766
a. Example of a Work Unit with block equals to "true": 767
In the following Work Unit, the Guard waits on the availability of 768
POAcknowledgement at customer Role and if it is already available, the activity 769
happens, otherwise, the activity waits until the variable POAcknowledgement is 770
initialized at the customer Role. 771
 772
<workunit name="POProcess" 773
 guard="cdl:getVariable("POAcknowledgement", 774
 "tns:customer")" 775
 block="true" 776
... <!--some activity --> 777
</workunit> 778

b. Example of a Work Unit with block equals to "false": 779
In the following Work Unit, the Guard checks if StockQuantity at retailer Role is 780
available and is greater than 10 and if so, the activity happens. If either the 781
Variable is not available or the value is less than 10, the matching condition is 782
"false" and the activity is skipped. 783
 784
<workunit name="Stockcheck" 785
 guard="cdl:getVariable("StockQuantity", "/Product/Qty", 786
 "retailer") > 10)" 787
 block="false" > 788
... <!--some activity --> 789
</workunit> 790

 26

2.4.6 Reusing existing Choreographies 791

Choreographies can be combined and built from other Choreographies. 792

2.4.6.1 Composing Choreographies 793

Choreography Composition is the creation of new Choreographies by reusing 794
existing Choreography definitions. For example if two separate Choreographies 795
were defined as follows: 796

• A Request for Quote (RFQ) Choreography that involves a Buyer Role 797
sending a request for a quotation for goods and services to a Supplier to 798
which the Supplier responds with either a "Quotation" or a "Decline to 799
Quote" message, and 800

• An Order Placement Choreography where the Buyer places and order for 801
goods or services and the Supplier either accepts the order or rejects it 802

You could then create a new "Quote and Order" Choreography by reusing the 803
two where the RFQ Choreography was executed first, and then, depending on 804
the outcome of the RFQ Choreography, the order was placed using the Order 805
Placement Choreography. 806
In this case the new Choreography is "composed" out of the two previously 807
defined Choreographies. These Choreographies may be specified either: 808

• Locally, i.e. they are included, in the same Choreography definition as the 809
Choreography that performed them, or 810

• Globally, i.e. they are specified in a separate Choreography definition that 811
is defined elsewhere and performed in the root Choreography using 812
perform construct 813

Using this approach, Choreographies can be recursively combined to support 814
Choreographies of any required complexity allowing more flexibility as 815
Choreographies defined elsewhere can be reused. 816
The example below shows a Choreography composition using an enclosed 817
Choreography: 818
The root Choreography "PurchaseChoreo" has an enclosed Choreography 819
"CustomerNotifyChoreo". The variable RetailerNotifyCustomer is visible to the 820
enclosed Choreography. 821
 822
<choreography name="PurchaseChoreo" root="true"> 823
... 824
 <variable name="purchaseOrderAtRetailer" informationType="purchaseOrder" 825
role="Retailer"/> 826
... 827
 <choreography name="CustomerNotifyChoreo"> 828
... 829
 </choreography> 830
 <workunit name="RetailerNotifyCustomer" 831
guard="cdl:getVariable(PoAckFromWareHouse, tns:WareHouse)"> 832
 perform choreographyName="CustomerNotifyChoreo" 833

 27

</workunit> 834
... 835
</choreography> <!--end of root choreography --> 836

2.4.6.2 Importing Choreographies 837

An Importing statement can contain references to a complete Choreography. 838
Importing statements must be interpreted in the sequence they occur. 839
When the Import statement contains references to variables or other data that 840
have the same identity, then the content of the later Import statement replaces 841
the same content referenced by the earlier Import statement. It also enables one 842
Choreography definition to effectively be "cloned" by replacing the definitions for 843
some or all of its variables. 844
The importDefinitions construct allows reusing Choreography types defined in 845
another Choreography package such as Token types, Token Locator types, 846
Information Types, Role types, Relationship types, Channel types and 847
Choreographies. 848
In addition, WSDL documents can be imported and their definitions reused. 849
The syntax of the importDefinitions construct is: 850
 851
<importDefinitions> 852
 <import namespace="uri" location="uri" />+ 853
</importDefinitions> 854

The namespace and location attributes provide the namespace names and 855
document location that contain additional Choreography and WSDL definitions 856
that MUST be imported into this package. 857

2.4.7 Choreography Life-line 858

A Choreography life-line expresses the progression of a collaboration. Initially, 859
the collaboration MUST be started, then work MAY be performed within it and 860
finally it MAY complete. These different phases are designated by explicitly 861
marked actions within the Choreography. 862
A root Choreography is initiated when the first Interaction, marked as the 863
Choreography initiator, is performed. Two or more interactions MAY be marked 864
as initiators, indicating alternative initiation actions. In this case, the first action 865
will initiate the Choreography and the other actions will enlist with the already 866
initiated Choreography. An Interaction designated as a Choreography initiator 867
MUST be the first action performed in a Choreography. If a Choreography has 868
two or more Work Units with interactions marked as initiators, then these are 869
mutually exclusive and the Choreography will be initiated when the first 870
Interaction occurs and the remaining Work Units will be disabled. All the 871
interactions not marked as initiators indicate that they will enlist with an already 872
initiated Choreography. 873

 28

A Choreography completes successfully when there are no more enabled Work 874
Unit(s) within it. Alternatively, a Choreography completes successfully if its 875
complete condition, defined by the optional complete attribute within the 876
choreography element, evaluates to "true" and there MUST NOT be any enabled 877
Work Unit(s) within it but there MAY be one or more Work Units still unmatched. 878

2.4.8 Choreography Recovery 879

One or more Exception WorkUnit(s) MAY be defined as part of an enclosing 880
Choreography to recover from exceptional conditions that may occur in that 881
Choreography. 882
A Finalizer WorkUnit MAY be defined as part of an enclosing Choreography to 883
provide the finalization actions that semantically rollback the completed enclosing 884
Choreography. 885

2.4.8.1 Exception Block 886

A Choreography can sometimes fail as a result of an exceptional circumstance or 887
error. Different types of exceptions are possible including this non-exhaustive list: 888

• Interaction Failures, for example the sending of a message did not succeed 889

• Protocol Based Exchange failures, for example no acknowledgement was 890
received as part of a reliable messaging protocol [22] 891

• Security failures, for example a Message was rejected by a recipient because 892
the digital signature was not valid 893

• Timeout errors, for example an Interaction did not complete within the 894
required time 895

• Validation Errors, for example an XML order document was not well formed or 896
did not conform to its schema definition 897

• Application "failures", for example the goods ordered were out of stock 898
To handle these and other "errors" separate Work Units are defined in the 899
Exception Block of a Choreography for each "exception" condition (as identified 900
by its Guards) that needs to be handled. Only one Work Unit per exception 901
SHOULD be performed. 902
When a Choreography encounters an exceptional condition it MAY need to act 903
on it. 904
One or more Exception WorkUnit(s) MAY be defined as part of the Exception 905
block of an enclosing Choreography for the purpose of handling the exceptional 906
conditions occurring on that Choreography. To handle these an Exception Work 907
Unit expresses interest on fault variable information that MAY become available. 908
A fault variable information is a result of: 909

• A fault occurring while performing an Interaction between parties 910

 29

• A timeout occuring while an Interaction between parties was not completed 911
within a specified time period 912

