
 1
2

3

4

Web Services Choreography Description
Language, Version 1.0

Editor's Draft, 08 December 2004 5

6
7
8
9

10
11
12
13
14
15
16

This version:
TBD

Latest version:
TBD

Previous Version:
Not Applicable

Editors:
Nickolas Kavantzas, Oracle
David Burdett, Commerce One
Gregory Ritzinger, Novell
Yves Lafon, W3C

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, 17
18 trademark, document use and software licensing rules apply.

Abstract 19

20
21
22
23
24
25
26
27
28
29
30
31

The Web Services Choreography Description Language (WS-CDL) is an XML-
based language that describes peer-to-peer collaborations of parties by defining,
from a global viewpoint, their common and complementary observable behavior;
where ordered message exchanges result in accomplishing a common business
goal.
The Web Services specifications offer a communication bridge between the
heterogeneous computational environments used to develop and host
applications. The future of E-Business applications requires the ability to perform
long-lived, peer-to-peer collaborations between the participating services, within
or across the trusted domains of an organization.
The Web Services Choreography specification is targeted for composing
interoperable, peer-to-peer collaborations between any type of party regardless

http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

of the supporting platform or programming model used by the implementation of
the hosting environment.

32
33

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
64

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.
This is the 3rd Public Working Draft of the Web Services Choreography
Description Language document.
It has been produced by the Web Services Choreography Working Group, which
is part of the Web Services Activity. This document represents consensus within
the Working Group about the Web Services Choreography description language.
This document is a chartered deliverable of the Web Services Choreography
Working Group.
Comments on this document should be sent to public-ws-chor-
comments@w3.org (public archive). It is inappropriate to send discussion emails
to this address.
Discussion of this document takes place on the public public-ws-chor@w3.org
mailing list (public archive) per the email communication rules in the Web
Services Choreography Working Group charter.
This document has been produced under the 24 January 2002 CPP as amended
by the W3C Patent Policy Transition Procedure. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s)
with respect to this specification should disclose the information in accordance
with section 6 of the W3C Patent Policy. Patent disclosures relevant to this
specification may be found on the Working Group's patent disclosure page.
Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

Revision Description

This is the 4th editor's draft of the Web Services Choreography Description
Language document.

http://www.w3.org/TR/
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/Activity
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/
mailto:public-ws-chor-comments@w3.org
mailto:public-ws-chor-comments@w3.org
http://lists.w3.org/Archives/Public/public-ws-chor-comments/
mailto:public-ws-chor@w3.org
http://lists.w3.org/Archives/Public/public-ws-chor/
http://www.w3.org/2003/01/wscwg-charter
http://www.w3.org/2003/01/wscwg-charter
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2002/ws/chor/3/01/17-IPR-statements.html

Table of Contents65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

Status of this Document..2
Revision Description ...2
1 Introduction ..5

1.1 Notational Conventions...6
1.2 Purpose of the Choreography Description Language.............................8
1.3 Goals ..9
1.4 Relationship with XML and WSDL..11
1.5 Relationship with Business Process Languages11
1.6 Time Assumptions ..11

2 Choreography Description Language Model..11
2.1 WS-CDL Model Overview...12
2.2 WS-CDL Document Structure...13

2.2.1 Choreography Package...13
2.2.2 Including WS-CDL Type Definitions ..14
2.2.3 WS-CDL document Naming and Linking15
2.2.4 Language Extensibility and Binding...15
2.2.5 Semantics..15

2.3 Collaborating Parties ..16
2.3.1 Role Types ..16
2.3.2 Relationship Types ..17
2.3.3 Participant Types...18
2.3.4 Channel Types ..19

2.4 Information Driven Collaborations ..21
2.4.1 Information Types..21
2.4.2 Variables ...23
2.4.3 Expressions...25

2.4.3.1 WS-CDL Supplied Functions ..25
2.4.4 Tokens...27
2.4.5 Choreographies...29
2.4.6 WorkUnits..31
2.4.7 Choreography Life-line ..35
2.4.8 Choreography Exception Handling..36
2.4.9 Choreography Finalization...38
2.4.10 Choreography Coordination ..39

2.5 Activities ...42
2.5.1 Ordering Structures ...43

2.5.1.1 Sequence..43
2.5.1.2 Parallel..43
2.5.1.3 Choice ..43

2.5.2 Interacting..44
2.5.2.1 Interaction Based Information Alignment45
2.5.2.2 Interaction Life-line ...46
2.5.2.3 Interaction Syntax ...46

2.5.3 Composing Choreographies..53

2.5.4 Assigning Variables ...56 110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 126

2.5.5 Marking Silent Actions ...57
2.5.6 Marking the Absence of Actions ..58
2.5.7 Finalizing a Choreography...58

3 Example...60
4 Relationship with the Security framework ..61
5 Relationship with the Reliable Messaging framework..................................61
6 Relationship with the Coordination framework...61
7 Relationship with the Addressing framework ...61
8 Conformance ...62
9 Acknowledgments..62
10 References ..63
11 Last Call Issues ...65

11.1 Issue 1 ..65
11.2 Issue 2 ..65

12 WS-CDL XSD Schemas ..66

1 Introduction 126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149

150
151
152
153
154

155
156
157

158
159

160
161

162
163

For many years, organizations have being developing solutions for automating
their peer-to-peer collaborations, within or across their trusted domain, in an
effort to improve productivity and reduce operating costs.
The past few years have seen the Extensible Markup Language (XML) and the
Web Services framework developing as the de facto choices for describing
interoperable data and platform neutral business interfaces, enabling more open
business transactions to be developed.
Web Services are a key component of the emerging, loosely coupled, Web-
based computing architecture. A Web Service is an autonomous, standards-
based component whose public interfaces are defined and described using XML.
Other systems may interact with a Web Service in a manner prescribed by its
definition, using XML based messages conveyed by Internet protocols.
The Web Services specifications offer a communication bridge between the
heterogeneous computational environments used to develop and host
applications. The future of E-Business applications requires the ability to perform
long-lived, peer-to-peer collaborations between the participating services, within
or across the trusted domains of an organization.
The Web Service architecture stack targeted for integrating interacting
applications consists of the following components:

• SOAP: defines the basic formatting of a message and the basic delivery
options independent of programming language, operating system, or
platform. A SOAP compliant Web Service knows how to send and receive
SOAP-based messages

• WSDL: describes the static interface of a Web Service. It defines the
message set and the message characteristics of end points. Data types
are defined by XML Schema specification, which supports rich type
definitions and allows expressing any kind of XML type requirement for the
application data

• Registry: allows publishing the availability of a Web Service and its
discovery from service requesters using sophisticated searching
mechanims

• Security layer: ensures that exchanged information are not modified or
forged in a verifiable manner and that parties can be authenticated

• Reliable Messaging layer: provides exactly-once and guaranteed delivery
of information exchanged between parties

• Context, Coordination and Transaction layer: defines interoperable
mechanisms for propagating context of long-lived business transactions

164
165

166
167
168
169

170
171
172
173
174
175
176
177

and enables parties to meet correctness requirements by following a
global agreement protocol

• Business Process Languages layer: describes the execution logic of Web
Services based applications by defining their control flows (such as
conditional, sequential, parallel and exceptional execution) and prescribing
the rules for consistently managing their non-observable data

• Choreography layer: describes collaborations of parties by defining from a
global viewpoint their common and complementary observable behavior,
where information exchanges occur, when the jointly agreed ordering
rules are satisfied

The Web Services Choreography specification is aimed at the composition of
interoperable collaborations between any type of party regardless of the
supporting platform or programming model used by the implementation of the
hosting environment.

1.1 Notational Conventions 178

179
180
181
182

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC-2119 [2].
The following namespace prefixes are used throughout this document:

Prefix Namespace URI Definition

wsdl http://www.w3.org/2004/08/wsdl
WSDL 2.0
namespace for
WSDL framework.

cdl http://www.w3.org/2004/12/ws-chor/cdl

WSCDL namespace
for Choreography
Description
Language.

xsi http://www.w3.org/2001/XMLSchema-instance

Instance
namespace as
defined by XSD
[11].

xsd http://www.w3.org/2001/XMLSchema

Schema
namespace as
defined by XSD
[12].

tns (various)

The "this
namespace" (tns)
prefix is used as a
convention to refer
to the current
document.

(other) (various)

All other
namespace prefixes
are samples only. In
particular, URIs
starting with
"http://sample.com"
represent some
application-
dependent or
context-dependent
URIs [4].

183
184

185
186

187
188

189
190
191

192
193

194
195

196
197

198
199
200
201

This specification uses an informal syntax to describe the XML grammar of a
WS-CDL document:

• The syntax appears as an XML instance, but the values indicate the data
types instead of values.

• Characters are appended to elements and attributes as follows: "?" (0 or
1), "*" (0 or more), "+" (1 or more).

• Elements names ending in "…" (such as <element…/> or <element…>)
indicate that elements/attributes irrelevant to the context are being
omitted.

• Grammar in bold has not been introduced earlier in the document, or is of
particular interest in an example.

• <-- extensibility element --> is a placeholder for elements from some
"other" namespace (like ##other in XSD).

• The XML namespace prefixes (defined above) are used to indicate the
namespace of the element being defined.

• Examples starting with <?xml contain enough information to conform to
this specification; other examples are fragments and require additional
information to be specified in order to conform.

An XSD is provided as a formal definition of WS-CDL grammar (see Section 11).

1.2 Purpose of the Choreography Description Language 202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

Business or other activities that involve different organizations or independent
processes are engaged in a collaborative fashion to achieve a common business
goal, such as Order Fulfillment.
For the collaboration to work successfully, the rules of engagement between all
the interacting parties must be provided. Whereas today these rules are
frequently written in English, a standardized way for precisely defining these
interactions, leaving unambiguous documentation of the parties and
responsibilities of each, is missing.
The Web Services Choreography specification is aimed at being able to precisely
describe collaborations between any type of party regardless of the supporting
platform or programming model used by the implementation of the hosting
environment.
Using the Web Services Choreography specification, a contract containing a
"global" definition of the common ordering conditions and constraints under
which messages are exchanged, is produced that describes, from a global
viewpoint, the common and complementary observable behavior of all the parties
involved. Each party can then use the global definition to build and test solutions
that conform to it. The global specification is in turn realized by combination of
the resulting local systems, on the basis of appropriate infrastructure support.
The advantage of a contract based on a global viewpoint as opposed to anyone
endpoint is that it separates the overall "global" process being followed by an
individual business or system within a "domain of control" (an endpoint) from the
definition of the sequences in which each business or system exchanges
information with others. This means that, as long as the "observable" sequences
do not change, the rules and logic followed within a domain of control (endpoint)
can change at will and interoperability is therefore guaranteed.
In real-world scenarios, corporate entities are often unwilling to delegate control
of their business processes to their integration partners. Choreography offers a
means by which the rules of participation within a collaboration can be clearly
defined and agreed to, jointly. Each entity may then implement its portion of the
Choreography as determined by the common or global view. It is the intent of
CDL that the conformance of each implementation to the common view
expressed in CDL is easy to determine.
The figure below demonstrates a possible usage of the Choreography
Description Language.

B u s i n e s s
A n a l y s t s

C h o r e o g r a p h y b e t w e e n
C o . A & C o . B

C h o r e o g r a p h y G U I

C o . A C o . B

W S - B P E L

G e n e r a t e d
W o r k f l o w

C o m p a n y A

J a v a

T r a d i t i o n a l
I n t e g r a t i o n

C o m p a n y B

W S - C D L

 239

240
241
242
243
244
245
246
247
248

249
250

251
252
253
254
255
256

Figure 1: Integrating Web Services based applications using WS-CDL
In Figure 1, Company A and Company B wish to integrate their Web Services
based applications. The respective business analysts at both companies agree
upon the services involved in the collaboration, their interactions, and their
common ordering and constraint rules under which the interactions occur. They
then generate a Choreography Description Language based representation. In
this example, a Choreography specifies the interactions between services across
business entities ensuring interoperability, while leaving actual implementation
decisions in the hands of each individual company:

• Company “A” relies on a WS-BPEL [18] solution to implement its own part
of the Choreography

• Company “B”, having greater legacy driven integration needs, relies on a
J2EE [25] solution incorporating Java and Enterprise Java Bean
Components or a .NET [26] solution incorporating C# to implement its own
part of the Choreography

Similarly, a Choreography can specify the interoperability and interactions
between services within one business entity.

1.3 Goals 257

258
259
260

The primary goal of a Choreography Description Language is to specify a
declarative, XML based language that defines from a global viewpoint the
common and complementary observable behavior specifically, the information

261
262
263
264

265
266
267

268
269
270

271
272

273
274

275
276

277
278
279

280
281
282
283

284
285
286

287
288
289

290
291
292
293
294

295
296
297
298

exchanges that occur and the jointly agreed ordering rules that need to be
satisfied.
More specifically, the goals of the Choreography Description Language are to
permit:

• Reusability. The same Choreography definition is usable by different
parties operating in different contexts (industry, locale, etc.) with different
software (e.g. application software)

• Cooperation. Choreographies define the sequence of exchanging
messages between two (or more) independent parties or processes by
describing how they should cooperate

• Multi-Party Collaboration. Choreographies can be defined involving any
number of parties or processes

• Semantics. Choreographies can include human-readable documentation
and semantics for all the components in the Choreography

• Composability. Existing Choreographies can be combined to form new
Choreographies that may be reused in different contexts

• Modularity. Choreographies can be defined using an "inclusion" facility
that allows a Choreography to be created from parts contained in several
different Choreographies

• Information Driven Collaboration. Choreographies describe how parties
make progress within a collaboration, through the recording of exchanged
information and changes to observable information that cause ordering
constraints to be fulfilled and progress to be made

• Information Alignment. Choreographies allow the parties that take part in
Choreographies to communicate and synchronize their observable
information

• Exception Handling. Choreographies can define how exceptional or
unusual conditions that occur while the Choreography is performed are
handled

• Transactionality. The processes or parties that take part in a
Choreography can work in a "transactional" way with the ability to
coordinate the outcome of the long-lived collaborations, which include
multiple participants, each with their own, non-observable business rules
and goals

• Specification Composability. This specification will work alongside and
complement other specifications such as the WS-Reliability [22], WS-
Composite Application Framework (WS-CAF) [21], WS-Security [24],
Business Process Execution Language for WS (WS-BPEL) [18], etc.

1.4 Relationship with XML and WSDL 299

300
301
302
303
304
305

The WS-CDL specification depends on the following specifications: XML 1.0 [9],
XML-Namespaces [10], XML-Schema 1.0 [11, 12] and XPath 1.0 [13]. Support
for including and referencing service definitions given in WSDL 2.0 [7] is a
normative part of the WS-CDL specification. In addition, support for including and
referencing service definitions given in WSDL 1.1 as constrained by WS-I Basic
Profile [Action: add references] is a normative part of the WS-CDL specification.

1.5 Relationship with Business Process Languages 306

307
308
309
310
311
312
313
314
315
316
317

318
319

320
321

322

A Choreography Description Language is not an "executable business process
description language" or an implementation language. The role of specifying the
execution logic of an application will be covered by these specifications [16, 17,
18, 19, 20, 23, 26].
A Choreography Description Language does not depend on a specific business
process implementation language. Thus, it can be used to specify truly
interoperable, collaborations between any type of party regardless of the
supporting platform or programming model used by the implementation of the
hosting environment. Each party, adhering to a Choreography Description
Language collaboration representation, could be implemented using completely
different mechanisms such as:

• Applications, whose implementation is based on executable business
process languages [16, 17, 18, 19, 20]

• Applications, whose implementation is based on general purpose
programming languages [23, 26]

• Or human controlled software agents

1.6 Time Assumptions 323

324
325
326
327
328
329

330

331
332

Clock synchronization is unspecified in the WS-CDL technical specification and is
considered design-specific. In specific environments between involved parties, it
can be assumed that all parties are reasonably well synchronized on second time
boundaries. However, finer grained time synchronization within or across parties,
or additional support or control are undefined and outside the scope of the WS-
CDL specification.

2 Choreography Description Language Model

This section introduces the Web Services Choreography Description Language
(WS-CDL) model.

2.1 WS-CDL Model Overview 333

334
335
336
337
338
339

340
341
342
343
344
345
346
347

348
349
350
351
352
353

354
355
356
357
358
359
360
361
362
363
364
365
366

367
368

369
370
371

372
373
374

WS-CDL describes interoperable, collaborations between parties. In order to
facilitate these collaborations, services commit to mutual responsibilities by
establishing Relationships. Their collaboration takes place in a jointly agreed set
of ordering and constraint rules, whereby information is exchanged between the
parties.
The WS-CDL model consists of the following entities:

• Participant Types, Role Types and Relationship Types - Within a
Choreography, information is always exchanged between parties within or
across trust boundaries. A Role Type enumerates the observable behavior
a party exhibits in order to collaborate with other parties. A Relationship
Type identifies the mutual commitments that must be made between two
parties for them to collaborate successfully. A Participant Type is grouping
together those parts of the observable behavior that must be implemented
by the same logical entity or organization

• Information Types, Variables and Tokens - Variables contain information
about commonly observable objects in a collaboration, such as the
information exchanged or the observable information of the Roles
involved. Tokens are aliases that can be used to reference parts of a
Variable. Both Variables and Tokens have Types that define the structure
of what the Variable contains or the Token references

• Choreographies - Choreographies define collaborations between
interacting parties:

o Choreography Life-line – The Choreography Life-line expresses the
progression of a collaboration. Initially, the collaboration is
established between parties, then work is performed within it and
finally it completes either normally or abnormally

o Choreography Exception Blocks - An Exception Block specifies
what additional interactions should occur when a Choreography
behaves in an abnormal way

o Choreography Finalizer Blocks - A Finalizer Block describes how to
specify additional interactions that should occur to modify the effect
of an earlier successfully completed Choreography, for example to
confirm or undo the effect

• Channels - A Channel realizes a point of collaboration between parties by
specifying where and how information is exchanged

• Work Units - A Work Unit prescribes the constraints that must be fulfilled
for making progress and thus performing actual work within a
Choreography

• Activities and Ordering Structures - Activities are the lowest level
components of the Choreography that perform the actual work. Ordering
Structures combine activities with other Ordering Structures in a nested

375
376

377
378
379
380

381
382

structure to express the ordering conditions in which information within the
Choreography is exchanged

• Interaction Activity - An Interaction is the basic building block of a
Choreography, which results in an exchange of information between
parties and possible synchronization of their observable information
changes and the actual values of the exchanged information

• Semantics - Semantics allow the creation of descriptions that can record
the semantic definitions of every component in the model

2.2 WS-CDL Document Structure 383

384
385
386

A WS-CDL document is simply a set of definitions. Each definition is a named
construct that can be referenced. There is a package element at the root, and the
individual Choreography type definitions inside.

2.2.1 Choreography Package 387

388
389
390
391
392
393
394

A Choreography Package aggregates a set of WS-CDL type definitions, provides
a namespace for the definitions and through the use of XInclude [27], MAY
syntactically include WS-CDL type definitions that are defined in other
Choreography Packages.

The syntax of the package construct is:

<package 395
 name="ncname" 396
 author="xsd:string"? 397
 version="xsd:string"? 398
 targetNamespace="uri" 399
 xmlns=”http://www.w3.org/2004/12/ws-chor/cdl”> 400
 401
 informationType* 402
 token* 403
 tokenLocator* 404
 roleType* 405
 relationshipType* 406
 participantType* 407
 channelType* 408
 409
 Choreography-Notation* 410
</package> 411

412
413

414

415

The Choreography Package contains:

• Zero or more Information Types

• Zero or more Tokens and Token Locators

416

417

418

419

420
421
422
423
424
425
426
427
428
429

• Zero or more Role Types

• Zero or more Relationship Types

• Zero or more Participant Types

• Zero or more Channel Types

• Zero or more Package-level Choreographies
The top-level attributes name, author, and version define authoring properties of the
Choreography document.
The targetNamespace attribute provides the namespace associated with all WS-
CDL type definitions contained in this Choreography Package. WS-CDL type
definitions included in this Package, using the inclusion mechanism, MAY be
associated with other namespaces.
The elements informationType, token, tokenLocator, roleType, relationshipType,
participantType and channelType MAY be used as elements by all the
Choreographies defined within this Choreography Package.

2.2.2 Including WS-CDL Type Definitions 430

431
432
433
434
435
436
437
438
439
440
441
442
443
444

WS-CDL type definitions or fragments of WS-CDL type definitions can be
syntactically reused in any WS-CDL type definition by using XInclude [27]. The
assembly of large WS-CDL type definitions from multiple smaller, well-formed
WS-CDL type definitions or WS-CDL type definitions fragments is enabled using
this mechanism.
Inclusion of fragments of other WS-CDL type definitions SHOULD be done
carefully in order to avoid duplicate definitions (Variables, blocks, etc.). A WS-
CDL processor MUST ensure that the document is correct before processing it.
The correctness may involve XML well-formedness as well as semantic
checks, such as unicity of Variable definitions, of a single root Choreography,
etc.
The example below shows some possible syntactic reuses of Choreography type
definitions.

<choreography name="newChoreography” root="true"> 445
... 446
 <variable name="newVariable" informationType="someType" 447
 role="randomRome"/> 448
 <xi:include href="genericVariableDefinitions.xml" /> 449
 <xi:include href="otherChoreography.xml" 450
 xpointer="xpointer(//choreography/variable[1]) /> 451
... 452
</choreography> 453

2.2.3 WS-CDL document Naming and Linking 454

455
456
457
458
459
460
461
462
463

WS-CDL documents MUST be assigned a name attribute of type NCNAME that
serves as a lightweight form of documentation.
The targetNamespace attribute of type URI MUST be specified.
The URI MUST NOT be a relative URI.
A reference to a definition is made using a QName.
Each definition type has its own name scope.
Names within a name scope MUST be unique within a WS-CDL document.
The resolution of QNames in WS-CDL is similar to the resolution of QNames
described by the XML Schemas specification [11].

2.2.4 Language Extensibility and Binding 464

465
466
467
468
469
470
471

To support extending the WS-CDL language, this specification allows the use of
extensibility elements and/or attributes defined in other XML namespaces.
Extensibility elements and/or attributes MUST use an XML namespace different
from that of WS-CDL. All extension namespaces used in a WS-CDL document
MUST be declared.
Extensions MUST NOT change the semantics of any element or attribute from
the WS-CDL namespace.

2.2.5 Semantics 472

473
474
475
476
477
478

479

480
481

482
483
484
485

Within a WS-CDL document, descriptions allow the recording of semantic
definitions and other documentation. The OPTIONAL description sub-element is
allowed inside any WS-CDL language element. WS-CDL parsers are not
required to parse the contents of the description.
The information provided by the description sub-element will allow for the recording
of semantics in any or all of the following ways:

• Text. This will be in plain text or possibly HTML and should be brief

• Document Reference. This will contain a URI to a document that more
fully describes the component

• Machine Oriented Semantic Descriptions. This will contain machine
processable definitions in languages such as RDF or OWL

Descriptions that are text or document references can be defined in multiple
different human readable languages.

2.3 Collaborating Parties 486

487
488
489
490
491
492
493
494
495
496
497

The WSDL specification [7] describes the functionality of a service provided by a
party based on a stateless, client-server model. The emerging Web Based
applications require the ability to exchange information in a peer-to-peer
environment. In these types of environments a party represents a requester of
services provided by another party and is at the same time a provider of services
requested from other parties, thus creating mutual multi-party service
dependencies.
A WS-CDL document describes how a party is capable of engaging in
collaborations with the same party or with different parties.
The Role Types, Participant Types, Relationship Types and Channel Types
define the coupling of the collaborating parties.

2.3.1 Role Types 498

499
500
501
502
503
504
505

ARole Type enumerates the observable behavior a party exhibits in order to
collaborate with other parties. For example the “Buyer” Role Type is associated
with purchasing of goods or services and the “Supplier” Role Type is associated
with providing those goods or services for a fee.

The syntax of the roleType construct is:

<roleType name="ncname"> 506
 <behavior name="ncname" interface="qname"? />+ 507
</roleType> 508

509
510
511
512
513
514
515
516
517
518
519

The attribute name is used for specifying a distinct name for each roleType element
declared within a Choreography Package.
Within the roleType element, the behavior element specifies a subset of the
observable behavior a party exhibits. A Role Type MUST contain one or more
behavior elements. The attribute name within the behavior element is used for
specifying a distinct name for each behavior element declared within a roleType
element.
The behavior element defines an OPTIONAL interface attribute, which identifies a
WSDL interface type. A behavior without an interface describes a Role Type that is
not required to support a specific Web Service interface.

2.3.2 Relationship Types 520

521
522
523
524

525
526

527
528
529
530
531
532
533
534
535

536
537

538
539
540
541

A Relationship Type identifies the Role Types and Behaviors, where mutual
commitments between two parties MUST be made for them to collaborate
successfully. For example the Relationship Types between a Buyer and a Seller
could include:

• A "Purchasing" Relationship Type, for the initial procurement of goods or
services, and

• A "Customer Management" Relationship Type to allow the Supplier to
provide service and support after the goods have been purchased or the
service provided

Although Relationship Types are always between two Role Types,
Choreographies involving more than two Role Types are possible. For example if
the purchase of goods involved a third-party Shipper contracted by the Supplier
to deliver the Supplier’s goods, then, in addition to the “Purchasing” and
“Customer Management” Relationship Types described above, the following
Relationship Types might exist:

• A "Logistics Provider" Relationship Type between the Supplier and the
Shipper, and

• A "Goods Delivery" Relationship Type between the Buyer and the Shipper

The syntax of the relationshipType construct is:

<relationshipType name="ncname"> 542
 <role type="qname" behavior="list of ncname"? /> 543
 <role type="qname" behavior="list of ncname"? /> 544
</relationshipType> 545

546
547
548
549
550
551
552
553
554

The attribute name is used for specifying a distinct name for each relationshipType
element declared within a Choreography Package.
A relationshipType element MUST have exactly two Role Types defined. Each Role
Type is specified by the type attribute within the role element.
Within each role element, the OPTIONAL attribute behavior identifies the
commitment of a party as an XML-Schema list of behavior types belonging to this
Role Type. If the behavior attribute is missing then all the behaviors belonging to
this Role Type are identified as the commitment of a party.

2.3.3 Participant Types 555

556
557
558
559
560
561
562

A Participant Type identifies a set of Role Types that MUST be implemented by
the same logical entity or organization. Its purpose is to group together the parts
of the observable behavior that MUST be implemented by the same logical entity
or organization.

The syntax of the participantType construct is:

<participantType name="ncname"> 563
 <role type="qname" />+ 564
</participantType> 565

566
567
568
569
570
571
572
573
574
575
576
577
578

The attribute name is used for specifying a distinct name for each participantType
element declared within a Choreography Package.
Within the participantType element, one or more role elements identify the Role
Types that MUST be implemented by this Participant Type. Each Role Type is
specified by the type attribute of the role element. A specific Role Type MUST
NOT be specified in more than one participantType element.

An example is given below where the “SellerForBuyer” Role Type belonging to a
“Buyer-Seller” Relationship Type is implemented by the Participant Type “Broker”
which also implements the “SellerForShipper” Role Type belonging to a “Seller-
Shipper” Relationship Type:

<roleType name="Buyer"> 579
 … 580
</roleType> 581
<roleType name="SellerForBuyer"> 582
 <behavior name="sellerForBuyer" interface="rns:sellerForBuyerPT"/> 583
</roleType> 584
<roleType name="SellerForShipper"> 585
 <behavior name="sellerForShipper" interface="rns:sellerForShipperPT"/> 586
</roleType> 587
<roleType name="Shipper"> 588
 … 589
</roleType> 590
<relationshipType name="Buyer-Seller"> 591
 <role type="tns:Buyer" /> 592
 <role type="tns:SellerForBuyer" /> 593
</relationshipType> 594
<relationshipType name="Seller-Shipper"> 595
 <role type="tns:SellerForShipper" /> 596
 <role type="tns:Shipper" /> 597
</relationshipType> 598
 599
<participantType name="Broker"> 600
 <role type="tns:SellerForBuyer" /> 601

 <role type="tns:SellerForShipper" /> 602 </participantType> 603

2.3.4 Channel Types 604

A Channel realizes a point of collaboration between parties by specifying where 605
606
607

is 608
609
610

r could 611
612

yer 613
614

e type of a party, 615
616
617

ementing the 618
619

tween 620
ges. 621

622
623

624

625
626

• 627
628

• 629
 630

he syntax of the channelType construct is: 631
632

and how information is exchanged between collaborating parties. Additionally,
Channel information can be passed among parties in information exchanges.
The Channels exchanged MAY be used in subsequent Interaction activities. Th
allows the modeling of both static and dynamic message destinations when
collaborating within a Choreography. For example, a Buyer could specify
Channel information to be used for sending delivery information. The Buye
then send the Channel information to the Seller who then forwards it to the
Shipper. The Shipper could then send delivery information directly to the Bu
using the Channel information originally supplied by the Buyer.
A Channel Type MUST describe the Role Type and the referenc
being the target of an information exchange, which is then used for determining
where and how to send or receive information to or into the party.
A Channel Type MAY specify the instance identity of an entity impl
behavior(s) of a party, being the target of an information exchange.
A Channel Type MAY describe one or more logical conversations be
parties, where each conversation groups a set of related information exchan
One or more Channel(s) MAY be passed around from one party to another in an
information exchange. A Channel Type MAY be used to:

• Restrict the number of times a Channel of this Channel Type can be used

• Restrict the type of information exchange that can be performed when
using a Channel of this Channel Type

Restrict the Channel Type(s) that will be passed through a Channel of this
Channel Type

Enforce that a passed Channel is always distinct

T

<channelType name="ncname" 633
 usage="once"|"unlimited"? 634
 action="request-respond"|"request"|"respond"? > 635
 636
 <passing channel="qname" 637
 action="request-respond"|"request"|"respond"? 638
 new="true"|”false”? />* 639
 640
 <role type="qname" behavior="ncname"? /> 641
 642
 <reference> 643

 <token name="qname"/> 644 </reference> 645
 646
 <identity> 647
 <token name="qname"/>+ 648
 </identity>? 649
</channelType> 650

 651
The attribute is used for specifying a distinct name for each channelType 652
lement declared within a Choreography Package. 653

el 654
655
656

en using a Channel of this Channel Type. 657
spond 658

659
660

el(s) 661
rty to another, when using an information exchange 662

663
664
665
666
667
668
669

f 670
ing where and 671

672
673

d for dynamically 674
675
676
677

 678
ing a logical 679

680
681
682
683

el Type: 684

• If two or more Channel Types SHOULD point to Role Types that MUST be 685
686

Role Types MUST belong to the same Participant Type. In addition, the 687

name
e
The OPTIONAL attribute usage is used to restrict the number of times a Chann
of this Channel Type can be used.
The OPTIONAL attribute action is used to restrict the type of information
exchange that can be performed wh
The type of information exchange performed could either be a request-re
exchange, a request exchange, or a respond exchange. The default for this
attribute is set to “request”.
The OPTIONAL element passing describes the Channel Type(s) of the Chann
that are passed, from one pa
on a Channel of this Channel Type. The OPTIONAL attribute action within the
passing element defines if a Channel will be passed during a request exchange,
during a response exchange or both. The default for this attribute is set to
“request”. The OPTIONAL attribute new within the passing element when set to
“true” enforces a passed Channel to be always distinct. If the element passing is
missing then this Channel Type MAY be used for exchanging information but
MUST NOT be used for passing Channels of any Channel Type.
The element role is used to identify the Role Type of a party, being the target o
an information exchange, which is then used for statically determin
how to send or receive information to or into the party.
The element reference is used for describing the reference type of a party, being
the target of an information exchange, which is then use
determining where and how to send or receive information to or into the party.
The reference of a party is distinguished by a Token as specified by the name
attribute of the token element within the reference element.
The OPTIONAL element identity MAY be used for identifying an instance of an
entity implementing the behavior of a party and for identify
conversation between parties. The identity and the different conversations are
distinguished by a set of Tokens as specified by the name attribute of the token
element within the identity element.

The following rule applies for Chann

implemented by the same logical entity or organization, then the specified

identity elements within the Channel Types MUST have the same number
of Tokens with the same informationTypes specified in the same order

ample below shows the definition of the Channel Type “RetailerChannel”

688
689

 690
The ex691

at realizes a point of collaboration with a Retailer. The Channel Type identifies 692
e Role Type of the Retailer as the “Retailer”. The information for locating the 693

694
695

e 696
697
698
699

th
th
Retailer is specified in the reference element, whereas the instance of a process
implementing the Retailer is identified for correlation purposes using the identity
element. The element passing allows only a Channel of “ConsumerChannel” Typ
to be passed in a request information exchange through a Channel of
“RetailerChannel” Type.

<channelType name="RetailerChannel"> 700
 <passing channel="ConsumerChannel" action="request" /> 701
 702
 <role type="tns:Retailer" behavior="retailerForConsumer"/> 703
 704
 <reference> 705
 <token name="tns:retailerRef"/> 706
 </reference> 707
 708
 <identity> 709
 <token name="tns:purchaseOrderID"/> 710
 </identity> 711
</channelType> 712

2 tion Driven Collaborations 713

Parties make progress within a collaboration when recordings of exchanged 714
ormation occur, that then 715

716
r of 717

718
719
720

n be used to reference parts of a Variable. Both 721
n 722

723

.4 Informa

information are made, and changes to observable inf
cause ordering constraints to be fulfilled. A WS-CDL document allows defining
information within a Choreography that can influence the observable behavio
the collaborating parties.
Variables capture information about objects in the Choreography, such as the
information exchanged or the observable information of the Roles involved.
Tokens are aliases that ca
Variables and Tokens have Information Types that define the type of informatio
the Variable contains or the Token references.