Exception Work Units are enabled when the enclosing Choregraphy is enabled. 913
An Exception Work Unit MAY be enabled only once for an enclosing 914
Choreography. Exception Work Units enabled in an enclosing Choreography 915
MAY behave as the default mechanism to recover from faults for all its enclosed 916
Choreographies. Exception Work Units enabled in an enclosed Choreography 917
MAY behave as a mechanism to recover from faults for any of its enclosing 918
Choreographies. 919
If a fault occurs within the top-level Choreography, then the faulted 920
Choreography completes unsuccessfully and its Finalizer WorkUnit is not 921
enabled. The actions, including enclosed Choreographies, enabled within the 922
faulted Choreography are completed abnormally before an Exception Work Unit 923
can be matched. 924
Within a Choreography only one Exception Work Unit MAY be matched. When 925
an Exception Work Unit matches, it enables its appropriate activities for 926
recovering from the fault. 927
Matching a fault with an Exception Work Unit is done as follows: 928
• If a fault is matched by an Exception Work Unit then the actions of the 929

matched Work Unit are enabled 930

• If a fault is not matched by an Exception Work Unit defined within the 931
Choreography in which the fault occurs, then the fault will be recursively 932
propagated to the enclosing Exception Work Unit until a match is successful 933

The actions within the Exception Work Unit MAY use variable information visible 934
in the Visibility Horizon of its enclosing Choreography as they stand at the current 935
time. 936
The actions of an Exception Work Unit MAY also fault. The semantics for 937
matching the fault and acting on it are the same as described in this section. 938

2.4.8.2 Finalizer Block 939

When a Choreography encounters an exceptional condition it MAY need to revert 940
the actions it had already completed, by providing finalization actions that 941
semantically rollback the effects of the completed actions. To handle these a 942
separate Finalizer Work Unit is defined in the Finalizer Block of a Choreography. 943
A Choreography MAY define one Finalizer Work Unit. 944
A Finalizer WorkUnit is enabled only after its enclosing Choreography completes 945
successfully. The Finalizer Work Unit may be enabled only once for an enclosing 946
Choreography. 947
The actions within the Finalizer Work Unit MAY use variable information visible in 948
the Visibility Horizon of its enclosing Choreography as they were at the time the 949
enclosing Choreography completed or as they stand at the current time. 950

 30

The actions of the Finalizer Work Unit MAY fault. The semantics for matching the 951
fault and acting on it are the same as described in the previous section. 952

2.5 Activities 953

Activities are the lowest level components of the Choreography, used to describe 954
the actual work. 955
An Activity-Notation is then either: 956

• A Ordering Structure – which combines Activities with other Ordering 957
Structures in a nested way to specify the ordering rules of activities within the 958
Choreography 959

• A WorkUnit-Notation 960

• A Basic Activity that performs the actual work. These are: 961
o Interaction, which results in an exchange of messages between parties 962

and possible synchronization of their states and the actual values of the 963
exchanged information 964

o A Perform, which means that a complete, separately defined 965
Choreography is performed 966

o An Assign, which assigns, within one Role, the value of one Variable to 967
the value of a Variable 968

o No Action, which means that the Choreography should take no particular 969
action at that point 970

2.5.1 Ordering Structures 971

An Ordering Structure is one of the following: 972

• Sequence 973

• Parallel 974

• Choice 975

2.5.1.1 Sequence 976

The sequence ordering structure contains one or more Activity-Notations. When 977
the sequence activity is enabled, the sequence element restricts the series of 978
enclosed Activity-Notations to be enabled sequentially, in the same order that 979
they are defined. 980
The syntax of this construct is: 981
 982
<sequence> 983
 Activity-Notation+ 984
</sequence> 985

 31

2.5.1.2 Parallel 986

The parallel ordering structure contains one or more Activity-Notations that are 987
enabled concurrently when the parallel activity is enabled. 988
The syntax of this construct is: 989
 990
<parallel> 991
 Activity-Notation+ 992
</parallel> 993

2.5.1.3 Choice 994

The choice ordering structure enables a Work Unit to define that only one of two 995
or more Activity-Notations should be performed. 996
When two or more activities are specified in a choice element, only one activity is 997
selected and the other activities are disabled. If the choice has Work Units with 998
Guards, the first Work Unit that matches the Guard condition is selected and the 999
other Work Units are disabled. If the choice has other activities, it is assumed 1000
that the selection criteria for the activities are non-observable. 1001
The syntax of this construct is: 1002
 1003
<choice> 1004
 Activity-Notation+ 1005
</choice> 1006

In the example below, choice element has two Interactions, processGoodCredit 1007
and processBadCredit. The Interactions have the same directionality, participate 1008
within the same Relationship and have the same fromRoles and toRoles names. 1009
If one Interaction happens, then the other one is disabled. 1010
 1011
<choice> 1012
 <interaction channelVariable="doGoodCredit-channel" operation="doCredit"> 1013
... 1014
 </interaction> 1015
 <interaction channelVariable="badCredit-channel" operation="doBadCredit"> 1016
 ... 1017
 </interaction> 1018
<choice> 1019

2.5.2 Interaction 1020

An Interaction is the basic building block of a Choreography, which results in the 1021
exchange of information between parties and possibly the synchronization of 1022
their states and the values of the exchanged information. 1023
An Interaction forms the base atom of the recursive Choreography composition, 1024
where multiple Interactions are combined to form a Choreography, which can 1025
then be used in different business contexts. 1026

 32

An Interaction is initiated when a party playing the requesting Role sends a 1027
request message, through a common Channel, to a party playing the accepting 1028
Role. The Interaction is continued when the accepting party, sends zero or one 1029
response message back to the requesting party. This means an Interaction can 1030
be one of two types: 1031

• A One-Way Interaction that involves the sending of a single message 1032

• A Request-Response Interaction when two messages are exchanged 1033
An Interaction also contains "references" to: 1034

• The From Role and To Role that are involved 1035

• The Message Content Type that is being exchanged 1036

• The Information Exchange Variables at the From Role and To Role that are 1037
the source and destination for the Message Content 1038

• The Channel Variable that specifies the interface and other data that describe 1039
where and how the message is to be sent 1040

• The Operation that specifies what the recipient of the message should do with 1041
the message when it is received 1042

• A list of potential State Changes that can occur and may be aligned at the 1043
From Role and the To Role as a result of carrying out the Interaction 1044

2.5.2.1 Interaction State Changes 1045

State variables contain information about the state of a Role as a result of 1046
information exchanged in the form of an Interaction. For example after an 1047
Interaction where an order is sent by a Buyer to a Seller, the Buyer could create 1048
the state variable "Order State" and assign the value "Sent" when the message 1049
was sent, and when the Seller received the order, the Seller could also create its 1050
own version of the "Order State" state variable and assign it the value 1051
"Received". 1052
As a result of a state change, several different state outcomes are possible, 1053
which can only be determined at run time. The Interaction MAY result in each of 1054
these allowed state changes, for example when an order is sent from a Buyer to 1055
a Seller the outcomes could be one of the following state changes: 1056
1) Buyer.OrderState = Sent, Seller.OrderState = Received 1057
2) Buyer.OrderState = SendFailure, Seller.OrderState not set 1058
3) Buyer.OrderState = AckReceived, Seller.OrderState = OrderAckSent 1059

2.5.2.2 Interaction Based Information Alignment 1060

In some Choreographies there may be a requirement that, when the Interaction 1061
is performed, the Roles in the Choreography have agreement on the outcome. 1062

 33

• More specifically within an Interaction, a Role may need to have a common 1063
understanding of the state creations/changes of one or more state variables 1064
that are complementary to one or more state variables of its partner Role 1065

• Additionally within an Interaction, a Role may need to have a common 1066
understanding of the values of the information exchange variables at the 1067
partner Role 1068

With Interaction Alignment both the Buyer and the Seller have a common 1069
understanding that: 1070

• State variables such as "Order State" variables at the Buyer and Seller, that 1071
have values that are complementary to each other, e.g. Sent at the Buyer and 1072
Received at the Seller, and 1073

• Information exchange variables that have the same types with the same 1074
content, e.g. The Order variables at the Buyer and Seller have the same 1075
Information Types and hold the same order information 1076

In WS-CDL an alignment Interaction MUST be explicitly used, in the cases where 1077
two interacting parties require the alignment of their states or their exchanged 1078
information between them. After the alignment Interaction completes, both 1079
parties progress at the same time, in a lock-step fashion and the variable 1080
information in both parties is aligned. Their variable alignment comes from the 1081
fact that the requesting party has to know that the accepting party has received 1082
the message and the other way around, the accepting party has to know that the 1083
requesting party has sent the message before both of them progress. There is no 1084
intermediate variable, where one party sends a message and then it proceeds 1085
independently or the other party receives a message and then it proceeds 1086
independently. 1087

2.5.2.3 Protocol Based Information Exchanges 1088

The one-way, request or response messages in an Interaction may also be 1089
implemented using a Protocol Based Exchange where a series of messages are 1090
exchanged according to some well-known protocol, such as the reliable 1091
messaging protocols defined in specifications such as WS-Reliability [22]. 1092
In both cases, the same or similar message content may be exchanged as in a 1093
simple Interaction, for example the sending of an Order between a Buyer and a 1094
Seller. Therefore some of the same state changes may result. 1095
However when protocols such as the reliable messaging protocols are used, 1096
additional state changes will occur. For example, if a Reliable Messaging 1097
protocol were being used then the Buyer, once confirmation of delivery of the 1098
message was received, would also know that the Seller's "Order State" variable 1099
was in the state "Received" even though there was no separate Interaction that 1100
described this. 1101

 34

2.5.2.4 Interaction Life-line 1102

The Channel through which an Interaction occurs is used to determine whether 1103
to enlist the Interaction with an already initiated Choreography or to initiate a new 1104
Choreography. 1105
Within a Choreography, two or more related Interactions MAY be grouped to 1106
form a logical conversation. The Channel through which an Interaction occurs is 1107
used to determine whether to enlist the Interaction with an already initiated 1108
conversation or to initiate a new conversation. 1109
An Interaction completes normally when the request and the response (if there is 1110
one) complete successfully. In this case the business documents and Channels 1111
exchanged during the request and the response (if there is one) result in the 1112
exchanged variable information being aligned between the two parties. 1113
An Interaction completes abnormally if the following faults occur: 1114

• The time-to-complete timeout identifies the timeframe within which an 1115
Interaction MUST complete. If this timeout occurs, after the Interaction was 1116
initiated but before it completed, then a fault is generated 1117

• A fault signals an exception condition during the management of a request or 1118
within a party when accepting the request 1119

In these cases the variable information remain the same at the both Roles as if 1120
this Interaction had never occurred. 1121
The syntax of the interaction construct is: 1122
 1123
<interaction name="ncname" 1124
 channelVariable="qname" 1125
 operation="ncname" 1126
 time-to-complete="xsd:duration"? 1127
 align="true"|"false"? 1128
 initiateChoreography="true"|"false"? > 1129
 1130
 <participate relationship="qname" 1131
 fromRole="qname" toRole="qname" /> 1132
 1133
 <exchange messageContentType="qname" 1134
 action="request"|"respond" > 1135
 <send variable="XPath-expression"? /> 1136
 1137
 <receive variable="XPath-expression"? /> 1138
 </exchange>* 1139
 1140
 <record name="ncname" 1141
 role="qname" action="request"|"respond" > 1142
 <source variable="XPath-expression" /> 1143
 <target variable="XPath-expression" /> 1144
 </record>* 1145
</interaction> 1146

The channel attribute specifies the Channel variable containing information of a 1147
party, being the target of an Interaction, which is used for determining where and 1148

 35

how to send/receive information to/into the party. The Channel variable used in 1149
an Interaction MUST be available at the two Roles before the Interaction occurs. 1150
At runtime, information about a Channel variable is expanded further. This 1151
requires that the messages in the Choreography also contain correlation 1152
information, for example by including: 1153

• A SOAP header that specifies the correlation data to be used with the 1154
Channel, or 1155

• Using the actual value of data within a message, for example the Order 1156
Number of the Order that is common to all the messages sent over the 1157
Channel 1158

In practice, when a Choreography is performed, several different ways of doing 1159
correlation may be employed which vary depending on the Channel Type. 1160
The attribute operation specifies a one-way or a request-response operation. The 1161
specified operation belongs to the interface, as identified by the role and behavior 1162
elements of the Channel used in the interaction activity. 1163
The optional time-to-complete attribute identifies the timeframe within which an 1164
Interaction MUST complete. 1165
The optional align attribute when set to "true" means that the Interaction results 1166
in the common understanding of both the information exchanged and the 1167
resulting state creations or changes at the ends of the Interaction as specified in 1168
the fromRole and the toRole. The default for this attribute is "false". 1169
An Interaction activity can be marked as a Choreography initiator when the 1170
optional initiateChoreography attribute is set to "true". The default for this attribute is 1171
"false". 1172
Within the participate element, the relationship attribute specifies the Relationship 1173
this Choreography participates in and the fromRole and toRole attributes specify the 1174
requesting and the accepting Roles respectively. 1175
The optional exchange element allows information to be exchanged during a one-1176
way request or a request/response Interaction. 1177
The messageContentType attribute, within the exchange element, identifies the 1178
informationType or the channelType of the information that is exchanged 1179
between the two Roles in an Interaction. 1180
The attribute action, within the exchange element, specifies the direction of the 1181
information exchanged in the Interaction: 1182

• When the action attribute is set to “request”, then the message exchange 1183
happens fromRole to toRole 1184

• When the action attribute is set to ”respond”, then the message exchange 1185
happens from toRole to fromRole 1186

Within the exchange element, the send element shows that information is sent from 1187
a Role and the receive element shows that information is received at a Role 1188
respectively in the Interaction: 1189

 36

• The optional variables specified within the send and receive elements MUST be 1190
of type as described in the messageContentType element 1191

• When the action element is set to "request", then the variable specified within 1192
the send element using the variable attribute MUST be defined at the fromRole 1193
and the variable specified within the receive element using the variable attribute 1194
MUST be defined at the toRole 1195

• When the action element is set to "respond", then the variable specified within 1196
the send element using the variable attribute MUST be defined at the toRole and 1197
the variable specified within the receive element using the variable attribute 1198
MUST be defined at fromRole 1199

The optional element record is used to create or change one or more variables at 1200
the ends of the Interaction, either at one or at both Roles. For example, the 1201
PurchaseOrder message contains the Channel of the Role "Customer" when 1202
sent to the Role "Retailer". This can be copied into the appropriate variable of the 1203
"Retailer" within the record element. When the align attribute is set to "true" for the 1204
Interaction, it also means that the Customer knows that the Retailer now has the 1205
contact information of the Customer. In another example, the Customer sets its 1206
state "OrderSent" to "true" and the Retailer sets its state "OrderReceived" to 1207
"true". Similarly the Customer sets "OrderAcknowledged" "true". 1208
The source and the target elements within the record element represent the variable 1209
names at the Role that is specified in the role attribute within the record element. 1210
The following rules apply for record: 1211

• One or more records MAY be defined at only one or both the Roles in an 1212
Interaction 1213