2.4.1 Information Types 724

ype of information used within a Choreography. 725
 Choreography definition avoids referencing 726

directly the data types, as defined within a WSDL document or an XML Schema 727
728
729

Information Types describe the t
By introducing this abstraction, a

document.

The syntax of the informationType construct is:

730
731

<informationType name="ncname" 732
 type="qname"?|element="qname"? 733
 exceptionType=”true”|”false”? /> 734

 735
T e for each informationType 736
lement declared within a Choreography Package. 737

 738
739

ment. The type of information 740
741
742
743

n type MUST NOT map to a WSDL 744
745
746
747
748
749

onstruct. 750
751

he attribute name is used for specifying a distinct nam
e
The OPTIONAL attributes type and element describe the type of information used
within a Choreography as a WSDL 1.1 Message Type, an XML Schema type, a
WSDL 2.0 Schema element or an XML Schema ele
is exclusively one of the aforementioned.
When the OPTIONAL attribute exceptionType is set to "true", this Information Type
is an Exception Type and MAY map to a WSDL fault type. When the attribute
exceptionType is set to "false", this informatio
fault type. The default for this attribute is set to "false".
In case of WSDL 2.0, the attribute element within the informationType refers to a
unique WSDL 2.0 faultname when the attribute exceptionType is set to "true".

The examples below show some possible usages of the informationType
c

Example1: The informationType “purchaseOrder” refers to the WSDL 1.1 Message type 752
“pns:purchaseOrderMessage” 753
 754
 <informationType name=”purchaseOrder” type=”pns:purchaseOrderMessage”/> 755
 756
 757
Example2: The informationType “ refers to the WSDL 2.0 Schema element customerAddress”758
“ ns:CustomerAddress” c759
 760
 <informationType name=”customerAddress” element=”cns:CustomerAddress”/> 761
 762
 763
Example 3: The informationType “intType” refers to the XML Schema type “xsd:int” 764
 765
 <informationType name="intType" type=”xsd:int”/> 766
 767
 768
Example 4: The informationType “OutOfStockExceptionType” is of type Exception Type and refers 769
to the WSDL 2.0 fault name “cwns:OutOfStockExceptionType” 770
 771
 <informationType name="OutOfStockExceptionType" 772
 type=”cwns:OutOfStockExceptionType” exceptionType=”true”/> 773

2.4.2 Variables 774

775
776

777
778
779
780

781
782
783
784
785
786
787
788

789
790
791
792
793
794

795
796
797
798
799

800
801
802
803
804
805

806
807
808
809
810
811
812

Variables capture information about objects in a Choreography as defined by
their usage:

• Information Exchange Capturing Variables, which contain information
such as an “Order” that is:

o Used to populate the content of a message to be sent, or
o Populated as a result of a message received

• State Capturing Variables, which contain information about the
observable changes at a Role as a result of information being exchanged.
For example when a Buyer sends an “Order” to a Seller, the Buyer could
have a Variable called "OrderState" set to a value of "OrderSent" and
once the message was received by the Seller, the Seller could have a
Variable called "OrderState" set to a value of "OrderReceived". Note that
the Variable "OrderState" at the Buyer is a different Variable to the
"OrderState" at the Seller

• Channel Capturing Variables. For example, a Channel Variable could
contain information such as; the URL to which the message could be sent,
the policies that are to be applied (e.g. security), whether or not reliable
messaging is to be used, etc.

The value of Variables:

• Are available to Roles within a Choreography, when the Variables contain
information that is common knowledge. For example the Variable
"OrderResponseTime" which is the time in hours in which a response to
an Order must be sent is initialized prior to the initiation of a Choreography
and can be used by all Roles within the Choreography

• Can be made available as a result of an Interaction
o Information Exchange Capturing Variables are populated and

become available at the Roles at the ends of an Interaction
o State Capturing Variables, that contain information about the

observable information changes of a Role as a result of information
being exchanged, are recorded and become available

• Can be created or changed and made available locally at a Role by
assigning data from other information. They can be Information Exchange,
State or Channel Capturing Variables. For example "Maximum Order
Amount" could be data created by a Seller that is used together with an
actual order amount from an Order received to control the ordering of the
Choreography. In this case how “Maximum Order Amount” is calculated
and its value would not be known by the other Roles

813
814

815
816

817
818
819
820
821
822
823
824

• Can be used to determine the decisions and actions to be taken within a
Choreography

• Can be used to cause Exceptions at one or more parties in a
Choreography

• Defined at different Roles that are part of the same Participant is shared
between these Roles when the Variables have the same name

The variableDefinitions construct is used for defining one or more Variables
within a Choreography.

The syntax of the variableDefinitions construct is:

<variableDefinitions> 825
 <variable name="ncname" 826
 informationType="qname"?|channelType="qname"? 827
 mutable="true|false"? 828
 free="true|false"? 829
 silent="true|false"? 830
 roleTypes="list of qname"? />+ 831
</variableDefinitions> 832

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

851
852
853

854
855
856

A Variable defined using the attribute informationType specifies either Information
Exchange Capturing Variables or State Capturing Variables. A Variable defined
using the attribute informationType specifies Exception Capturing Variables when
the referenced information type has the attribute exceptionType set to "true". A
Variable defined using the attribute channelType specifies Channel Capturing
Variables. The attributes informationType and channelType are mutually exclusive.
The OPTIONAL attribute mutable, when set to "false", specifies that the Variable
information cannot change once initialized. The default value for this attribute is
“true”.
The OPTIONAL attribute silent, when set to "true" specifies that there SHOULD
NOT be any activity used for creating or changing this Variable in the
Choreography. A silent Variable is used to represent the result of actions within a
party that are either not observable or are of no interest from the WS-CDL
perspective. The default value for this attribute is “false”.
The OPTIONAL attribute free, when set to "true" specifies that a Variable defined
in an enclosing Choreography is also used in this Choreography, thus sharing
the Variables information. The following rules apply in this case:

• The type (as specified by the informationType or the channelType attributes) of
a free Variable MUST match the type of the Variable defined in an
enclosing Choreography

• The attributes silent and mutable of a free Variable MUST match the
attributes silent and mutable of the Variable defined in an enclosing
Choreography

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

• A perform activity MUST bind a free Variable defined in an performed
Choreography with a Variable defined in a performing Choreography

The OPTIONAL attribute free, when set to "false" specifies that a Variable is
defined in this Choreography.
The default value for the free attribute is “false”.
The OPTIONAL attribute roleTypes is used to specify an XML-Schema list of one
or more Role Type(s) of a party at which the Variable information will reside. A
Variable defined without a Role Type is equivalent to a Variable that is defined at
all the Role Types that are part of the Relationship Types of the Choreography
where the Variable is defined. For example if Choreography “C1” has
Relationship Type “R” that has Roles “Role1”, “Role2”, then a Variable “var”
defined in Choreography “C1” without a roleTypes attribute means it is defined at
both “Role1” and “Role2”.
The attribute name is used for specifying a distinct name for each Variable
declared within the variableDefinitions element. In those cases where the visibility of
a Variable is wholly within a single Role then that Role needs to be named in the
definition of the Variable as the Role Type using the attribute roleTypes. In those
cases where the Variable is shared amongst a subset of Roles within a
Choreography those Roles need to be listed within the definition of the Variable
as the Role Types using the attribute roleTypes.

2.4.3 Expressions 877

878
879
880
881
882
883
884
885
886
887
888

889

890
891
892
893
894

Expressions can be used within WS-CDL to obtain existing information and to
create new or change existing information.
Generic expressions and literals can be used for populating a Variable. Predicate
expressions can be used within WS-CDL to specify conditions. Query
expressions are used within WS-CDL to specify query strings.
The language used in WS-CDL for specifying expressions and query or
conditional predicates is XPath 1.0.
WS-CDL defines XPath function extensions as described in the following section.
The function extensions are defined in the standard WS-CDL namespace
“http://www.w3.org/2004/12/ws-chor/cdl”. The prefix "cdl:" is associated with this
namespace.

2.4.3.1 WS-CDL Supplied Functions

There are several functions that the WS-CDL specification supplies as XPATH
1.0 extension functions. These functions can be used in any XPath expression as
long as the types are compatible:

xsd:time getCurrentTime(xsd:QName roleName)

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Returns the current time at the caller for the Role specified by roleName (for
example a Role can ask only about it's own time).

xsd:date getCurrentDate(xsd:QName roleName)
Returns the current date at the caller for the Role specified by roleName (for
example a Role can ask only about it's own date).

xsd:dateTime getCurrentDateTime(xsd:QName roleName)
Returns the current date and time at the caller for the Role specified by roleName
(for example a Role can ask only about it's own date/time).

xsd:boolean hasDurationPassed(xsd:duration elapsedTime, xsd:QName
roleName)
Returns “true” if, (a) used in a guard or repetition condition of a Work Unit with
the block attribute set to “true” or in a complete condition of a Choreography and
(b) the duration specified by elapsedTime at the caller for the Role specified by
roleName has elapsed from the time either the guard or the repetition condition
were enabled for matching or the Choreography was enabled. Otherwise it
returns “false”.

xsd:boolean hasDeadlinePassed(xsd:dateTime deadlineTime, xsd:QName
roleName)
Returns "true" if, (a) used in a guard or repetition condition of a Work Unit with
the block attribute set to "true" or in a complete condition of a Choreography and
(b) the time specified by deadlineTime at the Role specified by roleName has
elapsed given that either the guard or the repetition condition were enabled for
matching or the Choreography was enabled. Otherwise it returns “false”.

xsd:string createNewID()
Returns a new globally unique value of XML-Schema ‘string’ type.

xsd:any getVariable(xsd:string varName, xsd:string part, xsd:string
documentPath, xsd:QName roleName?)
Returns the information of the Variable with name varName as a node set
containing a single node. The second parameter, part, specifies the message
part of a WSDL1.1 document. For a WSDL 2.0 document it MUST be empty.
When the third parameter documentPath is empty, then this function retrieves the
entire document from the Variable information. When it is non-empty, then this
function retrieves from the Variable information, the fragment of the document at
the provided absolute location path. The fourth parameter is OPTIONAL. When

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

the fourth parameter is used, the Variable information MUST be available at the
Role specified by roleName. If this parameter is not used then the Role is
inferred from the context that this function is used.

xsd:boolean isVariableAvailable(xsd:string varName, xsd:QName roleName)
Returns “true” if the information of the Variable with name varName is available
at the Role specified by roleName. Returns “false” otherwise.

xsd:boolean variablesAligned(xsd:string varName, xsd:string withVarName,
xsd:QName relationshipName)
Returns "true" if within a Relationship specified by relationshipName the Variable
with name varName residing at the first Role of the Relationship has aligned its
information with the Variable named withVarName residing at the second Role of
the Relationship.

xsd:any getChannelReference(xsd:string varName)
Returns the reference information of the Variable with name varName. The
Variable MUST be of Channel Type.

xsd:any getChannelIdentity(xsd:string varName)
Returns the identity information of the Variable with name varName. The Variable
MUST be of Channel Type.

xsd:boolean globalizedTrigger(xsd:string expression, xsd:string roleName,
xsd:string expression2, xsd:string roleName2, …)
Combines expressions that include Variables that are defined at different Roles.
Only one expression MUST be defined per Role name.

xsd:boolean cdl:hasExceptionOccurred(xsd:string exceptionType)
Returns "true" if an Exception of Exception Type identified by the parameter
exceptionType has occurred. Otherwise it returns "false".

2.4.4 Tokens 966

967
968
969
970

A Token is an alias for a piece of data in a Variable or message that needs to be
used by a Choreography. Tokens differ from Variables in that Variables contain
values whereas Tokens contain information that define the piece of the data that
is relevant.

971
972
973
974
975
976
977
978
979
980
981

All Tokens MUST have an informationType, for example, an “Order Id” could be
‘alphanumeric’ and a “counter” an ‘integer’.
Tokens reference a document fragment within a Choreography definition and
Token Locators provide a query mechanism to select them. By introducing these
abstractions, a Choreography definition avoids depending on specific message
types, as described by WSDL, or a specific query string, as specified by XPATH.
Instead the document part and the query string can change without affecting the
Choreography definition.

The syntax of the token construct is:

<token name="ncname" informationType="qname" /> 982

983
984
985
986
987
988
989
990

The attribute name is used for specifying a distinct name for each token element
declared within a Choreography Package.
The attribute informationType identifies the type of the document fragment.

The syntax of the tokenLocator construct is:

<tokenLocator tokenName="qname" 991
 informationType="qname" 992
 part=”ncname”? 993
 query="XPath-expression" /> 994

995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

The attribute tokenName identifies the name of the Token that the document
fragment locator is associated with.
The attribute informationType identifies the type of the document on which the
query is performed to locate the Token.
The OPTIONAL attribute part defines the document part on which the query is
performed to locate the Token. This attribute SHOULD NOT be defined for a
WSDL 2.0 document.
The attribute query defines the query string that is used to select a document
fragment within a document or a document part.

The example below shows that the Token “purchaseOrderID” is of XML-Schema
type ‘int’. The two Token Locators show how to access this Token in the
"purchaseOrder" and "purchaseOrderAck" messages.

<token name="purchaseOrderID" informationType="xsd:int"/> 1010

<tokenLocator tokenName="tns:purchaseOrderID" informationType="purchaseOrder" 1011 query="/PO/OrderId"/> 1012
<tokenLocator tokenName="tns:purchaseOrderID" informationType="purchaseOrderAck" 1013
 query="/POAck/OrderId"/> 1014

2.4.5 Choreographies 1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

A Choreography defines re-usable common rules, that govern the ordering of
exhanged messages and the provisioning patterns of collaborative behavior,
agreed between two or more interacting parties.
A Choreography defined at the Choreography Package level is called a top-level
Choreography, and does not share its context with other top-level
Choreographies. A Choreography Package MAY contain exactly one top-level
Choreography, marked explicitly as the root Choreography. The root
Choreography is the only top-level Choreography that is enabled by default.
The re-usable behavior encapsulated within a Choreography MAY be performed
within an enclosing Choreography, thus facilitating composition. The performed
Choreography is then called an enclosed Choreography and MAY be defined:

• Locally - its definition is contained within the enclosing Choreography

• Globally - a separate top-level, non-root Choreography definition is
specified in the same or in a different Choreography Package that can be
used by other Choreographies and hence the contract described becomes
reusable

A non-root Choreography is enabled when performed.
A Choreography MUST contain at least one Relationship Type, enumerating the
observable behavior this Choreography requires its parties to exhibit. One or
more Relationship Types MAY be defined within a Choreography, modeling
multi-party collaborations.
A Choreography acts as a lexical name scoping context for Variables. A Variable
defined in a Choreography is visible for use in this Choreography and all its
enclosed Choreographies up-to the point that the Variable is re-defined as an
non-free Variable, thus forming a Choreography Visibility Horizon for this
Variable.
A Choreography MAY contain one or more Choreography definitions that MAY
be performed only locally within this Choreography.
A Choreography MUST contain an Activity-Notation. The Activity-Notation
specifies the actions of the Choreography that perform the actual work. These
actions are enabled when the Choreography they belong to is enabled.
A Choreography can recover from exceptional conditions by defining one
Exception Block, which MAY be defined as part of the Choreography to recover
from exceptional conditions that can occur.

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

An enclosed Choreography that has successfully completed MAY need to
provide finalization actions that confirm, cancel or otherwise modify the effects of
its completed actions. To handle these modifications, one or more separate
Finalizer Block(s) MAY be defined for an enclosed Choreography.
A Choreography can also be coordinated. Choreography Coordination
guarantees that all involved Roles agree on how the Choreography ended. That
is, if the Choreography completed successfully or suffered an Exception, and if
the Choreography completed successfully and Finalizer Block(s) were installed,
all Roles have the same Finalizer Block enabled.