• A record MAY be defined before or after a request exchange or a response 1214
exchange. In addition a record MAY be defined even in the absence of an 1215
exchange 1216

The example below shows a complete Choreography that involves one 1217
Interaction. The Interaction happens from Role “Consumer” to Role “Retailer” on 1218
the Channel "retailer-channel" as a request/response message exchange. 1219

• The message purchaseOrder is sent from Consumer to Retailer as a request 1220
message 1221

• The message purchaseOrderAck is sent from Retailer to Consumer as a 1222
response message 1223

• The variable consumer-channel is populated at Retailer using the record 1224
element 1225

• The Interaction happens on the retailer-channel which has a token 1226
purchaseOrderID used as an identity of the channel. This identity element is 1227
used to identify the business process of the retailer 1228

 37

• The request message purchaseOrder contains the identity of the retailer 1229
business process as specified in the tokenLocator for purchaseOrder 1230
message 1231

• The response message purchaseOrderAck contains the identity of the 1232
consumer business process as specified in the tokenLocator for 1233
purchaseOrderAck message 1234

• The consumer-channel is sent as a part of purchaseOrder message from 1235
consumer to retailer on retailer-channel during the request. The record 1236
element populates the consumer-channel at the retailer role 1237
 1238

<package name="ConsumerRetailerChoreo" version="1.0" 1239
 <informationType name="purchaseOrderType" type="pons:PurchaseOrderMsg"/> 1240
 <informationType name="purchaseOrderAckType" type="pons:PurchaseOrderAckMsg"/> 1241
 <token name="purchaseOrderID" informationType="tns:intType"/> 1242
 <token name="retailerRef" informationType="tns:uriType"/> 1243
 <tokenLocator tokenName="tns:purchaseOrderID" 1244
 informationType="tns:purchaseOrderType" query="/PO/orderId"/> 1245
 <tokenLocator tokenName="tns:purchaseOrderID" 1246
 informationType="tns:purchaseOrderAckType" query="/PO/orderId"/> 1247
 <role name="Consumer"> 1248
 <behavior name="consumerForRetailer" interface="cns:ConsumerRetailerPT"/> 1249
 <behavior name="consumerForWarehouse" interface="cns:ConsumerWarehousePT"/> 1250
 </role> 1251
 <role name="Retailer"> 1252
 <behavior name="retailerForConsumer" interface="rns:RetailerConsumerPT"/> 1253
 </role> 1254
 <relationship name="ConsumerRetailerRelationship"> 1255
 <role type="tns:Consumer" behavior="consumerForRetailer"/> 1256
 <role type="tns:Retailer" behavior="retailerForConsumer"/> 1257
 </relationship> 1258
 <channelType name="ConsumerChannel"> 1259
 <role type="tns:Consumer"/> 1260
 <reference> 1261
 <token type="tns:consumerRef"/> 1262
 </reference> 1263
 <identity> 1264
 <token type="tns:purchaseOrderID"/> 1265
 </identity> 1266
 </channelType> 1267
 <channelType name="RetailerChannel"> 1268
 <passing channel="ConsumerChannel" action="request" /> 1269
 <role type="tns:Retailer" behavior="retailerForConsumer"/> 1270
 <reference> 1271
 <token type="tns:retailerRef"/> 1272
 </reference> 1273
 <identity> 1274
 <token type="tns:purchaseOrderID"/> 1275
 </identity> 1276
 </channelType> 1277
 <choreography name="ConsumerRetailerChoreo" root="true"> 1278
 <relationship type="tns:ConsumerRetailerRelationship"/> 1279
 <variableDefinitions> 1280
 <variable name="purchaseOrder" informationType="tns:purchaseOrderType" 1281
 silent-action="true" /> 1282
 <variable name="purchaseOrderAck" informationType="tns:purchaseOrderAckType" /> 1283
 <variable name="retailer-channel" channelType="tns:RetailerChannel"/> 1284
 <variable name="consumer-channel" channelType="tns:ConsumerChannel"/> 1285
 <interaction channelVariable="tns:retailer-channel " 1286

 38

 operation="handlePurchaseOrder" align="true" 1287
 initiateChoreography="true"> 1288
 <participate relationship="tns:ConsumerRetailerRelationship" 1289
 fromRole="tns:Consumer" toRole="tns:Retailer"/> 1290
 <exchange messageContentType="tns:purchaseOrderType" action="request"> 1291
 <send variable="cdl:getVariable(tns:purchaseOrder, tns:Consumer)"/> 1292
 <receive variable="cdl:getVariable(tns:purchaseOrder, tns:Retailer)"/> 1293
 </exchange> 1294
 <exchange messageContentType="purchaseOrderAckType" action="respond"> 1295
 <send variable="cdl:getVariable(tns:purchaseOrderAck, tns:Retailer)"/> 1296
 <receive variable="cdl:getVariable(tns:purchaseOrderAck, tns:Consumer)"/> 1297
 </exchange> 1298
 <record role="tns:Retailer" action="request"> 1299
 <source variable="cdl:getVariable(tns:purchaseOrder, PO/CustomerRef, 1300
tns:Retailer)"/> 1301
 <target variable="cdl:getVariable(tns:consumer-channel, tns:Retailer)"/> 1302
 </record> 1303
 </interaction> 1304
 </choreography> 1305
</package> 1306

2.5.3 Performed Choreography 1307

The perform activity enables a Choreography to specify that another 1308
Choreography is performed at this point in its definition, as an enclosed 1309
Choreography. The Choreography that is performed can be defined either within 1310
the same Choreography Definition or separately. 1311
The syntax of the perform construct is: 1312
 1313
<perform choreographyName="qname"> 1314
 <alias name="ncname"> 1315
 <this variable="XPath-expression" role="qname"/> 1316
 <free variable="XPath-expression" role="qname"/> 1317
 </alias>* 1318
</perform> 1319

Within the perform element the choreographyName attribute references a non-root 1320
Choreography defined in the same or in a different Choreography package that is 1321
to be performed. The performed Choreography can be defined locally within the 1322
same Choreography or globally, in the same or different Choreography package. 1323
The performed Choreography defined in a different package is conceptually 1324
treated as an enclosed Choreography. 1325
The optional alias element within the perform element enables information in the 1326
performing Choreography to be shared with the performed Choreography and 1327
vice versa. The role attribute aliases the Roles from the performing Choreography 1328
to the performed Choreography. 1329
The variable within the this element identifies a variable in the performing 1330
choreography that replaces the variable identified by the free element in the 1331
performed choreography. 1332
The following rules applywhen a Choreography is performed: 1333

 39

• The Choreography to be performed MUST NOT be a root Choreography 1334

• The Choreography to be performed MUST be defined either using a 1335
Choreography-Notation in the same Choreography or it MUST be a top-level 1336
Choreography with root attribute set to "false" in the same or different 1337
Choreography package 1338

• The roles within a single alias element must be carried out by the same 1339
participant 1340

• If the performed Choreography is defined within the performing 1341
Choreography, the variables that are in the visibility horizon are visible to the 1342
performed Choreography also 1343

• Performed Choreography, if not defined within the enclosing Choreography, 1344
can be used by other Choreographies and hence the contract is reusable 1345

• There should not be a cyclic dependency on the Choreographies performed. 1346
For example Choreography C1 is performing Choreography C2 which is 1347
performing Choreography C1 again 1348