The Choreography-Notation is used to define a Choreography as follows:

<choreography name="ncname" 1062
 complete="xsd:boolean XPath-expression"? 1063
 isolation="true"|"false"? 1064
 root="true"|"false"? 1065
 coordination="true"|"false"? > 1066
 1067
 <relationship type="qname" />+ 1068
 1069
 variableDefinitions? 1070
 1071
 Choreography-Notation* 1072
 1073
 Activity-Notation 1074
 1075
 <exceptionBlock name="ncname"> 1076
 WorkUnit-Notation+ 1077
 </exceptionBlock>? 1078
 1079
 <finalizerBlock name="ncname"> 1080
 WorkUnit-Notation 1081
 </finalizerBlock>* 1082
</choreography> 1083

1084
1085
1086
1087
1088
1089
1090
1091
1092

1093
1094

The attribute name is used for specifying a distinct name for each choreography
element declared within a Choreography Package.
The OPTIONAL complete attribute allows to explicitly complete a Choreography as
described below in the Choreography Life-line section.
The OPTIONAL isolation attribute specifies when a Variable defined in an
enclosing Choreography, and changed within an enclosed Choreography is
available to its sibling Choreographies. The default for this attribute is set to
"false". The following rules apply:

• When isolation is set to "false", the Variable information MAY be
immediately overwritten by actions in its sibling Choreographies

• When isolation is set to "true", changes to the Variable information MUST
be visible for read or for write to its sibling Choreographies only after this
Choreography has completed

1095
1096
1097
1098
1099
1100

1101
1102
1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

The OPTIONAL coordination attribute specifies whether Choreography
Coordination is required. The default for this attribute is set to "false". The
following rules apply:

• When the coordination attribute is set to "true", Choreography Coordination
is required and a Coordination protocol MUST ensure that all the Roles
agree on how the Choreography ended

• When the coordination attribute is set to "false", the Choreography is not
bound to a Coordination protocol, and since none of the above guarantees
of agreement on the outcome apply any required coordination SHOULD
be performed using explicitly modeled Interactions

The relationship element within the choreography element enumerates the
Relationships this Choreography MAY participate in.
The OPTIONAL variableDefinitions element enumerates the Variables defined in
this Choreography.
The OPTIONAL root element marks a top-level Choreography as the root
Choreography of a Choreography Package.
The OPTIONAL Choreography-Notation within the choreography element defines
the Locally defined Choreographies that MAY be performed only within this
Choreography.
The OPTIONAL exceptionBlock element defines the Exception Block of a
Choreography by specifying one or more Exception Work Unit(s) using a
WorkUnit-Notation. Within this element, the attribute name is used for specifying a
name for this Exception Block element.
The OPTIONAL finalizerBlock element defines a Finalizer Block for a
Choreography. A Choreography MAY have more than one Finalizer Blocks. Each
Finalizer Block specifies one Finalizer Work Unit using a WorkUnit-Notation. If a
Choreography defines more than one Finalizer Blocks, then each MUST be
differentiated by a distinct name as specified with the name attribute within the
finalizerBlock element.

2.4.6 WorkUnits 1127

1128
1129
1130
1131
1132
1133
1134

A Work Unit can prescribe the constraints that have to be fulfilled for making
progress and thus performing actual work within a Choreography. A Work Unit
can also prescribe the constraints that preserve the consistency of the
collaborations commonly performed between the parties. Using a Work Unit an
application can recover from errors that are the result of abnormal actions and
can also finalize successfully completed Choreographies that need further action,
for example to confirm or logically roll back effects, or to close the Choreography

1135
1136

1137
1138
1139

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

so that any defined “rollback” Work Unit will not be enabled. Examples of a Work
Unit include:

• A “Change Order” Work Unit that can be performed whenever an order
acknowledgement message has been received and an order rejection has
not been received

• An “Order Delivery Error” Work Unit that is performed whenever the “Place
Order” Work Unit did not reach a ‘normal’ conclusion. This would have a
constraint that identifies the error

The guard condition of a Work Unit, if specified, expresses the interest on one or
more Variable information (that already exist or will become available in the
future) being available under certain prescribed constraints. The Work Unit’s
expressed interest MUST be matched for its enclosed actions to be enabled.
A Work Unit completes successfully when all its enclosed actions complete
successfully.
A Work Unit that completes successfully MUST be considered again for matching
(based on its guard condition), if its repetition condition evaluates to "true".

The WorkUnit-Notation is used to define a Work Unit as follows:

<workunit name="ncname" 1155
 guard="xsd:boolean XPath-expression"? 1156
 repeat="xsd:boolean XPath-expression"? 1157
 block="true|false"? > 1158
 1159
 Activity-Notation 1160
</workunit> 1161

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

The attribute name is used for specifying a name for each Work Unit element
declared within a Choreography Package.
The Activity-Notation specifies the enclosed actions within a Work Unit.
The OPTIONAL attribute guard specifies the guard condition of a Work Unit.
The OPTIONAL attribute repeat specifies the repetition condition of a Work Unit.
The OPTIONAL attribute block specifies whether the Work Unit has to block
waiting for referenced Variables within the guard condition to become available (if
they are not already) and the guard condition to evaluate to “true”. This attribute
MUST always be set to “false” in Exception Work Units. The default for this
attribute is set to “false”.

The following rules apply:

1175
1176

1177
1178

1179
1180

1181
1182
1183

1184
1185

1186
1187
1188
1189
1190

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

1202
1203
1204
1205
1206
1207
1208
1209

1210
1211
1212
1213
1214
1215
1216
1217

• When a guard condition is not specified then the Work Unit always
matches

• One or more Work Units MAY be matched concurrently if their respective
expressed interests are matched

• When a repetition condition is not specified then the Work Unit is not
considered again for matching after the Work Unit was matched once

• One or more Variables can be specified in a guard condition or repetition
condition, using XPATH and the WS-CDL functions, as described in
Section 2.4.3.1

• The WS-CDL function getVariable is used in the guard or repetition
condition to obtain the information of a Variable

• When the WS-CDL function isVariableAvailable is used in the guard or
repetition condition, it means that the Work Unit that specifies the guard or
repetition condition is checking if a Variable is already available at a
specific Role or is waiting for a Variable to become available at a specific
Role, based on the block attribute being “false” or “true” respectively

• When the WS-CDL function variablesAligned is used in the guard or
repetition condition, it means that the Work Unit that specifies the guard or
repetition condition is checking or waiting for an appropriate alignment
Interaction to happen between the two Roles, based on the block attribute
being “false” or “true” respectively. The Variables checked or waited for
alignment are the sending and receiving ones in an alignment Interaction
or the ones used in the recordings at the two Roles at the ends of an
alignment Interaction. When the variablesAligned WS-CDL function is used in
a guard or repetition condition, then the Relationship Type within the
variablesAligned MUST be the subset of the Relationship Type that the
immediate enclosing Choreography defines

• Variables defined at different Roles MAY be used in a guard condition or
repetition condition to form a globalized view, thus combining constraints
prescribed for each Role but without requiring that all these constraints
have to be fullfilled for progress to be made. The globalizedTrigger WS-CDL
function MUST be used in a guard condition or repetition condition in this
case. Variables defined at the same Role MAY be combined together in a
guard condition or repetition condition using all available XPATH operators
and all the WS-CDL functions

• If the attribute block is set to "true" and one or more required Variable(s)
are not available or the guard condition evaluates to "false", then the Work
Unit MUST block. When the required Variable information specified by the
guard condition become available and the guard condition evaluates to
"true", then the Work Unit is matched. If the repetition condition is
specified, then it is evaluated when the Work Unit completes successfully.
Then, if the required Variable information specified by the repetition
condition is available and the repetition condition evaluates to "true", the

1218
1219

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

Work Unit is considered again for matching. Otherwise, the Work Unit is
not considered again for matching

• If the attribute block is set to "false", then the guard condition or repetition
condition assumes that the Variable information is currently available. If
either the Variable information is not available or the guard condition
evaluates to "false", then the Work Unit matching fails and the Activity-
Notation enclosed within the Work Unit is skipped and the repetition
condition is not evaluated even if specified. Otherwise, if the Work Unit
matching succeeds, then the repetition condition, if specified, is evaluated
when the Work Unit completes successfully. Then, if the required Variable
information specified by the repetition condition is available and the
repetition condition evaluates to "true", the Work Unit is considered again
for matching. Otherwise, the Work Unit is not considered again for
matching

The examples below demonstrate some usages of a Work Unit:
a. Example of a Work Unit with block equals to "true”:
In the following Work Unit, the guard condition waits on the availability of
“POAcknowledgement” at “Customer” Role and if it is already available, the
activity happens, otherwise, the activity waits until the Variable
“POAcknowledgement” become available at the “Customer” Role.

<workunit name="POProcess" 1240
 guard="cdl:isVariableAvailable(1241
 cdl:getVariable("POAcknowledgement"), “”, “”, "tns:Customer")" 1242
 block="true"> 1243
 ... <!--some activity --> 1244
</workunit> 1245

1246
1247
1248
1249
1250
1251
1252

b. Example of a Work Unit with block equals to "false":
In the following Work Unit, the guard condition checks if the Variable
“StockQuantity” at the “Retailer” Role is available and is greater than 10 and if so,
the activity happens. If either the Variable is not available or its value is less than
‘10’, then the matching condition is "false" and the activity is skipped.

<workunit name="StockCheck" 1253
 guard="cdl:getVariable("StockQuantity", “”, "/Product/Qty", 1254
 "tns:Retailer") > 10)" 1255
 block="false" > 1256
 ... <!--some activity --> 1257
</workunit> 1258

1259
1260

c. Example of a Work Unit waiting for alignment to happen:

In the following Work Unit, the guard condition waits for an alignment Interaction
to happen between the “Customer” Role and the “Retailer” Role:

1261
1262
1263

<roleType name="Customer"> 1264
 … 1265
</roleType> 1266
<roleType name="Retailer"> 1267
 … 1268
</roleType> 1269
<relationshipType name="Customer-Retailer-Relationship"> 1270
 <role type="tns:Customer" /> 1271
 <role type="tns:Retailer" /> 1272
</relationshipType> 1273
 1274
<workunit name="WaitForAlignment" 1275
 guard="cdl:variablesAligned(1276
 "PurchaseOrderAtBuyer", "PurchaseOrderAtSeller", 1277
 "tns:Customer-Retailer-Relationship")” 1278
 block="true" > 1279
 ... <!--some activity --> 1280
</workunit> 1281

2.4.7 Choreography Life-line 1282

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

A Choreography life-line expresses the progression of a collaboration through
enabled activities and enclosed Choreographies. Initially, the collaboration is
established between parties, then work is performed within it and finally it ends.

A Choreography is initiated, establishing a collaboration when an Interaction,
explicitly marked as an Choreography Initiator, is performed. This causes the
Exception Block to be installed and the Choreography enters the Enabled State.
Before this point there is no observable association between any of the parties.
Two or more Interactions MAY be marked as Choreography Initiators, indicating
alternatives for establishing a collaboration. In this case, the first performed
Interaction will establish the collaboration and the other Interactions will enlist
with the already established collaboration.
A Choreography Initiator Interaction MAY be defined within a root Choreography
or within an enclosed Choreography. In either case the collaboration is
established when the first Choreography Initiator Interaction is performed.

A Choreography in an Enabled State, completes unsuccessfully, when an
Exception is caused in the Choreography and its Exception Block is enabled, if
present. This causes the Choreography to enter the Unsuccessfully Completed
State.
The unsuccessfully completed Choreography, enters the Closed State once the
Exception Block, if present, is completed. If the Exception Block is not present,
the Choreography implicitly enters the Closed State and the Exception occurred
is propagated to the enclosing Choreography.

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

A Choreography in an Enabled State, completes successfully when there are no
more enabled activities within its body. This causes its Exception Block to be
deinstalled, Finalizer Blocks to be installed if specified, and the Choreography
enters the Successfully Completed State.
Alternatively, a Choreography completes successfully if its complete condition, is
matched by evaluating to "true". A complete condition is considered for matching
while the Choreography is in Enabled State. The complete condition MUST be
possible to be matched in all Roles that participate in the Choreography. When
the complete condition of a Choreography is matched then all activities in the
Choreography are disabled, and the Choreography completes as if there were no
more enabled activities within it. When a Choreography completes, all
uncompleted enclosed Choreographies will automatically become completed.
Messages that were sent as part of a Choreography that has since completed
MUST be ignored.

A Choreography, in a Successfully Completed State, enters the Closed State if
no Finalizer Blocks were specified in that Choreography.
A Choreography, in a Successfully Completed State with Finalzer Block(s)
specified enters the Closed State when one of its installed Finalizer Block(s) is
enabled and completed. The Finalizer Block of a Choreography is enabled by a
finalize activity in the immediately enclosing Choreography. Alternatively, a
Choreography in Successfully Completed State with Finalzer Block(s) specified
implicitly enters the Closed State when its enclosing Choreography enters the
Closed State without enabling the Finalizer Block(s) of its enclosed
Choreography. In other words, when a Choreography enters the Closed State, all
its enclosed successfully completed Choreographies are implicitly entering the
Closed State even if none of their Finalizer Blocks has been enabled.

2.4.8 Choreography Exception Handling 1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

1346
1347

A Choreography can sometimes fail as a result of an exceptional circumstance or
an “error” that occurred during its performance.
An Exception is caused in the Choreography when an Exception Variable is
populated in an Interaction activity with the attribute causeException set to “true”.
An Exception MUST be propagated to all parties in the Choreography using
explicitly modeled, Exception Causing Interactions when the Choreography is not
coordinated. This causes the Choreography to enter the Exception state and its
Exception Block to be enabled, if specified.

Different types of errors are possible including this non-exhaustive list:

• Interaction Failures, for example the sending of a message did not
succeed

1348
1349

1350
1351

1352
1353

1354
1355

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377

1378
1379
1380
1381
1382

1383
1384
1385
1386
1387

• Protocol Based Exchange failures, for example no acknowledgement was
received as part of a reliable messaging protocol

• Security failures, for example a Message was rejected by a recipient
because the digital signature was not valid

• Timeout errors, for example an Interaction did not complete within the
required time

• Validation Errors, for example an XML “Order” document was not well
formed or did not conform to its XML-Schema definition

• Application "failures", for example the “goods ordered” were ‘out of stock’
To handle these and other "errors" separate Exception Work Units MAY be
defined in the Exception Block of a Choreography, for each Exception that needs
to be handled.
One or more Exception Work Unit(s) MAY be defined within the Exception Block
of a Choreography. At least one Exception Work Unit MUST be defined as part of
the Exception Block of a Choreography. An Exception Work Unit MAY express
interest on Exception information using its guard condition on Exception Types or
Exception Variables. If no guard condition is specified, then the Exception Work
Unit is called the Default Exception Work Unit and expresses interest on any type
of Exception. Within the Exception Block of a Choreography there MUST NOT be
more than one Default Exception Work Unit. An Exception Work Unit MUST
always set its block attribute to "false" and MUST NOT define a repetition
condition.
Exception Work Units are enabled when the Exception Block of the
Choreography they belong to is enabled. Enabled Exception Work Units in a
Choreography MAY behave as the mechanism to recover from Exceptions
occuring in this and its enclosed Choreographies.
Within the Exception Block of a Choreography only one Exception Work Unit
MAY be matched.

The rules for matching an Exception are:

• When an Exception Work Unit has a guard condition using the
hasExceptionOccurred(exceptionType) WS-CDL function, then it is matched
when an Exception Variable with Exception Type that matches the
parameter exceptionType is populated using an Exception Causing
Interaction activity

• If an Exception is matched by the guard condition of an Exception Work
Unit, then the actions of the matched Work Unit are enabled. When two or
more Exception Work Units are defined then the order of evaluating their
guard conditions is based on the order that the Work Units have been
defined within the Exception Block

1388
1389

1390
1391
1392
1393

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

• If none of the guard condition(s) match, then if there is a Default Exception
Work Unit without a guard condition defined then its actions are enabled

• If an Exception is not matched by an Exception Work Unit defined within
the Choreography in which the Exception occurs, the Exception will be
recursively propagated to the Exception Work Unit of the immediate
enclosing Choreography until a match is successful

• If an Exception occurs within a Choreography, then the Choreography
completes unsuccessfully. In this case its Finalizer Block(s) MUST NOT
be installed. The actions, including enclosed Choreographies, within this
Choreography are completed abnormally before an Exception Work Unit
can be matched

The actions within the Exception Work Unit MAY use Variable information visible
in the Visibility Horizon of the Choreography it belongs to as they stand at the
current time.
The actions of an Exception Work Unit MAY also cause an Exception. The
semantics for matching the Exception and acting on it are the same as described
in this section.

2.4.9 Choreography Finalization 1405

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418

1419

1420
1421

1422
1423
1424
1425
1426
1427

After a Choreography instance has successfully completed, it MAY need to
provide finalization actions that confirm, cancel or otherwise modify the effects of
its completed actions. To handle these modifications, one or more separate
Finalizer Block(s) MAY be defined for an enclosed Choreography. When its
Choreography body completes successfully, any Finalizer Blocks specified in the
Choreography are installed.
If more than one Finalizer Blocks are defined for the same Choreography, each
of them MUST be differentiated by their name attributes. However, at most one
Finalizer Block MAY be enabled for any given Choreography instance during the
subsequent progress, including Exception handling and finalization, of the
enclosing Choreography.
Finalizer Block(s) MAY implement whatever actions are appropriate for the
particular Choreography. Common patterns might include:

• A single Finalizer Block to semantically "rollback" the Choreography

• Two Finalizer Blocks, for example one with name "confirm" and one with
name "cancel", to implement a two-phase outcome protocol

• One "undo" Finalizer Block along with a "close" Finalizer Block to signal
that the "undo" Finalizer Block is no longer able to be enabled, that is, the
Choreography is now closed

The actions within the Finalizer Work Unit MAY use Variable information visible
in the Visibility Horizon of the Choreography it belongs to as they were at the
time the Choreography completed for the Variables belonging to this

1428
1429
1430
1431

Choreography and as they stand at the current time for the Variables belonging
to the enclosing Choreography.
The actions of a Finalizer Work Unit MAY fault. The semantics for matching the
fault and acting on it are the same as described in the previous section.