The example below shows a Choreography performing another Choreography: 1349
The root Choreography "PurchaseChoreo" performs the Choreography 1350
"RetailerWarehouseChoreo" and aliases the variable "purchaseOrderAtRetailer" 1351
defined in the enclosing Choreography to "purchaseOrder" defined at the 1352
performed enclosed Choreography "RetailerWarehouseChoreo". Once aliased, 1353
the visibility horizon of the variable purchaseOrderAtRetailer is the same as it 1354
would be for the enclosed Choreography. 1355
 1356
<choreography name="PurchaseChoreo" root="true"> 1357
... 1358
 <variable name="purchaseOrderAtRetailer" 1359
 informationType="purchaseOrder" role="Retailer"/> 1360
... 1361
 <perform choreographyName="RetailerWarehouseChoreo"> 1362
 <alias name="aliasRetailer"> 1363
 <this variable="cdl:getVariable(tns:purchaseOrder, tns:Retailer)" 1364
 role="tns:Retailer"/> 1365
 <free variable="cdl:getVariable(tns:purchaseOrder, rwns:Retailer)" 1366
 role="rwns:Retailer"/> 1367
 </alias> 1368
 ... 1369
</choreography> 1370

2.5.4 Assigning Variables 1371

Assign is used to create or change and then make available within one Role, the 1372
value of one Variable using the value of another Variable. 1373
The assignments may include: 1374

 40

• Assigning one variable to another or a part of the variable to another variable 1375
so that a message received can be used to trigger/constrain, using a Work 1376
Unit Guard, or other Interactions 1377

• Assigning a locally defined variable to part of the data contained in an 1378
information exchange variable 1379

The syntax of the assign construct is: 1380
 1381
<assign role="qname"> 1382
 <copy name="ncname"> 1383
 <source variable="XPath-expression" /> 1384
 <target variable="XPath-expression" /> 1385
 </copy>+ 1386
</assign> 1387

The assign construct makes available at a Role the variable defined by the target 1388
element using the variable defined by the source element at the same Role. 1389
The following rules apply to assignment: 1390
• The source and the target variable MUST be of same type 1391

• The source and the target variable MUST be defined at the same Role 1392
The following example assigns the customer address part from 1393
PurchaseOrderMsg to CustomerAddress variable. 1394
 1395
<assign role="tns:retailer"> 1396
 <copy name="copyChannel"> 1397
 <source variable="cdl:getVariable("PurchaseOrderMsg", "/PO/CustomerAddress", 1398
 tns:retailer)" /> 1399
 <target variable="cdl:getVariable("CustomerAddress", tns:retailer)" /> 1400
 </copy> 1401
</assign> 1402

2.5.5 Actions with non-observable effects 1403

The Noaction activity models the performance of a silent action that has non-1404
observable effects on any of the collaborating parties. 1405
The syntax of the noaction construct is: 1406
 1407
<noaction/> 1408

3 Example 1409

To be completed 1410

 41

4 Relationship with the Security framework 1411

Because messages can have consequences in the real world, the collaboration 1412
parties will impose security requirements on the message exchanges. Many of 1413
these requirements can be satisfied by the use of WS-Security [24]. 1414

5 Relationship with the Reliable Messaging 1415
framework 1416

The WS-Reliability specification [22] provides a reliable mechanism to exchange 1417
business documents among collaborating parties. The WS-Reliability 1418
specification prescribes the formats for all messages exchanged without placing 1419
any restrictions on the content of the encapsulated business documents. The 1420
WS-Reliability specification supports one-way and request/response message 1421
exchange patterns, over various transport protocols (examples are HTTP/S, FTP, 1422
SMTP, etc.). The WS-Reliability specification supports sequencing of messages 1423
and guaranteed, exactly once delivery. 1424
A violation of any of these consistency guarantees results in an error condition, 1425
reflected in the Choreography as an Interaction fault. 1426

6 Relationship with the Transaction/Coordination 1427
framework 1428

In WS-CDL, two parties make progress by interacting. In the cases where two 1429
interacting parties require the alignment of their States or their exchanged 1430
information between them, an alignment Interaction is modeled in a 1431
Choreography. After the alignment Interaction completes, both parties progress 1432
at the same time, in a lock-step fashion. The variable information alignment 1433
comes from the fact that the requesting party has to know that the accepting 1434
party has received the message and the other way around, the accepting party 1435
has to know that the requesting party has sent the message before both of them 1436
progress. There is no intermediate variable, where one party sends a message 1437
and then it proceeds independently or the other party receives a message and 1438
then it proceeds independently. 1439
Implementing this type of handshaking in a distributed system requires support 1440
from a Transaction/Coordination protocol, where agreement of the outcome 1441
among parties can be reached even in the case of failures and loss of messages. 1442

 42

7 Acknowledgments 1443

To be completed 1444

8 References 1445

[1] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, Harvard 1446
University, March 1997 1447
[2] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", 1448
RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 1449
[3] http://www.w3.org/TR/html401/interaction/forms.html#submit-format 1450
[4] http://www.w3.org/TR/html401/appendix/notes.html#ampersands-in-uris 1451
[5] http://www.w3.org/TR/html401/interaction/forms.html#h-17.13.4 1452
[6] Simple Object Access Protocol (SOAP) 1.1 "http://www.w3.org/TR/2000/NOTE-SOAP-1453
20000508/" 1454
[7] Web Services Definition Language (WSDL) 2.0 1455
[8] Industry Initiative "Universal Description, Discovery and Integration" 1456
[9] W3C Recommendation "The XML Specification" 1457
[10] XML-Namespaces " Namespaces in XML, Tim Bray et al., eds., W3C, January 1999" 1458
http://www.w3.org/TR/REC-xml-names 1459
[11] W3C Working Draft "XML Schema Part 1: Structures". This is work in progress. 1460
[12] W3C Working Draft "XML Schema Part 2: Datatypes". This is work in progress. 1461
[13] W3C Recommendation "XML Path Language (XPath) Version 1.0" 1462
[14] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. 1463
Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 1464
[15] WSCI: Web Services Choreography Interface 1.0, A.Arkin et.al 1465
[16] XLANG: Web Services for Business Process Design 1466
[17] WSFL: Web Service Flow Language 1.0 1467
[18] BPEL: Business Process Execution Language 1.1 1468
[19] BPML: Business Process Modeling Language 1.0 1469
[20] XPDL: XML Processing Description Language 1.0 1470
[21] WS-CAF: Web Services Context, Coordination and Transaction Framework 1.0 1471
[22] Web Services Reliability 1.0 1472
[23] The Java Language Specification 1473
[24] Web Services Security 1474
[25] J2EE: Java 2 Platform, Enterprise Edition, Sun Microsystems 1475
[26] ECMA. 2001. Standard ECMA-334: C# Language Specification 1476

 43

9 WS-CDL XSD Schemas 1477

<?xml version="1.0" encoding="UTF-8"?> 1478
<schema 1479
 targetNamespace=http://www.w3.org/ws/choreography/2004/02/WSCDL/ 1480
 xmlns=http://www.w3.org/2001/XMLSchema 1481
 xmlns:cdl=http://www.w3.org/ws/choreography/2004/02/WSCDL/ 1482
 elementFormDefault="qualified"> 1483
 1484
 <complexType name="tExtensibleElements"> 1485
 <annotation> 1486
 <documentation> 1487
 This type is extended by other CDL component types to allow 1488
 elements and attributes from other namespaces to be added. 1489
 This type also contains the optional description element that 1490
 is applied to all CDL constructs. 1491
 </documentation> 1492
 </annotation> 1493
 <sequence> 1494
 <element name="description" minOccurs="0"> 1495
 <complexType mixed="true"> 1496
 <sequence minOccurs="0" maxOccurs="unbounded"> 1497
 <any processContents="lax"/> 1498
 </sequence> 1499
 </complexType> 1500
 </element> 1501
 <any namespace="##other" processContents="lax" 1502
 minOccurs="0" maxOccurs="unbounded"/> 1503
 </sequence> 1504
 <anyAttribute namespace="##other" processContents="lax"/> 1505
 1506
 </complexType> 1507
 <element name="package" type="cdl:tPackage"/> 1508
 <complexType name="tPackage"> 1509
 <complexContent> 1510
 <extension base="cdl:tExtensibleElements"> 1511
 <sequence> 1512
 <element name="importDefinitions" 1513
 type="cdl:tImportDefinitions" minOccurs="0" 1514
 maxOccurs="unbounded"/> 1515
 <element name="informationType" type="cdl:tInformationType" 1516
 minOccurs="0" maxOccurs="unbounded"/> 1517
 <element name="token" type="cdl:tToken" minOccurs="0" 1518
 maxOccurs="unbounded"/> 1519
 <element name="tokenLocator" type="cdl:tTokenLocator" 1520
 minOccurs="0" maxOccurs="unbounded"/> 1521
 <element name="role" type="cdl:tRole" minOccurs="0" 1522
 maxOccurs="unbounded"/> 1523
 <element name="relationship" type="cdl:tRelationship" 1524
 minOccurs="0" maxOccurs="unbounded"/> 1525
 <element name="participant" type="cdl:tParticipant" 1526
 minOccurs="0" maxOccurs="unbounded"/> 1527
 <element name="channelType" type="cdl:tChannelType" 1528
 minOccurs="0" maxOccurs="unbounded"/> 1529
 <element name="choreography" type="cdl:tChoreography" 1530
 minOccurs="0" maxOccurs="unbounded"/> 1531
 </sequence> 1532
 <attribute name="name" type="NCName" use="required"/> 1533
 <attribute name="author" type="string" use="optional"/> 1534
 <attribute name="version" type="string" use="required"/> 1535
 <attribute name="targetNamespace" type="anyURI" 1536

 44

 use="required"/> 1537
 </extension> 1538
 </complexContent> 1539
 </complexType> 1540
 1541
 <complexType name="tImportDefinitions"> 1542
 <complexContent> 1543
 <extension base="cdl:tExtensibleElements"> 1544
 <sequence> 1545
 <element name="import" type="cdl:tImport" 1546
 maxOccurs="unbounded"/> 1547
 </sequence> 1548
 </extension> 1549
 </complexContent> 1550
 </complexType> 1551
 1552
 <complexType name="tImport"> 1553
 <complexContent> 1554
 <extension base="cdl:tExtensibleElements"> 1555
 <attribute name="namespace" type="anyURI" use="required"/> 1556
 <attribute name="location" type="anyURI" use="required"/> 1557
 </extension> 1558
 </complexContent> 1559
 </complexType> 1560
 1561
 <complexType name="tInformationType"> 1562
 <complexContent> 1563
 <extension base="cdl:tExtensibleElements"> 1564
 <attribute name="name" type="NCName" use="required"/> 1565
 <attribute name="type" type="QName" use="optional"/> 1566
 <attribute name="element" type="QName" use="optional"/> 1567
 </extension> 1568
 </complexContent> 1569
 </complexType> 1570
 1571
 <complexType name="tToken"> 1572
 <complexContent> 1573
 <extension base="cdl:tExtensibleElements"> 1574
 <attribute name="name" type="NCName" use="required"/> 1575
 <attribute name="informationType" type="QName" 1576
 use="required"/> 1577
 </extension> 1578
 </complexContent> 1579
 </complexType> 1580
 1581
 <complexType name="tTokenLocator"> 1582
 <complexContent> 1583
 <extension base="cdl:tExtensibleElements"> 1584
 <attribute name="tokenName" type="QName" use="required"/> 1585
 <attribute name="informationType" type="QName" 1586
 use="required"/> 1587
 <attribute name="query" type="cdl:tXPath-expr" 1588
 use="optional"/> 1589
 </extension> 1590
 </complexContent> 1591
 </complexType> 1592
 1593
 <complexType name="tRole"> 1594
 <complexContent> 1595
 <extension base="cdl:tExtensibleElements"> 1596
 <sequence> 1597
 <element name="behavior" type="cdl:tBehavior" 1598
 maxOccurs="unbounded"/> 1599

 45

 </sequence> 1600
 <attribute name="name" type="NCName" use="required"/> 1601
 </extension> 1602
 </complexContent> 1603
 </complexType> 1604
 1605
 <complexType name="tBehavior"> 1606
 <complexContent> 1607
 <extension base="cdl:tExtensibleElements"> 1608
 <attribute name="name" type="NCName" use="required"/> 1609
 <attribute name="interface" type="QName" use="optional"/> 1610
 </extension> 1611
 </complexContent> 1612
 </complexType> 1613
 1614
 <complexType name="tRelationship"> 1615
 <complexContent> 1616
 <extension base="cdl:tExtensibleElements"> 1617
 <sequence> 1618
 <element name="role" type="cdl:tRoleRef" minOccurs="2" 1619
 maxOccurs="2"/> 1620
 </sequence> 1621
 <attribute name="name" type="NCName" use="required"/> 1622
 </extension> 1623
 </complexContent> 1624
 </complexType> 1625
 1626
 <complexType name="tRoleRef"> 1627
 <complexContent> 1628
 <extension base="cdl:tExtensibleElements"> 1629
 <attribute name="type" type="QName" use="required"/> 1630
 <attribute name="behavior" type="NCName" use="required"/> 1631
 </extension> 1632
 </complexContent> 1633
 </complexType> 1634
 1635
 <complexType name="tParticipant"> 1636
 <complexContent> 1637
 <extension base="cdl:tExtensibleElements"> 1638
 <sequence> 1639
 <element name="role" type="cdl:tRoleRef2" 1640
 maxOccurs="unbounded"/> 1641
 </sequence> 1642
 <attribute name="name" type="NCName" use="required"/> 1643
 </extension> 1644
 </complexContent> 1645
 </complexType> 1646
 1647
 <complexType name="tRoleRef2"> 1648
 <complexContent> 1649
 <extension base="cdl:tExtensibleElements"> 1650
 <attribute name="type" type="QName" use="required"/> 1651
 </extension> 1652
 </complexContent> 1653
 </complexType> 1654
 1655
 <complexType name="tChannelType"> 1656
 <complexContent> 1657
 <extension base="cdl:tExtensibleElements"> 1658
 <sequence> 1659
 <element name="passing" type="cdl:tPassing" minOccurs="0" 1660
 maxOccurs="unbounded"/> 1661
 <element name="role" type="cdl:tRoleRef3"/> 1662