2.4.10 Choreography Coordination 1432

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453

1454
1455
1456
1457
1458

1459
1460
1461
1462

1463
1464
1465
1466
1467
1468

Choreography Coordination guarantees that all involved Roles will agree on how
the Choreography ended. That is, all Roles will agree on whether the
Choreography completed successfully or suffered an Exception, and if the
Choreography completed successfully and Finalizer Blocks were installed, all
Roles will agree on which Finalizer Block was enabled. Such agreement differs
from Interaction based alignment in that the Choreography as a whole is aligned,
regardless of whether each Interaction in the Coordinated Choreography is
aligned. In contrast to Alignment Interactions, a Coordinated Choreography
provides a larger unit of coordination - a set of Interactions that end with shared
knowledge among all the parties that their Relationship is in a defined state.
Such a unit need not be aligned at each step - it is only required that clear
alignment points are made to guarantee that all involved Roles will agree on how
the Choreography ended.
Choreographies defined as requiring coordination must being bound to a
Coordination protocol. When Choreography Coordination is not required, then
the Choreography is not bound to a Coordination protocol, and since none of the
above guarantees of agreement on the outcome apply any required coordination
should be performed using explicitly modeled Interactions.

The implications of Choreography Coordination differ for root Choreographies
versus enclosed Choreographies:

• An enclosed Choreography MAY have one or more Finalizer Block(s). In
this case, coordination means that all Roles agree on whether the
Choreography completed successfully or suffered an Exception, and if the
Choreography completed successfully and Finalizer Block(s) were
installed, all Roles agree on which Finalizer Block was enabled

• A root Choreography can also be coordinated, but it cannot have any
Finalizer Block(s). In this case, coordination means that all Roles agree on
whether the Choreography completed successfully or suffered an
Exception

• In both cases, all Roles MUST agree on whether the Choreography
completed successfully, or if an Exception occurs, all Roles MUST
experience an Exception rather than successful completion. When an
Exception occurs within a Choreography, the Coordination protocol will
throw an Exception to Roles which have not otherwise detected the
Exception that occurred

1469
1470
1471

The two examples below show two usages of Coordinated Choreographies.

Example 1: Coordinated credit authorization without Finalizer Block(s): 1472
 1473
<informationType name=”creditDeniedType” exceptionType=”true”/> 1474
 1475
<!-- Coordinated CreditAuthorization choreography without Finalizer Block(s)--> 1476
<choreography name="CreditAuthorization" root="false" coordination="true"> 1477
 <relationship type="tns:CreditReqCreditResp"/> 1478
 <variableDefinitions> 1479
 <variable name="CreditExtended" informationType="xsd:int" silent="true" 1480
 roleTypes="tns:CreditResponder"/> 1481
 <variable name="creditRequest"/> 1482
 <variable name="creditAuthorized"/> 1483
 <variable name="creditDenied" informationType = "creditDeniedType"/> 1484
 </variableDefinitions> 1485
 1486
 <!-- the normal work - receive the request and decide whether to approve --> 1487
 <interaction name="creditAuthorization" channelVariable="tns:CreditRequestor" 1488
 operation="authorize"> 1489
 <participate relationshipType="SuperiorInferior" fromRole="tns:Superior" 1490
 toRole="Inferior"/> 1491
 <exchange name="creditRequest" informationType="creditRequest" 1492
 action="request"> 1493
 <send variable="tns:creditRequest"/> 1494
 <receive variable="tns:creditRequest"/> 1495
 </exchange> 1496
 <exchange name="creditAuthorized" informationType="creditDenied" 1497
 action="respond"> 1498
 <send variable="tns:creditAuthorized"/> 1499
 <receive variable="tns:creditAuthorized"/> 1500
 </exchange> 1501
 <exchange name="creditDenied" informationType="refusal" action="respond"> 1502
 <send variable="tns:creditDenied" causeException="true"/> 1503
 <receive variable="tns:creditDenied" causeException="true"/> 1504
 </exchange> 1505
 </interaction> 1506
 1507
 <!-- catch the (application) exception - as an exception it will abort the 1508
 choreography --> 1509
 <exceptionBlock name="handleBadCreditException"> 1510
 <workunit name="handleBadCredit" > 1511
 <interaction name="badCreditInteraction" 1512
 channelVariable="tns:CreditResponder" 1513
 operation="creditDenied"> 1514
 <participate relationshipType="CreditReqCreditResp" 1515
 fromRole="tns:Responder" toRole="CreditRequestor"/> 1516
 </interaction> 1517
 </workunit> 1518
 </exceptionBlock> 1519
</choreography> 1520
 1521
 1522
Example 2: Coordinated credit authorization with Finalizer Block(s): 1523
 1524
<informationType name="creditDeniedType" exceptionType="true"/> 1525
 1526
<!-- Coordinated CreditAuthorization choreography with Finalizer Block(s) --> 1527
<choreography name="CreditAuthorization" root="false" coordination="true"> 1528

 <relationship type="tns:CreditReqCreditResp"/> 1529 <variableDefinitions> 1530
 <variable name="CreditExtended" informationType="xsd:int" silent="true" 1531
 roleTypes="tns:CreditResponder"/> 1532
 <variable name="creditRequest"/> 1533
 <variable name="creditAuthorized"/> 1534
 <variable name="creditDenied" informationType = "creditDeniedType"/> 1535
 </variableDefinitions> 1536
 1537
 <!-- the normal work -receive the request and decide whether to approve --> 1538
 <interaction name="creditAuthorization" channelVariable="tns:CreditRequestor" 1539
 operation="authorize"> 1540
 <participate relationshipType="SuperiorInferior" fromRole="tns:Superior" 1541
 toRole="Inferior"/> 1542
 <exchange name="creditRequest" informationType="creditRequest" 1543
 action="request"> 1544
 <send variable="tns:creditRequest"/> 1545
 <receive variable="tns:creditRequest"/> 1546
 </exchange> 1547
 <exchange name="creditAuthorized" informationType="creditDenied" 1548
 action="respond"> 1549
 <send variable="tns:creditAuthorized"/> 1550
 <receive variable="tns:creditAuthorized"/> 1551
 </exchange> 1552
 <exchange name="creditDenied" informationType="refusal" action="respond"> 1553
 <send variable="tns:creditDenied" causeException="true"/> 1554
 <receive variable="tns:creditDenied" causeException="true"/> 1555
 </exchange> 1556
 </interaction> 1557
 1558
 <!-- catch the (application) exception - as an exception it will abort the 1559
 choreography and the Finalizer Block(s) are not accessible --> 1560
 <exceptionBlock name="handleBadCreditException"> 1561
 <workunit name="handleBadCredit" > 1562
 <interaction name="badCreditInteraction" 1563
 channelVariable="tns:CreditResponder" 1564
 operation="creditDenied"> 1565
 <participate relationshipType="CreditReqCreditResp" 1566
 fromRole="tns:Responder" toRole="CreditRequestor"/> 1567
 </interaction> 1568
 </workunit> 1569
 </exceptionBlock> 1570
 1571
 <!-- Finalizer Block(s) --> 1572
 <!-- what to do if the credit is drawn down --> 1573
 <finalizerBlock name="drawDown"> 1574
 <!-- if there is no application content to send, this could just be an 1575
 assignment to the statecapturevariable creditExtended --> 1576
 <workunit name="drawdown" > 1577
 <interaction name="drawdownInteraction" 1578
 channelVariable="tns:CreditRequestor" 1579
 operation="drawDown"> 1580
 <participate relationshipType="CreditReqCreditResp" 1581
 fromRole="tns:CreditRequestor" toRole="CreditResponder"/> 1582
 <exchange name="dummy" action="request"> 1583
 <send></send> 1584
 <receive recordReference="drawdownRecord"/> 1585
 </exchange> 1586
 <record name="drawdownRecord" when="before"> 1587
 <source expression="drawnDown"/> 1588
 <target variable="CreditExtended"/> 1589
 </record> 1590
 </interaction> 1591

 </workunit> 1592 </finalizerBlock> 1593
 1594
 <!-- what to do if the credit is not used --> 1595
 <finalizerBlock name="replenish"> 1596
 <!-- if there is no application content to send, this could just be an 1597
 assignment to the state capturing variable creditExtended --> 1598
 <workunit name="replenishWU"> 1599
 <interaction name="replenishInteraction" 1600
 channelVariable="tns:CreditRequestor" 1601
 operation="replenish"> 1602
 <participate relationshipType="CreditReqCreditResp" 1603
 fromRole="tns:CreditRequestor" toRole="CreditResponder"/> 1604
 <exchange name="dummy" action="request"> 1605
 <send></send> 1606
 <receive recordReference="replenishRecord"/> 1607
 </exchange> 1608
 <record name="replenishRecord" when="before"> 1609
 <source expression="released"/> 1610
 <target variable="CreditExtended"/> 1611
 </record> 1612
 </interaction> 1613
 </workunit> 1614
 </finalizerBlock> 1615
</choreography> 1616

21617

Activities are the lowest level components of the Choreography, used to describe 1618
med. 1619

 1620
1621

 – which combines Activities with other Ordering 1622
Structures in a nested way to specify the ordering rules of activities within 1623

1624

1625

• t performs the actual work. A Basic Activity is then 1626
1627

on 1628
e 1629

1630
1631

o 1632
1633
1634
1635
1636
1637

 MUST be performed 1638

.5 Activities

the actual work perfor

The Activity-Notation is used to define activities as either:
• An Ordering Structure

the Choreography

• A WorkUnit-Notation

A Basic Activity tha
either:

o An Interaction Activity, which results in an exchange of informati
between parties and possible synchronization of their observabl
information changes and the actual values of the exchanged
information
A Perform Activity, which means that a complete, separately
defined Choreography is performed

o An Assign Activity, which assigns, within one Role, the value of one
Variable to another Variable

o A Silent Action Activity, which provides an explicit designator used
for specifying the point where party specific action(s) with non-
observable operational details

o A No Action Activity, which provides an explicit designator used for
specifying the point where a party does not perform any action
A Finalize Activity, which enables a particular Finaliz

1639
1640

o er Block in a 1641
1642
1643

particular instance of an immediately enclosed Choreography and
thus brings that Choreography to a defined conclusion

2.5.1 Orde1644

An Ordering Structure is one of the following: 1645

1646

1647

1648

2.5.1.1 Sequence 1649

Th se more Activity-Notations. When 1650
e element restricts the series of 1651

ne or more Activity-Notations) to be enabled 1652
1653
1654
1655
1656

ring Structures

• Sequence

• Parallel

• Choice

e quence ordering structure contains one or
the sequence activity is enabled, the sequenc
enclosed activities (as defined by o
sequentially, in the same order that they are defined.

The syntax of this construct is:

<sequence> 1657
 Activity-Notation+ 1658
</sequence> 1659

2.5.1.2 Parallel 1660

T dering structure contains one or more Activity-Notation that are 1661
enabled concurrently when the parallel activity is enabled. The parallel activity 1662

l activities (as defined by one or more Activity-1663
1664
1665
1666
1667

he parallel or

completes successfully when al
Notations) performing work within it complete successfully.

The syntax of this construct is:

<parallel> 1668
 Activity-Notation+ 1669
</parallel> 1670

2.5.1.3 Choice 1671

T ture enables specifying that only one of two or more 1672
tivity-Notations) SHOULD be performed. 1673

 specified in a choice element, only one activity is 1674
1675
1676

he choice ordering struc
activities (as defined by two or more Ac
When two or more activities are
selected and the other activities are disabled. If the choice has Work Units with
guard conditions, the first Work Unit that matches the guard condition is selected

and the other Work Units are disabled. If the choice has other activities, it is
assumed that the selection criteria for the activities are non-observable.

The syntax of this construct is:

1677
1678
1679
1680
1681

<choice> 1682
 Activity-Notation+ 1683
</choice> 1684

 1685
In the example below, choice element has two Interactions, “processGoodCredit” 1686
nd “processBadCredit”. The Interactions have the same directionality, 1687
articipate within the same Relationship and have the same fromRoles and 1688

1689
1690

a
p
toRoles names. If one Interaction happens, then the other one is disabled.

<choice> 1691
 <interaction name=””processGoodCredit” 1692
 channelVariable="goodCredit-channel" operation="doCredit"> 1693
 ... 1694
 </interaction> 1695
 1696
 <interaction name=””processBadCredit” 1697
 channelVariable="badCredit-channel" operation="doBadCredit"> 1698
 ... 1699
 </interaction> 1700
<choice> 1701

2.5.2 Interacting 1702

An Interaction is the basic building block of a Choreography, which results in 1703
between collaborating parties and possibly the 1704

synchronization of their observable information changes and the values of the 1705
1706
1707

 1708
s contexts. 1709

1710
1711

ceives the message. If the initial message is 1712
1713

iating 1714
1715
1716

The Channel Capturing Variable that specifies the interface and other data 1717
age is to be sent to and received 1718

1719

information exchanged

exchanged information.
An Interaction forms the base atom of the Choreography composition, where
multiple Interactions are combined to form a Choreography, which can then be
used in different busines
An Interaction is initiated when one of the Roles participating in the Interaction
sends a message, through a common Channel, to another Role that is
participating in the Interaction, that re
a request, then the accepting Role can optionally respond with a normal
response message or a fault message, which will be received by the init
Role.
An Interaction also contains "references" to:

•
that describe where and how the mess
into the accepting Role

• The Operation that specifies what the recipient of the message should do
with the message when it is received

The From Role and To R

1720
1721

• ole that are involved 1722

1723

 at the From Role and To 1724
 message content 1725

and may 1726
1727
1728

2.5 .11729

In some Choreographies there may be a requirement that, when the Interaction 1730
is performed, the Roles in the Choreography have agreement on the outcome. 1731

ecifica have a common 1732
 1733

1734
 1735

1736
1737
1738
1739

ate", that contain observable 1740
1741

 Buyer and “Received” at the Seller, and 1742

1743
 1744

1745
 1746
In WS-1747
where 1748

formation changes and the values of their exchanged information. After the 1749
 1750
r 1751
that 1752

1753
1754
1755
1756
1757

1758

1759
successfully. 1760

• The Information Type or Channel Type that is being exchanged

• The Information Exchange Capturing Variables
Role that are the source and destination for the

• A list of potential observable information changes that can occur
need to be aligned at the From Role and the To Role, as a result of
carrying out the Interaction

.2 Interaction Based Information Alignment

More sp lly within an Interaction, a Role MAY need to
understanding of the observable information creations or changes of one or more
State Capturing Variables that are complementary to one or more State
Capturing Variables of its partner Role. Additionally, within an Interaction a Role
MAY need to have a common understanding of the values of the Information
Exchange Capturing Variables at the partner Role.
For example, after an Interaction happens, both the Buyer and the Seller want to
have a common understanding that:

• State Capturing Variables, such as "Order St
information at the Buyer and Seller, have values that are complementary
to each other, e.g. “Sent” at the

• Information Exchange Capturing Variables have the same types with the
same content, e.g. The “Order” Variables at the Buyer and Seller have the
same Information Types and hold the same order information

CDL, an Alignment Interaction MUST be explicitly used, in the cases
two interacting parties require the alignment of their observable

in
alignment Interaction completes, both parties progress at the same time, in a
lock-step fashion and the Variable information in both parties is aligned. Thei
Variable alignment comes from the fact that the requesting party has to know
the accepting party has received the message and the other way around, the
accepting party has to know that the requesting party has sent the message
before both of them progress. There is no intermediate state, where one party
sends a message and then it proceeds independently or the other party receives
a message and then it proceeds independently.

2.5.2.2 Interaction Life-line

An Interaction completes normally when its message exchange(s) complete

An Interaction completes abnormally when: 1761

1762
 or within a party when processing the request 1763

ing the timeframe within which an 1764
ut 1765

1766

y 1767
1768

2.5.2.3 Interaction Syntax 1769

Th sy1770
 1771

• An application signals an error condition during the management of a
request

• The time-to-complete timeout, identify
Interaction MUST complete, occurs after the Interaction was initiated b
before it completed

• Other types of errors, such as Protocol Based Exchange failures, Securit
failures, Document Validation errors, etc.

e ntax of the interaction construct is:

<interaction name="ncname" 1772
 channelVariable="qname" 1773
 operation="ncname" 1774
 align="true"|"false"? 1775
 initiate="true"|"false"? > 1776
 1777
 <participate relationshipType="qname" 1778
 fromRole="qname" toRole="qname" /> 1779
 1780
 <exchange name="ncname" 1781
 informationType="qname"?|channelType="qname"? 1782
 action="request"|"respond" > 1783
 <send variable="XPath-expression"? 1784
 recordReference=”list of ncname”? 1785
 causeException=”true”|”false”? /> 1786
 <receive variable="XPath-expression"? 1787
 recordReference=”list of ncname”? 1788
 causeException=”true”|”false”? /> 1789
 </exchange>* 1790
 1791
 <timeout time-to-complete="XPath-expression" 1792
 fromRoleRecordReference=”list of ncname”? 1793
 toRoleRecordReference=”list of ncname”? />? 1794
 1795
 <record name="ncname" 1796
 when="before"|"after"|”timeout” 1797
 causeException=”true”|”false”? > 1798
 <source variable="XPath-expression"? | expression=”Xpath-expression”? /> 1799
 <target variable="XPath-expression" /> 1800
 </record>* 1801
</interaction> 1802

 1803
T for each Interaction element 1804
declared within a Choreography. 1805

he channelVariable attribute specifies the Channel Variable containing information 1806
1807
1808

ST be available at the two Roles before the 1809
Interaction occurs. At runtime, information about a Channel Variable is expanded 1810

e is used for specifying a namehe attribute nam

T
of a party, being the target of the Interaction, which is used for determining where
and how to send and receive information to and into the party. The Channel
Variable used in an Interaction MU

further. This requires that the messages exchanged in the Choreography also
contain reference and correlation information, for example by:

• Including a protocol header, such as a SOAP header or

• Using the actual value of data within a message, for example the “Order
Number” of the Order that is common to all the messages sent over the
Channel

1811
1812

1813

1814
1815
1816

Th op associated with 1817
thi nt 1818
the 1819
in this 1820

1821
1822
1823
1824

e". 1825
1826
1827
1828

nteraction participates in and the fromRole and toRole 1829
The 1830

1831
 1832

1833
1834
1835
1836
1837

ithin the exchange element, the OPTIONAL attributes informationType and 1838
1839
1840

s 1841
ied, then it is assumed that either no actual information is exchanged or 1842

phy 1843
1844
1845
1846

e 1847
pens fromRole to toRole 1848

ange 1849
1850

e eration attribute specifies the name of the operation that is
s I eraction. The specified operation belongs to the interface, as identified by
 role and behavior elements of the Channel Type of the Channel Variable used

Interaction.
The OPTIONAL align attribute when set to "true" means that this Alignment
Interaction results in the common understanding of both the information
exchanged and the resulting observable information creations or changes at the
ends of the Interaction as specified in the fromRole and the toRole. The default for
this attribute is "fals
An Interaction activity can be marked as a Choreography Initiator when the
OPTIONAL initiate attribute is set to "true". The default for this attribute is "false".
Within the participate element, the relationshipType attribute specifies the
Relationship Type this I
attributes specify the requesting and the accepting Role Types respectively.
Role Type identified by the toRole attribute MUST be the same as the Role Type
identified by the role element of the Channel Type of the Channel Variable used in
the interaction activity.

The OPTIONAL exchange element allows information to be exchanged during an
Interaction. The attribute name is used for specifying a name for this exchange
element.
W
channelType identify the Information Type or the Channel Type of the information
that is exchanged between the two Roles in an Interaction. The attributes
informationType and channelType are mutually exclusive. If none of these attribute
are specif
the type of information being exchanged is of no interest to the Choreogra
definition.
Within the exchange element, the attribute action specifies the direction of the
information exchanged in the Interaction:

• When the action attribute is set to “request”, then the information exchang
hap

• When the action attribute is set to ”respond”, then the information exch
happens from toRole to fromRole

W in1851
a Role t information is received at a Role 1852

1853

on 1854
ble attribute 1855

1856
 informationType or channelType attributes 1857

1858
1859

 1860
1861

• 1862
 MUST be defined at the 1863

1864
1865

• with 1866
1867

1868
s an XML-Schema list of references to 1869

AY 1870
me 1871

1872

• 1873
o “true”, specifies that an Exception MAY 1874

 the 1875
1876
1877

• 1878
1879

1880
ge MAY be of normal informationType and all others MUST be of 1881

spond 1882
1883

• 1884
1885

 1886
once it has successfully sent the information of the Variable 1887

1888
1889

 1890
1891

ith the exchange element, the send element shows that information is sent from
 and the receive element shows tha

respectively in the Interaction:

• The send and the receive elements MUST only use the WS-CDL functi
getVariable within the varia

• The OPTIONAL Variables specified within the send and receive elements
MUST be of type as described in the

• When the action element is set to "request", then the Variable specified
within the send element using the variable attribute MUST be defined at the
fromRole and the Variable specified within the receive element using the
variable attribute MUST be defined at the toRole

When the action element is set to "respond", then the Variable specified
within the send element using the variable attribute
toRole and the Variable specified within the receive element using the
variable attribute MUST be defined at fromRole

The Variable specified within the receive element MUST not be defined
the attribute silent set to “true”

• Within the send or the receive element(s) of an exchange element, the
recordReference attribute contain
record element(s) in the same Interaction. The same record element M
be referenced from different send or the receive element(s) within the sa
Interaction thus enabling re-use

Within the send or the receive element(s) of an exchange element, the
causeException attribute when set t
be caused at the respective Roles. In this case, the informationType of
exchange element MUST be of Exception Type. The default for this attribute
is "false"

The request exchange MUST NOT have causeException attribute set to
“true”

• When two or more respond exchanges are specified, one respond
exchan
Exception Type. There is an implicit choice between two or more re
exchanges

If the align attribute is set to "false" for the Interaction, then it means that
the:

o Request exchange completes successfully for the requesting Role

specified within the send element and the Request exchange
completes successfully for the accepting Role once it has
successfully received the information of the Variable specified
within the receive element

o ole 1892
nt the information of the Variable 1893

1894
1895
1896
1897

• If the a t the 1898
Interaction completes successfully if its Request and Response 1899

1900
1901
1902

ing Role has successfully sent the information of the 1903
Role 1904
cified 1905

1906
o 1907

sfully sent the information of the Variable 1908
1909
1910
1911

 1912
Within the OP he time-to-complete attribute identifies the 1913
meframe within which an Interaction MUST complete after it was initiated or the 1914

 1915
1916
1917
1918
1919

 1920
1921
1922
1923

e and then make 1924
vailable within one Role, the value of one or more Variables using another 1925

t 1926
 1927
t 1928

1929

d 1930
 occur at the fromRole for the send 1931

1932

• 1933
 target elements occur at the toRole for 1934

the send and at the fromRole for the receive 1935

Response exchange completes successfully for the accepting R
once it has successfully se
specified within the send element and the Response exchange
completes successfully for the requesting Role once it has
successfully received the information of the Variable specified
within the receive element

lign attribute is set to "true" for the Interaction, then it means tha

exchanges complete successfully and all referenced records complete
successfully:

o A Request exchange completes successfully once both the
request
Variable specified within the send element and the accepting
has successfully received the information of the Variable spe
within the receive element
A Response exchange completes successfully once both the
accepting Role has succes
specified within the send element and the requesting Role has
successfully received the information of the Variable specified
within the receive element

TIONAL timeout element, t
ti
deadline before an Interaction MUST complete. The time-to-complete SHOULD be
of XML-Schema duration type when conveying the timeframe and SHOULD be of
XML-Schema dateTime type when conveying the deadline. The OPTIONAL
fromRoleRecordReference attribute contains an XML-Schema list of references to
record element(s) in the same Interaction that will take effect at the fromRole
when a timeout occurs. The OPTIONAL toRoleRecordReference attribute contains
an XML-Schema list of references to record element(s) in the same Interaction
that will take effect at the toRole when a timeout occurs.

The OPTIONAL element record is used to create or chang
a
Variable or an expression. The attribute name is used for specifying a distinc
name for a record element within an Interaction. Within the record element, the
source and target elements specify these recordings of information happening a
the send and receive ends of the Interaction:

• When the action element is set to "request", then the recording(s) specifie
within the source and the target elements
and at the toRole for the receive

When the action element is set to "response", then the recording(s)
specified within the source and the

W n s 1936
before 1937
Reque t has expired. When the when 1938

1939
1940
1941
1942
1943
1944
1945

rce MUST define either a variable attribute or an expression attribute: 1946
 1947

expressions, as defined in Section 2.4.3. The resulting type of the 1948
1949
1950

o t 1951
1952

o the source defines a Variable, then the source and the target 1953
1954

• When use only the WS-CDL 1955
fun1956

• The ta attribute silent set to 1957
1958

• ed and performed at one or 1959
1960

• d element MUST NOT be specified in the absence of an exchange 1961
1962

• et to "true" in a record element if the 1963
1964

• " in a record element, the 1965
1966

• ecified for the same Role in an 1967
 1968

s an non-observable 1969
1970
1971

• 1972
ation 1973

formation specified within the record element 1974
1975

• 1976

ithi the record element, the when attribute specifies if a recording happen
 or after a send or “before” or “after” a receive of a message at a Role in a
st or a Response exchange or when a timeou

attribute is set to “timeout”, the record element specifies the recording to be
performed when a timeout occurs. If two or more record elements have the same
value in their when attribute and are referenced within the recordReference attribute
of a send or a receive element, then they are performed in the order in which they
are specified.
The following rules apply for the information recordings when using the record
element:

• The sou
o When the source defines an expression attribute, it MUST contain

defined expression MUST be compatible with the target Variable
type
When the source defines a Variable, then the source and the targe
Variable MUST be of compatible type
When
Variable MUST be defined at the same Role

the attribute variable is defined it MUST
ction getVariable

rget Variable MUST NOT be defined with the
“true”

One or more record elements MAY be specifi
both the Roles within an Interaction

A recor
element or a timeout element that reference it

The attribute causeException MAY be s
target Variable is an Exception Variable

When the attribute causeException is set to "true
corresponding Role gets into the Exception state

When two or more record elements are sp
Interaction with target Variables of Exception Type, one of the Exception
recordings MAY occur. An Exception recording ha
predicate condition, associated implicitly with it, that decides if an
Exception occurs

If the align attribute is set to "false" for the Interaction, then it means that
the Role specified within the record element makes available the cre
or change of the in
immediately after the successful completion of each record

If the align attribute is set to "true" for the Interaction, then it means that

o Both Roles know the availability of the creation or change
information specified within the record element only at

of the 1977
the successful 1978

1979
1980
1981
1982

t attribute will be affected 1983
 1984
The example1985
Interaction performed from Role Type “Consumer” to Role Type “Retailer” on the 1986

hannel "retailer-channel" as a request/response exchange: 1987

 1988
1989

tailer” to the 1990
1991

• is made available at the “Retailer” using 1992
1993

• er-channel”, which has a Token 1994
1995
1996

1997
1998
1999

f the 2000
2001
2002

2003
2004

annel” 2005
 attribute was set to "true" for this 2006

2007
er 2008

2009
g the 2010

2011

• 2012
 2013

 2014

completion of the Interaction
o If there are two or more record elements specified within an

Interaction, then all record operations MUST complete successfully
for the Interact to complete successfully. Otherwise, none of the
Variables specified in the targe

 below shows a complete Choreography that involves one

C

• The message “purchaseOrder” is sent from the “Consumer” to the
“Retailer” as a request message

• The message “purchaseOrderAck” is sent from the “Re
“Consumer” as a response message

The Variable “consumer-channel”
the record element

The Interaction happens on the “retail
“purchaseOrderID” used within the identity element of the Channel. This
identity element is used to identify the business process of the “Retailer”

• The request message “purchaseOrder” contains the identity of the
“Retailer” business process as specified in the tokenLocator for
”purchaseOrder” message

• The response message “purchaseOrderAck” contains the identity o
“Consumer” business process as specified in the tokenLocator for
“purchaseOrderAck” message

• The “consumer-channel” is sent as a part of “purchaseOrder” Interaction
from the “Consumer” to the “Retailer” on “retailer-channel” during the
request. Here the record element makes available the “Consumer-ch
at the “Retailer” Role. If the align
Interaction, then it also means that the “Consumer” knows that the
“Retailer” now has the contact information of the “Consumer”. In anoth
example, the “Consumer” could set its Variable "OrderSent" to "true" and
the “Retailer” would set its Variable "OrderReceived" to "true" usin
record element

The exchange “badPurchaseOrderAckException” specifies that an
Exception of “badPOAckType” Exception Type could occur at both parties

< l?xm version="1.0" encoding="UTF-8"?> 2015
<package xmlns="http://www.w3.org/2004/12/ws-chor/cdl" 2016
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 2017
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2018
 targetNamespace="http://www.oracle.com/ashwini/sample" 2019

 xmlns:tns=http://www.oracle.com/ashwini/sample” 2020 name="ConsumerRetailerChoreography" 2021
 version="1.0"> 2022
 2023
 <informationType name="purchaseOrderType" type="tns:PurchaseOrderMsg"/> 2024
 <informationType name="purchaseOrderAckType" type="tns:PurchaseOrderAckMsg"/> 2025
 <informationType name="badPOAckType" type="xsd:string" exceptionType="true"/> 2026
 2027
 <token name="purchaseOrderID" informationType="tns:intType"/> 2028
 <token name="retailerRef" informationType="tns:uriType"/> 2029
 <tokenLocator tokenName="tns:purchaseOrderID" 2030
 informationType="tns:purchaseOrderType" query="/PO/orderId"/> 2031
 <tokenLocator tokenName="tns:purchaseOrderID" 2032
 informationType="tns:purchaseOrderAckType" query="/PO/orderId"/> 2033
 <roleType name="Consumer"> 2034
 <behavior name="consumerForRetailer" interface="tns:ConsumerRetailerPT"/> 2035
 <behavior name="consumerForWarehouse" interface="tns:ConsumerWarehousePT"/> 2036
 </roleType> 2037
 <roleType name="Retailer"> 2038
 <behavior name="retailerForConsumer" interface="tns:RetailerConsumerPT"/> 2039
 </roleType> 2040
 <relationshipType name="ConsumerRetailerRelationship"> 2041
 <role type="tns:Consumer" behavior="consumerForRetailer"/> 2042
 <role type="tns:Retailer" behavior="retailerForConsumer"/> 2043
 </relationshipType> 2044
 <channelType name="ConsumerChannel"> 2045
 <role type="tns:Consumer"/> 2046
 <reference> 2047
 <token name="tns:consumerRef"/> 2048
 </reference> 2049
 <identity> 2050
 <token name="tns:purchaseOrderID"/> 2051
 </identity> 2052
 </channelType> 2053
 <channelType name="RetailerChannel"> 2054
 <passing channel="ConsumerChannel" action="request" /> 2055
 <role type="tns:Retailer" behavior="retailerForConsumer"/> 2056
 <reference> 2057
 <token name="tns:retailerRef"/> 2058
 </reference> 2059
 <identity> 2060
 <token name="tns:purchaseOrderID"/> 2061
 </identity> 2062
 </channelType> 2063
 2064
 <choreography name="ConsumerRetailerChoreography" root="true"> 2065
 <relationship type="tns:ConsumerRetailerRelationship"/> 2066
 <variableDefinitions> 2067
 <variable name="purchaseOrder" informationType="tns:purchaseOrderType" 2068
 silent="true" /> 2069
 <variable name="purchaseOrderAck" 2070
 informationType="tns:purchaseOrderAckType" /> 2071
 <variable name="retailer-channel" channelType="tns:RetailerChannel"/> 2072
 <variable name="consumer-channel" channelType="tns:ConsumerChannel"/> 2073
 <variable name="badPurchaseOrderAck" 2074
 informationType="tns:badPOAckType" roleTypes="tns:Consumer"/> 2075
 <variable name="badPurchaseOrderAck" 2076
 informationType="tns:badPOAckType" roleTypes="tns:Retailer" 2077
 silent="true" /> 2078
 </variableDefinitions> 2079
 2080
 <interaction name="createPO" 2081
 channelVariable="tns:retailer-channel" 2082

 operation="handlePurchaseOrder" align="true" 2083 initiate="true"> 2084
 <participate relationshipType="tns:ConsumerRetailerRelationship" 2085
 fromRole="tns:Consumer" toRole="tns:Retailer"/> 2086
 <exchange name="request" 2087
 informationType="tns:purchaseOrderType" action="request"> 2088
 <send variable="cdl:getVariable(“tns:purchaseOrder”, “”, “”)" /> 2089
 <receive variable="cdl:getVariable(“tns:purchaseOrder”, “”, “”)" 2090
 recordReference="record-the-channel-info" /> 2091
 </exchange> 2092
 <exchange name="response" 2093
 informationType="purchaseOrderAckType" action="respond"> 2094
 <send variable="cdl:getVariable(“tns:purchaseOrderAck”, “”, “”)" /> 2095
 <receive variable="cdl:getVariable(“tns:purchaseOrderAck”, “”, “”)" /> 2096
 </exchange> 2097
 <exchange name="badPurchaseOrderAckException" 2098
 informationType="badPOAckType" action="respond"> 2099
 <send variable="cdl:getVariable('tns:badPurchaseOrderAck', '', '')" 2100
 causeException="true" /> 2101
 <receive variable="cdl:getVariable(“tns:badPurchaseOrderAck”, “”, “”)" 2102
 causeException="true" /> 2103
 </exchange> 2104
 <record name="record-the-channel-info" when="after"> 2105
 <source variable="cdl:getVariable(“tns:purchaseOrder, “”, 2106
 “PO/CustomerRef”)"/> 2107
 <target variable="cdl:getVariable(“tns:consumer-channel”, “”, “”)"/> 2108
 </record> 2109
 </interaction> 2110
 </choreography> 2111
</package> 2112

22113

T lizes the “composition of Choreographies”, whereas 2114
combining existing Choreographies results in the creation of new 2115
Choreographies. For example if two separate Choreographies were defined as 2116
follows: 2117

ography that involves a “Buyer” Role 2118
sending a request for a quotation for goods and services to a “Supplier” 2119

r a 2120
2121

 2122
der for goods or services and the “Supplier” Role either accepts the 2123

2124
One co2125
two, w2126
on the outcome of the “RFQ” Choreography, the order is placed using the “Order 2127
Pla m t 2128
of the 2129
Choreographies can be combined to support Choreographies of any required 2130
complexity, allowing more flexibility as Choreographies defined elsewhere can be 2131
reused. 2132

.5.3 Composing Choreographies

he perform activity rea

• A “Request for Quote” (“RFQ”) Chore

Role to which the “Supplier” Role responds with either a "Quotation" o
"Decline to Quote" message, and

• An “Order Placement” Choreography, where the “Buyer” Role places and
or
order or rejects it
uld then create a new "Quote and Order" Choreography by reusing the

here the “RFQ” Choreography was performed first, and then, depending

ce ent” Choreography. In this case the new Choreography is "composed" ou
two previously defined Choreographies. Using this approach,

The perform activity enables a Choreography to specify that another
Choreography is performed at this point in its definition, as an enclosed
Choreography. The performed Choreography, even when defined in a different
Choreography Package, is conceptually treated as an enclosed Choreography.