 46

 <element name="reference" type="cdl:tReference"/> 1663
 <element name="identity" type="cdl:tIdentity" minOccurs="0" 1664
 maxOccurs="unbounded"/> 1665
 </sequence> 1666
 <attribute name="name" type="NCName" use="required"/> 1667
 <attribute name="usage" type="cdl:tUsage" use="optional" 1668
 default="unlimited"/> 1669
 <attribute name="action" type="cdl:tAction" use="optional" 1670
 default="request-respond"/> 1671
 </extension> 1672
 </complexContent> 1673
 </complexType> 1674
 1675
 <complexType name="tRoleRef3"> 1676
 <complexContent> 1677
 <extension base="cdl:tExtensibleElements"> 1678
 <attribute name="type" type="QName" use="required"/> 1679
 <attribute name="behavior" type="NCName" use="optional"/> 1680
 </extension> 1681
 </complexContent> 1682
 </complexType> 1683
 1684
 <complexType name="tPassing"> 1685
 <complexContent> 1686
 <extension base="cdl:tExtensibleElements"> 1687
 <attribute name="channel" type="QName" use="required"/> 1688
 <attribute name="action" type="cdl:tAction" use="optional" 1689
 default="request-respond"/> 1690
 <attribute name="new" type="boolean" use="optional" 1691
 default="true"/> 1692
 </extension> 1693
 </complexContent> 1694
 </complexType> 1695
 1696
 <complexType name="tReference"> 1697
 <complexContent> 1698
 <extension base="cdl:tExtensibleElements"> 1699
 <sequence> 1700
 <element name="token" type="cdl:tTokenReference" 1701
 maxOccurs="unbounded"/> 1702
 </sequence> 1703
 </extension> 1704
 </complexContent> 1705
 </complexType> 1706
 1707
 <complexType name="tTokenReference"> 1708
 <complexContent> 1709
 <extension base="cdl:tExtensibleElements"> 1710
 <attribute name="name" type="QName" use="required"/> 1711
 </extension> 1712
 </complexContent> 1713
 </complexType> 1714
 1715
 <complexType name="tIdentity"> 1716
 <complexContent> 1717
 <extension base="cdl:tExtensibleElements"> 1718
 <sequence> 1719
 <element name="token" type="cdl:tTokenReference" 1720
 maxOccurs="unbounded"/> 1721
 </sequence> 1722
 </extension> 1723
 </complexContent> 1724
 </complexType> 1725

 47

 1726
 <complexType name="tChoreography"> 1727
 <complexContent> 1728
 <extension base="cdl:tExtensibleElements"> 1729
 <sequence> 1730
 <element name="relationship" type="cdl:tRelationshipRef" 1731
 maxOccurs="unbounded"/> 1732
 <element name="variableDefinitions" 1733
 type="cdl:tVariableDefinitions" minOccurs="0"/> 1734
 <element name="choreography" type="cdl:tChoreography" 1735
 minOccurs="0" maxOccurs="unbounded"/> 1736
 <group ref="cdl:activity"/> 1737
 <element name="exception" type="cdl:tException" 1738
 minOccurs="0"/> 1739
 <element name="finalizer" type="cdl:tFinalizer" 1740
 minOccurs="0"/> 1741
 </sequence> 1742
 <attribute name="name" type="NCName" use="required"/> 1743
 <attribute name="complete" type="cdl:tBoolean-expr" 1744
 use="optional"/> 1745
 <attribute name="isolation" type="cdl:tIsolation" 1746
 use="optional" default="dirty-write"/> 1747
 <attribute name="root" type="boolean" use="optional" 1748
 default="false"/> 1749
 </extension> 1750
 </complexContent> 1751
 </complexType> 1752
 1753
 <complexType name="tRelationshipRef"> 1754
 <complexContent> 1755
 <extension base="cdl:tExtensibleElements"> 1756
 <attribute name="type" type="QName" use="required"/> 1757
 </extension> 1758
 </complexContent> 1759
 </complexType> 1760
 1761
 <complexType name="tVariableDefinitions"> 1762
 <complexContent> 1763
 <extension base="cdl:tExtensibleElements"> 1764
 <sequence> 1765
 <element name="variable" type="cdl:tVariable" 1766
 maxOccurs="unbounded"/> 1767
 </sequence> 1768
 </extension> 1769
 </complexContent> 1770
 </complexType> 1771
 1772
 <complexType name="tVariable"> 1773
 <complexContent> 1774
 <extension base="cdl:tExtensibleElements"> 1775
 <attribute name="name" type="NCName" use="required"/> 1776
 <attribute name="informationType" type="QName" 1777
 use="optional"/> 1778
 <attribute name="channelType" type="QName" use="optional"/> 1779
 <attribute name="mutable" type="boolean" use="optional" 1780
 default="true"/> 1781
 <attribute name="free" type="boolean" use="optional" 1782
 default="false"/> 1783
 <attribute name="silent-action" type="boolean" use="optional" 1784
 default="false"/> 1785
 <attribute name="role" type="QName" use="optional"/> 1786
 </extension> 1787
 </complexContent> 1788

 48

 </complexType> 1789
 1790
 <group name="activity"> 1791
 <choice> 1792
 <element name="sequence" type="cdl:tSequence"/> 1793
 <element name="parallel" type="cdl:tParallel"/> 1794
 <element name="choice" type="cdl:tChoice"/> 1795
 <element name="workunit" type="cdl:tWorkunit"/> 1796
 <element name="interaction" type="cdl:tInteraction"/> 1797
 <element name="perform" type="cdl:tPerform"/> 1798
 <element name="assign" type="cdl:tAssign"/> 1799
 <element name="noaction" type="cdl:tNoaction"/> 1800
 </choice> 1801
 </group> 1802
 1803
 <complexType name="tSequence"> 1804
 <complexContent> 1805
 <extension base="cdl:tExtensibleElements"> 1806
 <sequence> 1807
 <group ref="cdl:activity" maxOccurs="unbounded"/> 1808
 </sequence> 1809
 </extension> 1810
 </complexContent> 1811
 </complexType> 1812
 1813
 <complexType name="tParallel"> 1814
 <complexContent> 1815
 <extension base="cdl:tExtensibleElements"> 1816
 <sequence> 1817
 <group ref="cdl:activity" maxOccurs="unbounded"/> 1818
 </sequence> 1819
 </extension> 1820
 </complexContent> 1821
 </complexType> 1822
 <complexType name="tChoice"> 1823
 <complexContent> 1824
 <extension base="cdl:tExtensibleElements"> 1825
 <sequence> 1826
 <group ref="cdl:activity" maxOccurs="unbounded"/> 1827
 </sequence> 1828
 </extension> 1829
 </complexContent> 1830
 </complexType> 1831
 1832
 <complexType name="tWorkunit"> 1833
 <complexContent> 1834
 <extension base="cdl:tExtensibleElements"> 1835
 <sequence> 1836
 <group ref="cdl:activity"/> 1837
 </sequence> 1838
 <attribute name="name" type="NCName" use="required"/> 1839
 <attribute name="guard" type="cdl:tBoolean-expr" 1840
 use="optional"/> 1841
 <attribute name="repeat" type="cdl:tBoolean-expr" 1842
 use="optional"/> 1843
 <attribute name="block" type="boolean" use="required"/> 1844
 </extension> 1845
 </complexContent> 1846
 </complexType> 1847
 1848
 <complexType name="tPerform"> 1849
 <complexContent> 1850
 <extension base="cdl:tExtensibleElements"> 1851