The syntax of the perform construct is:

2133
2134
2135
2136
2137
2138
2139

<perform choreographyName="qname" 2140
 choreographyInstanceId="XPath-expression"? > 2141
 <bind name="ncname"> 2142
 <this variable="XPath-expression" role="qname"/> 2143
 <free variable="XPath-expression" role="qname"/> 2144
 </bind>* 2145
 Choreography-Notation? 2146
</perform> 2147

 2148
W eferences the name of 2149
the Choreography to be performed. 2150
T identifier for this 2151
performance of the Choreography identified by the choreographyName attribute. If 2152
the performed Choreography can only be performed once within the enclosing 2153
Choreography, the choreographyInstanceId attribute is OPTIONAL. Otherwise it 2154

UST be specified and the value MUST be different for each performance. This 2155
 a dynamic requirement. For example, if a single perform element appears in a 2156

2157
2158

a 2159
2160

 2161
n. 2162

2163
2164

ecifying a 2165
lared within this perform activity. Within the bind 2166

y to 2167
2168

 2169
2170
2171
2172

2173
2174

ally defined Choreography. Performed 2175

ithin the perform element, the choreographyName attribute r

he OPTIONAL choreographyInstanceId attribute defines an

M
is
Work Unit that can repeat, each use of perform must assign a different
ChoreographyInstanceId identifier.
The OPTIONAL Choreography-Notation within the perform element defines
Locally defined Choreography that is performed only by this perform activity. If
specified, the choreographyName attribute within the perform element MUST match
the attribute name within the choreography element of the Choreography-Notatio
The OPTIONAL bind element within the perform element enables information in
the performing Choreography to be shared with the performed Choreography
and vice versa. Within the bind element, the attribute name is used for sp
name for each bind element dec
element, the role attribute aliases the Roles from the performing Choreograph
the performed Choreography.
The variable attribute within this element specifies that a Variable in the performing
Choreography is bound with the Variable identified by the variable attribute within
the free element in the performed Choreography.
The following rules apply:

• The Choreography to be performed MUST be either a Locally defined
Choreography that is immediately contained within the performing
Choreography or a Glob

Choreographies that are declared in a different Choreography Package
MUST be included first before they can be performed

• The Role Types within a single bind elemen

2176
2177

t MUST be carried out by the 2178
hey MUST belong to the same Participant Type 2179

nly 2180
2181

• 2182
2183
2184

2185
2186
2187

 2188
Th ex aphy 2189
"Purch phy 2190
"RetailerWarehouseChoreography” and aliases the Variable 2191
"pu h e 2192
perform2193
Variab hy and 2194

us these Variables can be used interchangeably for sharing their information. 2195
2196

same party, hence t

• The variable attribute within this element and free element MUST define o
the WS-CDL function getVariable

The free Variables specified within the free element MUST have the
attribute free set to "true" in their definition within the performed
Choreography

• There MUST not be a cyclic dependency on the Choreographies
performed. For example, Choreography “C1” is performing Choreography
“C2” which is performing Choreography “C1” again is disallowed

e ample below shows a Choreography composition, where a Choreogr
aseChoreography” is performing the Globally defined Choreogra

rc aseOrderAtRetailer" to the Variable "purchaseOrder" defined at th
ed Choreography "RetailerWarehouseChoreography”. Once aliased, the

le “purchaseOrderAtRetailer” extends to the enclosed Choreograp
th

<choreography name="PurchaseChoreography”> 2197
 ... 2198
 <variableDefinitions> 2199
 <variable name="purchaseOrderAtRetailer" 2200
 informationType="purchaseOrder" role="tns:Retailer"/> 2201
 </variableDefinitions> 2202
 ... 2203
 <perform choreographyName="RetailerWarehouseChoreography”> 2204
 <bind name="aliasRetailer"> 2205
 <this variable="cdl:getVariable(“tns:purchaseOrderAtRetailer”, “”, “”)" 2206
 role="tns:Retailer"/> 2207
 <free variable="cdl:getVariable(“tns:purchaseOrder”, “”, “”)" 2208
 role="tns:Retailer"/> 2209
 </bind> 2210
 </perform> 2211
 ... 2212
</choreography> 2213
 2214
<choreography name="RetailerWarehouseChoreography”> 2215
 <variableDefinitions> 2216
 <variable name="purchaseOrder" 2217
 informationType="purchaseOrder" role="tns:Retailer" free=”true”/> 2218
 </variableDefinitions> 2219
 ... 2220
</choreography> 2221

2.5.4 Assigning 2222

T is used to create or change, and then make available within 2223
one Role, the value of one or more Variables using the value of another Variable 2224
or expression. 2225

sed to cause an Exception at a Role. 2226
 2227

2228
2229

Variables

he Assign activity

The assign activity MAY also be u

The syntax of the assign construct is:

<assign roleType="qname"> 2230
 <copy name="ncname" causeException="true”|”false"? > 2231
 <source variable="XPath-expression"?|expression=”Xpath-expression”? /> 2232
 <target variable="XPath-expression" /> 2233
 </copy>+ 2234
</assign> 2235

 2236
T2237
s target2238
the Variable or expression defined by the source element at the same Role. Within 2239
th ent, the attribute name is used for specifying a name for each copy 2240
lement declared within this assign activity. 2241

2242

2243
2244
2245

ompatible with the target Variable 2246
2247
2248
2249

o t 2250
2251

• When the attribute variable is defined it MUST use only the WS-CDL 2252
fun2253

• The target Variable MUST NO set to 2254
“true” 2255

• When two or more copy element, then 2256
2257

• s specified within an assign, then all 2258
2259

sfully. Otherwise, none of the Variables specified in the target 2260
attribute will be affected 2261

he copy element within the assign element creates or changes, at the Role
fined by the element using pecified by the roleType attribute, the Variable de

e copy elem
e
The following rules apply to assignment:

• The source MUST define either a variable attribute or an expression attribute:
o When the source defines an expression attribute, it MUST contain

expressions, as defined in Section 2.4.3. The resulting type of the
defined expression MUST be c
type

o When the source defines a Variable, then the source and the target
Variable MUST be of compatible type
When the source defines a Variable, then the source and the targe
Variable MUST be defined at the same Role

ction getVariable

T be defined with the attribute silent

 elements belong to the same assign
they are performed in the order in which they are defined

If there are two or more copy element
copy operations MUST complete successfully for the assign to complete
succes

• The OPTIONAL attribute causeException MAY be set to "true" in a copy
element if the target Variable is an Exception Variable. Th

2262
e default for this 2263

2264

• 2265
2266

• xception is set to "true" in a copy element, the Role 2267
 2268

2269
 2270
Th ex2271
 2272

attribute is "false"

At most one copy element MAY have the attribute causeException set to
"true"

When the attribute causeE
specified by the attribute roleType gets into the Exception state after the
assign activity has completed

e amples below show some possible usages of assign.

E pxam le 1: 2273
 2274
<assign roleType="tns:Retailer"> 2275
 <copy name="copyAddressInfo"> 2276
 <source variable="cdl:getVariable("PurchaseOrderMsg", “”, 2277
 "/PO/CustomerAddress")" /> 2278
 <target variable="cdl:getVariable("CustomerAddress", “”, “”)" /> 2279
 </copy> 2280
</assign> 2281
 2282
 2283
Example 2: 2284
 2285
<assign roleType="tns:Retailer"> 2286
 <copy name="copyPriceInfo"> 2287
 <source expression="(10+237)/34" /> 2288
 <target variable=”cdl:getVariable("ProductPrice", “", "", "tns:Retailer")” /> 2289
 </copy> 2290
</assign> 2291
 2292
 2293
Example 3: 2294
 2295
<assign roleType="tns:Customer"> 2296
 <copy name="copyLiteral"> 2297
 <source expression="Hello World" /> 2298
 <target variable=”cdl:getVariable("VarName", “", "", "tns:Customer")” /> 2299
 </copy> 2300
</assign> 2301

22302

T2303
where party specific actions with non-observable operational details MUST be 2304
performed. For example, the mechanism for checking the inventory of a 2305
warehouse should not be observable to other parties, but the fact that the 2306
inventory level does influence the global observable behavior with a buyer party 2307
needs to be specified in the Choreography definition. 2308

.5.5 Marking Silent Actions

he Silent Action activity is an explicit designator used for marking the point

The syntax of the silent action construct is: 2309
 2310

<silentAction roleType="qname? /> 2311

2312
2313
2314

 Role Types that are part of the 2315
elationships of the Choreography this activity is enclosed within. 2316

The OPTIONAL attribute roleType is used to specify the party at which the silent
action will be performed. If a silent action is defined without a Role Type, it is
implied that the action is performed at all the
R

2 Actions 2317

he No Action activity is an explicit designator used for marking the point where 2318
2319
2320
2321

.5.6 Marking the Absence of

T
a party does not perform any action.
The syntax of the no action construct is:

<noAction roleType="qname? /> 2322

2323
2324
2325

he Role Types that are part of the 2326
ctivity is enclosed within. 2327

The OPTIONAL attribute roleType is used to specify the party at which no action
will be performed. If a noAction is defined without a Role Type, it is implied that
no action will be performed at any of t
Relationships of the Choreography this a

2 raphy 2328

he finalize activity is used to enable a specific Finalizer Block in successfully 2329
2330
2331

alizer 2332
ithin it. A 2333

finalize activity MAY be present within a Choreography that has performed a 2334
g Finalizer Block(s) - that is a finalize 2335

activity can be specified within the Choreography body, within an Exception 2336
2337
2338

vity during the subsequent 2339
2340
2341
2342

.5.7 Finalizing a Choreog

T
completed instances of immediately enclosed Choreographies, and thus bring
those Choreographies to defined conclusions.
A Choreography that does not perform any Choreographies that have Fin
Block(s) defined MUST NOT have any finalize activities specified w

Choreo raphy with one or more defined

Block and within Finalizer Blocks.
For a single performed Choreography instance, at most one of its Finalizer
Block(s) SHOULD be enabled by a finalize acti
progress, including Exception handling and finalization, of the enclosing
Choreography.

The syntax of the finalize construct is:

2343
2344

<finalize name="ncname"? > 2345
 <finalizerReference 2346
 choreographyName="ncname" 2347
 choreographyInstanceId="XPath-expression"? 2348
 finalizerName="ncname"? /> 2349
 </finalizerReference>+ 2350
</finalize> 2351

2352
T2353
fi ithin a Choreography Package. 2354
E a performed instance 2355
of an immediately enclosed Choreography. Within a element, each 2356
fi a different performed Choreography instance. 2357
W izerReference element, the choreographyName attribute identifies the 2358

horeography referenced by the choreographyName attribute of the perform 2359
2360

raphyInstanceId attribute 2361
2362
2363
2364

 2365
 2366

2367
y the choregraphyName attribute could have been performed, the 2368

2369
2370
2371

k, then 2372
2373
2374

ions 2375
 can be selected. The 2376

r 2377
2378
2379
2380

he OPTIONAL attribute name is used for specifying a distinct name for each
nalize element declared w
ach finalizerReference element enables a Finalizer Block in

finalize
nalizerReference MUST refer to
ithin the final

C
construct.
Within the finalizerReference element, the OPTIONAL choreog
identifies the performed Choreography instance to be finalized, using the value
defined by the choreographyInstanceId attribute of the perform construct. The
choreographyInstanceId attribute MAY be omitted if the contract logic of the
performing Choreography is such that only one instance of the Choreography
identified by the choreographyName attribute could have been performed when the
finalize activity is enabled. If more than one instance of the Choreography
identified b
choreographyInstanceId attribute MUST be present.
Within the finalizerReference element, the attribute finalizerName indicates which
Finalizer Block is to be enabled in the performed instance. If the targeted,
immediately enclosed, Choreography has only one defined Finalizer Bloc
the finalizerName attribute is OPTIONAL.

In the example below, Choreography “CreditDecider” gets credit authorizat
for two bidders, “A” and “B”, at most one of which
“CreditDecider” performs a “CoordinatedCreditAuthorization” Choreography fo
each bidder, and then finalizes each performed Choreography depending on
whether “A”, ”B” or neither was selected.

<choreography name="CreditDecider"> 2381
 2382
 <!-- only a snippet is shown here --> 2383
 2384
 <parallel> 2385
 <perform name="creditForA" 2386
 choreographyName="CoordinatedCreditAuthorization" 2387

 choreographyInstance="creditForA"> 2388 <!-- bind such that this does the business for A --> 2389
 </perform> 2390
 <perform name="creditForB" 2391
 choreographyName="CoordinatedCreditAuthorization" 2392
 choreographyInstance="creditForB"> 2393
 <!-- bind such that this does the business for A --> 2394
 </perform> 2395
 </parallel> 2396
 2397
 <!-- other stuff here --> 2398
 2399
 <workunit name="chooseA" 2400
 guard="cdl:getVariable('Chosen',,,'Broker')='A'" > 2401
 <finalize> 2402
 <finalizerReference 2403
 choreographyName="CoordinatedCreditAuthorization" 2404
 choreographyInstanceId="creditForA" 2405
 finalizerName="drawDown"/> 2406
 <finalizerReference 2407
 choreographyName="CoordinatedCreditAuthorization" 2408
 choreographyInstanceId="creditForB" 2409
 finalizerName="replenish"/> 2410
 </finalize> 2411
 </workunit> 2412
 2413
 <workunit name="chooseB" 2414
 guard="cdl:getVariable('Chosen',,,'Broker')='B'" > 2415
 <finalize> 2416
 <finalizerReference 2417
 choreographyName="CoordinatedCreditAuthorization" 2418
 choreographyInstanceId="creditForB" 2419
 finalizerName="drawDown"/> 2420
 <finalizerReference 2421
 choreographyName="CoordinatedCreditAuthorization" 2422
 choreographyInstanceId="creditForA" 2423
 finalizerName="replenish"/> 2424
 </finalize> 2425
 </workunit> 2426
 2427
 <workunit name="chooseNeither" 2428
 guard="cdl:getVariable('Chosen',,,'Broker')='0'" > 2429
 <finalize> 2430
 <finalizerReference 2431
 choreographyName="CoordinatedCreditAuthorization" 2432
 choreographyInstanceId="creditForA" 2433
 finalizerName="replenish"/> 2434
 <finalizerReference 2435
 choreographyName="CoordinatedCreditAuthorization" 2436
 choreographyInstanceId="creditForB" 2437
 finalizerName="replenish"/> 2438
 </finalize> 2439
 </workunit> 2440
</choreography> 2441

32442

T2443

 Example

o be completed

4 ity framework 2444

The WS-Security specification [24] provides enhancements to SOAP 2445
messaging to provide quality of protection through message integrity, 2446

ssage authentication, including a 2447
anism for associating security tokens with 2448

2449
2450

 have consequences in the real world, collaboration 2451
parties will impose security requirements on their information 2452

ents. 2453

2454

2455

xchange 2456
formation among collaborating parties. The WS-Reliability specification 2457

 2458
ents. The WS-2459

2460
transport protocols (examples are HTTP/S, FTP, SMTP, etc.). The WS-Reliability 2461
specification supports sequencing of messages and guaranteed, exactly once 2462

2463
A violation of any of these consistency guarantees results in an “error”, which 2464
MAY be reflected in the Choreography with an Exception. 2465

 2466

 2467
2468

is 2469
lignment Interactions and the Coordinated Choreographies MUST be 2470

2471

7 Relationship with the Addressing framework 2472

2473
2474
2475
2476
2477

 Relationship with the Secur

message confidentiality, and single me
general-purpose mech
messages, and a description of how to encode binary security tokens.

As messages can

exchanges. WS-Security can be used satisfy many of these requirem

5 Relationship with the Reliable Messaging
framework

The WS-Reliability specification [22] provides a reliable mechanism to e
in
prescribes the formats for all information exchanged without placing any
restrictions on the content of the encapsulated business docum
Reliability specification supports message exchange patterns, over various

delivery.