 49

 <sequence> 1852
 <element name="alias" type="cdl:tAlias" 1853
 maxOccurs="unbounded"/> 1854
 </sequence> 1855
 <attribute name="choreographyName" type="QName" 1856
 use="required"/> 1857
 </extension> 1858
 </complexContent> 1859
 </complexType> 1860
 1861
 <complexType name="tAlias"> 1862
 <complexContent> 1863
 <extension base="cdl:tExtensibleElements"> 1864
 <sequence> 1865
 <element name="this" type="cdl:tAliasVariable"/> 1866
 <element name="free" type="cdl:tAliasVariable"/> 1867
 </sequence> 1868
 </extension> 1869
 </complexContent> 1870
 </complexType> 1871
 1872
 <complexType name="tAliasVariable"> 1873
 <complexContent> 1874
 <extension base="cdl:tExtensibleElements"> 1875
 <attribute name="variable" type="cdl:tXPath-expr" 1876
 use="required"/> 1877
 <attribute name="role" type="QName" use="required"/> 1878
 </extension> 1879
 </complexContent> 1880
 </complexType> 1881
 1882
 <complexType name="tInteraction"> 1883
 <complexContent> 1884
 <extension base="cdl:tExtensibleElements"> 1885
 <sequence> 1886
 <element name="participate" type="cdl:tParticipate"/> 1887
 <element name="exchange" type="cdl:tExchange" minOccurs="0" 1888
 maxOccurs="unbounded"/> 1889
 <element name="record" type="cdl:tRecord" minOccurs="0" 1890
 maxOccurs="unbounded"/> 1891
 </sequence> 1892
 <attribute name="name" type="NCName" use="required"/> 1893
 <attribute name="channelVariable" type="QName" 1894
 use="required"/> 1895
 <attribute name="operation" type="NCName" use="required"/> 1896
 <attribute name="time-to-complete" type="duration" 1897
 use="optional"/> 1898
 <attribute name="align" type="boolean" use="optional" 1899
 default="false"/> 1900
 <attribute name="initiateChoreography" type="boolean" 1901
 use="optional" default="false"/> 1902
 </extension> 1903
 </complexContent> 1904
 </complexType> 1905
 1906
 <complexType name="tParticipate"> 1907
 <complexContent> 1908
 <extension base="cdl:tExtensibleElements"> 1909
 <attribute name="relationship" type="QName" use="required"/> 1910
 <attribute name="fromRole" type="QName" use="required"/> 1911
 <attribute name="toRole" type="QName" use="required"/> 1912
 </extension> 1913
 </complexContent> 1914

 50

 </complexType> 1915
 1916
 <complexType name="tExchange"> 1917
 <complexContent> 1918
 <extension base="cdl:tExtensibleElements"> 1919
 <sequence> 1920
 <element name="send" type="cdl:tVariableRef"/> 1921
 <element name="receive" type="cdl:tVariableRef"/> 1922
 </sequence> 1923
 <attribute name="messageContentType" type="QName" 1924
 use="required"/> 1925
 <attribute name="action" type="cdl:tAction2" use="required"/> 1926
 </extension> 1927
 </complexContent> 1928
 </complexType> 1929
 1930
 <complexType name="tVariableRef"> 1931
 <complexContent> 1932
 <extension base="cdl:tExtensibleElements"> 1933
 <attribute name="variable" type="cdl:tXPath-expr" 1934
 use="required"/> 1935
 </extension> 1936
 </complexContent> 1937
 </complexType> 1938
 1939
 <complexType name="tRecord"> 1940
 <complexContent> 1941
 <extension base="cdl:tExtensibleElements"> 1942
 <sequence> 1943
 <element name="source" type="cdl:tVariableRef"/> 1944
 <element name="target" type="cdl:tVariableRef"/> 1945
 </sequence> 1946
 <attribute name="name" type="string" use="required"/> 1947
 <attribute name="role" type="QName" use="required"/> 1948
 <attribute name="action" type="cdl:tAction2" use="required"/> 1949
 </extension> 1950
 </complexContent> 1951
 </complexType> 1952
 1953
 <complexType name="tAssign"> 1954
 <complexContent> 1955
 <extension base="cdl:tExtensibleElements"> 1956
 <sequence> 1957
 <element name="copy" type="cdl:tCopy" 1958
 maxOccurs="unbounded"/> 1959
 </sequence> 1960
 <attribute name="role" type="QName" use="required"/> 1961
 </extension> 1962
 </complexContent> 1963
 </complexType> 1964
 1965
 <complexType name="tCopy"> 1966
 <complexContent> 1967
 <extension base="cdl:tExtensibleElements"> 1968
 <sequence> 1969
 <element name="source" type="cdl:tVariableRef"/> 1970
 <element name="target" type="cdl:tVariableRef"/> 1971
 </sequence> 1972
 <attribute name="name" type="NCName" use="required"/> 1973
 </extension> 1974
 </complexContent> 1975
 </complexType> 1976
 1977

 51

 <complexType name="tNoaction"> 1978
 <complexContent> 1979
 <extension base="cdl:tExtensibleElements"/> 1980
 </complexContent> 1981
 </complexType> 1982
 1983
 <complexType name="tException"> 1984
 <complexContent> 1985
 <extension base="cdl:tExtensibleElements"> 1986
 <sequence> 1987
 <element name="workunit" type="cdl:tWorkunit" 1988
 maxOccurs="unbounded"/> 1989
 </sequence> 1990
 <attribute name="name" type="NCName" use="required"/> 1991
 </extension> 1992
 </complexContent> 1993
 </complexType> 1994
 1995
 <complexType name="tFinalizer"> 1996
 <complexContent> 1997
 <extension base="cdl:tExtensibleElements"> 1998
 <sequence> 1999
 <element name="workunit" type="cdl:tWorkunit"/> 2000
 </sequence> 2001
 <attribute name="name" type="NCName" use="required"/> 2002
 </extension> 2003
 </complexContent> 2004
 </complexType> 2005
 2006
 <simpleType name="tAction"> 2007
 <restriction base="string"> 2008
 <enumeration value="request-respond"/> 2009
 <enumeration value="request"/> 2010
 <enumeration value="respond"/> 2011
 </restriction> 2012
 </simpleType> 2013
 2014
 <simpleType name="tAction2"> 2015
 <restriction base="string"> 2016
 <enumeration value="request"/> 2017
 <enumeration value="respond"/> 2018
 </restriction> 2019
 </simpleType> 2020
 2021
 <simpleType name="tUsage"> 2022
 <restriction base="string"> 2023
 <enumeration value="once"/> 2024
 <enumeration value="unlimited"/> 2025
 </restriction> 2026
 </simpleType> 2027
 2028
 <simpleType name="tBoolean-expr"> 2029
 <restriction base="string"/> 2030
 </simpleType> 2031
 2032
 <simpleType name="tXPath-expr"> 2033
 <restriction base="string"/> 2034
 </simpleType> 2035
 2036
 <simpleType name="tIsolation"> 2037
 <restriction base="string"> 2038
 <enumeration value="dirty-write"/> 2039
 <enumeration value="dirty-read"/> 2040

 52

 <enumeration value="serializable"/> 2041
 </restriction> 2042
 </simpleType> 2043
</schema> 2044

10 WS-CDL Supplied Functions 2045

There are several functions that the WS-CDL specification supplies as XPATH 2046
extension functions. These functions can be used in any XPath expression as 2047
long as the types are compatible. 2048
xsd:dateTime getCurrentTime() 2049
xsd:dateTime getCurrentDate() 2050
xsd:dateTime getCurrentDateTime() 2051
Returns the current date/time. 2052
 2053
xsd:string createNewID() 2054
Returns a new globally unique string value for use as an identifier. 2055
 2056
xsd:any* getVariable(xsd:string varName, xsd:string documentPath?, xsd:string 2057
roleName) 2058
Returns the information of the variable with name varName at a Role as a node 2059
set containing a single node. The second parameter is optional. When the 2060
second parameter is not used, this function retrieves from the variable 2061
information the entire document. When the second parameter is used, this 2062
function retrieves from the variable information, the fragment of the document at 2063
the provide absolute location path. 2064
 2065
xsd:boolean isAligned(xsd:string varName, xsd:string withVarName, xsd:string 2066
relationshipName) 2067
Returns "true" if the variable with name varName has aligned its information 2068
(states or values) with the variable named withVarName, within a Relationship as 2069
specified by the relationshipName. 2070