6 Relationship with the Coordination framework

In WS-CDL, Alignment Interactions and Coordinated Choreographies require
support from a Coordination protocol, where agreement on the outcome among
parties can be reached even in the case of failures and loss of messages. In th
case, the A
bound to a Coordination protocol.

The WS-Addressing specification [28] provides transport-neutral mechanisms to
address Web services and messages, specifically, XML [9, 10] elements to
identify Web service endpoints and to secure end-to-end endpoint identification
in messages. WS-Addressing enables messaging systems to support message
transmission through networks that include processing nodes such as endpoint

managers, firewalls, and gateways in a transport-neutral manner.

2478
2479

WS-Addressing can be used to convey the reference and correlation 2480
2481
2482
2483
2484
2485
2486
2487

2488

2489

 Acknowledgments 2490

2491
king Group. The chairs of this Working Group are Martin 2492

Chapman (Oracle Corporation) and Steve Ross-Talbot (Enigmatec Corporation). 2493
 the Working Group members for their 2494

 Working Group are (at the time of writing): 2495
 2496

el Networks), Charlton Barreto (webMethods, Inc.), Carine 2497
Bournez (W3C), Gary Brown (Enigmatec Corporation), Anthony Fletcher 2498

 Ltd), Jim Hendler (University of 2499
Queen Mary and Westerfield College), 2500

Yutaka Kudou (Hitachi, Ltd.), Yves 2501
2502

 2503
2504
2505
2506

aniel 2507
ard 2508
e), 2509
 2510

2511
2512
2513
2514

 2515
2516

nan 2517
isco Systems Inc.), Melanie Kudela (Uniform Code Council), Bruno Kurtic 2518

information for normalizing expanded Channel Variable information into an
uniform format that can be processed independently of transport or
application.

The WS-Addressing specification is in progress and the WS-Choreography
Working Group will review and comment on developments in this effort on
an ongoing basis.

8 Conformance

To be completed

9

This document has been produced by the members of the Web Services
Choreography Wor

The editors would like to thank
contributions. Members of the

Abbie Barbir (Nort

(Choreology Ltd), Peter Furniss (Choreology
Maryland (Mind Lab)), Kohei Honda (
Nickolas Kavantzas (Oracle Corporation),
Lafon (W3C), Monica Martin (Sun Microsystems, Inc.), Robin Milner (Cambridge
University), Jeff Mischkinsky (Oracle Corporation), Bijan Parsia (University of
Maryland (Mind Lab)), Greg Ritzinger (Novell), Yoko Seki (Hitachi, Ltd.), Prasad
Yendluri (webMethods, Inc.), Nobuko Yoshida (Imperial College London).

Previous members of the Working Group were: Assaf Arkin (Intalio Inc.), D
Austin (Sun Microsystems, Inc.), Alistair Barros (DSTC Pty Ltd (CITEC)), Rich
Bonneau (IONA), Allen Brown (Microsoft Corporation), Mike Brumbelow (Appl
David Burdett (Commerce One), Ravi Byakod (Intalio Inc.), Michael Champion
(Software AG), David Chapell (Sonic Software), Ugo Corda (SeeBeyond
Technology Corporation), Fred Cummins (EDS), Jon Dart (TIBCO Software),
Jean-Jacques Dubray (Attachmate), William Eidson (TIBCO Software), Colleen
Evans (Sonic Software), Keith Evans (Hewlett-Packard), Yaron Goland (BEA
Systems), Leonard Greski (W. W. Grainger, Inc.), Ricky Ho (Cisco Systems Inc.),
Andre Huertas (Uniform Code Council), Duncan Johnston-Watt (Enigmatec
Corporation), Eunju Kim (National Computerization Agency), Mayilraj Krish
(C

(webMethods, Inc.), Paul Lipton (Computer Associates), Kevin Liu (SAP AG),
Francis McCabe (Fujitsu Ltd.), Carol McDonald (Sun Microsystems, Inc.), Greg
Meredith (Microsoft Corporation), Eric Newcomer (IONA), Sanjay Patil (IONA),
Ed Peters (webMethods, Inc.), Steve Pruitt (Novell), Dinesh Shahane (TIBCO
Software), Evren Sirin (University of Maryland (Mind Lab)), Ivana Trickovi
AG), William Vambenepe (Hewlett-Packard), Jim Webber (Arjuna Technologie
Ltd.), Stuart Wheater (Arjuna Technologies Ltd.), Steven White (SeeBeyond
Technology Corporation), Hadrian Zbarcea (IONA).

10 References

[1] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, Harvard
University, March 1997

[2] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Synta
RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[3] http://www.w3.org/TR/html401/interaction/forms.html#submit-format

[4] http://www.w3.org/TR/html401/appendix/notes.html#ampersands-in-uris

[5] http://www.w3.org/TR/html401/interaction/forms.html#h-17.1

2519
2520
2521
2522

c (SAP 2523
s 2524

2525
2526

2527

2528
2529

x", 2530
2531
2532
2533

3.4 2534
[6] Simple Object Access Protocol (SOAP) 1.1 "http://www.w3.org/TR/2000/NOTE-SOAP-2535

2536
nguage (WSDL) 2.0 2537

2538
n "The XML Specification" 2539

2540
2541

n progress. 2542
ogress. 2543

.0" 2544
2545

asinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 2546
.0, A. Arkin et.al 2547

tion 2548
ann, 2001 IBM Corporation 2549

work 2550
2551
2552

 1.0”, M. 2553
2554

 2555
2556
2557

20000508/"

[7] Web Services Definition La

[8] OASIS Committee Draft "Universal Description, Discovery and Integration" version 3.0.2

[9] W3C Recommendatio

[10] XML-Namespaces " Namespaces in XML, Tim Bray et al., eds., W3C, January 1999"

http://www.w3.org/TR/REC-xml-names

[11] W3C Working Draft "XML Schema Part 1: Structures". This is work i

[12] W3C Working Draft "XML Schema Part 2: Datatypes". This is work in pr

[13] W3C Recommendation "XML Path Language (XPath) Version 1

[14] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R.
Fielding, L. M

[15] WSCI: Web Services Choreography Interface 1

[16] XLANG: Web Services for Business Process Design, S. Thatte, 2001 Microsoft Corpora

[17] WSFL: Web Service Flow Language 1.0, F. Leym

[18] OASIS Working Draft “WS-BPEL: Business Process Execution Language 2.0”. This is
in progress.

[19] BPMI.org “BPML: Business Process Modeling Language 1.0”

[20] Workflow Management Coalition “XPDL: XML Processing Description Language
Marin, R. Norin R. Shapiro

[21] OASIS Working Draft “WS-CAF: Web Services Context, Coordination and Transaction
Framework 1.0”. This is work in progress.

[22] OASIS Working Draft “Web Services Reliability 1.0”. This is work in progress.

[23] The Java Language Specification 2558
2559
2560

001. Standard ECMA-334: C# Language Specification 2561
2562
2563
2564

[24] OASIS “Web Services Security”

[25] J2EE: Java 2 Platform, Enterprise Edition, Sun Microsystems

[26] ECMA. 2

[27] “XML Inclusions Version 1.0” http://www.w3.org/TR/xinclude/

[28] Web Services Addressing (WS-Addressing) - W3C Member Submission
10 August 2004

11 Last Call Issues 2565

11.1 Issue 1 2566

2567
2568
2569

Due to a lack of clarity in existing XML specifications, the WS-Choreography
Working Group is unable at this time to recommend an approach for accessing
and modifying members of lists and arrays.

11.2 Issue 2 2570

2571
2572
2573
2574

The WS-Choreography Working Group is working on a proposal for extending
Choreographies (that is specifying a choreography by defining how it is based on
another choreography). This work is not finalized as of yet, but we do not believe
it will have a major impact on the architecture.

12 WS-CDL XSD Schemas 2575

<?xml version="1.0" encoding="UTF-8"?> 2576
<schema xmlns="http://www.w3.org/2001/XMLSchema" 2577
 xmlns:cdl="http://www.w3.org/2004/12/ws-chor/cdl" 2578
 targetNamespace="http://www.w3.org/2004/12/ws-chor/cdl" 2579
 elementFormDefault="qualified"> 2580
 2581
 <complexType name="tExtensibleElements"> 2582
 <annotation> 2583
 <documentation> 2584
 This type is extended by other CDL component types to allow 2585
 elements and attributes from other namespaces to be added. 2586
 This type also contains the optional description element that 2587
 is applied to all CDL constructs. 2588
 </documentation> 2589
 </annotation> 2590
 <sequence> 2591
 <element name="description" minOccurs="0"> 2592
 <complexType mixed="true"> 2593
 <sequence minOccurs="0" maxOccurs="unbounded"> 2594
 <any processContents="lax"/> 2595
 </sequence> 2596
 <attribute name="type" type="cdl:tDescriptionType" use="optional" 2597
 default="documentation"/> 2598
 </complexType> 2599
 </element> 2600
 <any namespace="##other" processContents="lax" 2601
 minOccurs="0" maxOccurs="unbounded"/> 2602
 </sequence> 2603
 <anyAttribute namespace="##other" processContents="lax"/> 2604
 </complexType> 2605
 2606
 <element name="package" type="cdl:tPackage"/> 2607
 2608
 <complexType name="tPackage"> 2609
 <complexContent> 2610
 <extension base="cdl:tExtensibleElements"> 2611
 <sequence> 2612
 <element name="informationType" type="cdl:tInformationType" 2613
 minOccurs="0" maxOccurs="unbounded"/> 2614
 <element name="token" type="cdl:tToken" minOccurs="0" 2615
 maxOccurs="unbounded"/> 2616
 <element name="tokenLocator" type="cdl:tTokenLocator" 2617
 minOccurs="0" maxOccurs="unbounded"/> 2618
 <element name="roleType" type="cdl:tRoleType" minOccurs="0" 2619
 maxOccurs="unbounded"/> 2620
 <element name="relationshipType" type="cdl:tRelationshipType" 2621
 minOccurs="0" maxOccurs="unbounded"/> 2622
 <element name="participantType" type="cdl:tParticipantType" 2623
 minOccurs="0" maxOccurs="unbounded"/> 2624
 <element name="channelType" type="cdl:tChannelType" 2625
 minOccurs="0" maxOccurs="unbounded"/> 2626
 <element name="choreography" type="cdl:tChoreography" 2627
 minOccurs="0" maxOccurs="unbounded"/> 2628
 </sequence> 2629
 <attribute name="name" type="NCName" use="required"/> 2630
 <attribute name="author" type="string" use="optional"/> 2631
 <attribute name="version" type="string" use="optional"/> 2632
 <attribute name="targetNamespace" type="anyURI" 2633
 use="required"/> 2634
 </extension> 2635

 </complexContent> 2636
 </complexType> 2637
 2638
 <complexType name="tInformationType"> 2639
 <complexContent> 2640
 <extension base="cdl:tExtensibleElements"> 2641
 <attribute name="name" type="NCName" use="required"/> 2642
 <attribute name="type" type="QName" use="optional"/> 2643
 <attribute name="element" type="QName" use="optional"/> 2644
 <attribute name="exceptionType" type="boolean" use="optional" 2645
 default="false" /> 2646
 </extension> 2647
 </complexContent> 2648
 </complexType> 2649
 2650
 <complexType name="tToken"> 2651
 <complexContent> 2652
 <extension base="cdl:tExtensibleElements"> 2653
 <attribute name="name" type="NCName" use="required"/> 2654
 <attribute name="informationType" type="QName" 2655
 use="required"/> 2656
 </extension> 2657
 </complexContent> 2658
 </complexType> 2659
 2660
 <complexType name="tTokenLocator"> 2661
 <complexContent> 2662
 <extension base="cdl:tExtensibleElements"> 2663
 <attribute name="tokenName" type="QName" use="required"/> 2664
 <attribute name="informationType" type="QName" 2665
 use="required"/> 2666
 <attribute name="part" type="NCName" use="optional" /> 2667
 <attribute name="query" type="cdl:tXPath-expr" 2668
 use="required"/> 2669
 </extension> 2670
 </complexContent> 2671
 </complexType> 2672
 2673
 <complexType name="tRoleType"> 2674
 <complexContent> 2675
 <extension base="cdl:tExtensibleElements"> 2676
 <sequence> 2677
 <element name="behavior" type="cdl:tBehavior" 2678
 maxOccurs="unbounded"/> 2679
 </sequence> 2680
 <attribute name="name" type="NCName" use="required"/> 2681
 </extension> 2682
 </complexContent> 2683
 </complexType> 2684
 2685
 <complexType name="tBehavior"> 2686
 <complexContent> 2687
 <extension base="cdl:tExtensibleElements"> 2688
 <attribute name="name" type="NCName" use="required"/> 2689
 <attribute name="interface" type="QName" use="optional"/> 2690
 </extension> 2691
 </complexContent> 2692
 </complexType> 2693
 2694
 <complexType name="tRelationshipType"> 2695
 <complexContent> 2696
 <extension base="cdl:tExtensibleElements"> 2697
 <sequence> 2698

 <element name="role" type="cdl:tRoleRef" minOccurs="2" 2699
 maxOccurs="2"/> 2700
 </sequence> 2701
 <attribute name="name" type="NCName" use="required"/> 2702
 </extension> 2703
 </complexContent> 2704
 </complexType> 2705
 2706
 <complexType name="tRoleRef"> 2707
 <complexContent> 2708
 <extension base="cdl:tExtensibleElements"> 2709
 <attribute name="type" type="QName" use="required"/> 2710
 <attribute name="behavior" use="optional"> 2711
 <simpleType> 2712
 <list itemType="NCName"/> 2713
 </simpleType> 2714
 </attribute> 2715
 </extension> 2716
 </complexContent> 2717
 </complexType> 2718
 2719
 <complexType name="tParticipantType"> 2720
 <complexContent> 2721
 <extension base="cdl:tExtensibleElements"> 2722
 <sequence> 2723
 <element name="role" type="cdl:tRoleRef2" 2724
 maxOccurs="unbounded"/> 2725
 </sequence> 2726
 <attribute name="name" type="NCName" use="required"/> 2727
 </extension> 2728
 </complexContent> 2729
 </complexType> 2730
 2731
 <complexType name="tRoleRef2"> 2732
 <complexContent> 2733
 <extension base="cdl:tExtensibleElements"> 2734
 <attribute name="type" type="QName" use="required"/> 2735
 </extension> 2736
 </complexContent> 2737
 </complexType> 2738
 2739
 <complexType name="tChannelType"> 2740
 <complexContent> 2741
 <extension base="cdl:tExtensibleElements"> 2742
 <sequence> 2743
 <element name="passing" type="cdl:tPassing" minOccurs="0" 2744
 maxOccurs="unbounded"/> 2745
 <element name="role" type="cdl:tRoleRef3"/> 2746
 <element name="reference" type="cdl:tReference"/> 2747
 <element name="identity" type="cdl:tIdentity" minOccurs="0" 2748
 maxOccurs="1"/> 2749
 </sequence> 2750
 <attribute name="name" type="NCName" use="required"/> 2751
 <attribute name="usage" type="cdl:tUsage" use="optional" 2752
 default="unlimited"/> 2753
 <attribute name="action" type="cdl:tAction" use="optional" 2754
 default="request"/> 2755
 </extension> 2756
 </complexContent> 2757
 </complexType> 2758
 2759
 <complexType name="tRoleRef3"> 2760
 <complexContent> 2761

 <extension base="cdl:tExtensibleElements"> 2762
 <attribute name="type" type="QName" use="required"/> 2763
 <attribute name="behavior" type="NCName" use="optional"/> 2764
 </extension> 2765
 </complexContent> 2766
 </complexType> 2767
 2768
 <complexType name="tPassing"> 2769
 <complexContent> 2770
 <extension base="cdl:tExtensibleElements"> 2771
 <attribute name="channel" type="QName" use="required"/> 2772
 <attribute name="action" type="cdl:tAction" use="optional" 2773
 default="request"/> 2774
 <attribute name="new" type="boolean" use="optional" 2775
 default="false"/> 2776
 </extension> 2777
 </complexContent> 2778
 </complexType> 2779
 2780
 <complexType name="tReference"> 2781
 <complexContent> 2782
 <extension base="cdl:tExtensibleElements"> 2783
 <sequence> 2784
 <element name="token" type="cdl:tTokenReference" 2785
 minOccurs="1" maxOccurs="1"/> 2786
 </sequence> 2787
 </extension> 2788
 </complexContent> 2789
 </complexType> 2790
 2791
 <complexType name="tTokenReference"> 2792
 <complexContent> 2793
 <extension base="cdl:tExtensibleElements"> 2794
 <attribute name="name" type="QName" use="required"/> 2795
 </extension> 2796
 </complexContent> 2797
 </complexType> 2798
 2799
 <complexType name="tIdentity"> 2800
 <complexContent> 2801
 <extension base="cdl:tExtensibleElements"> 2802
 <sequence> 2803
 <element name="token" type="cdl:tTokenReference" 2804
 minOccurs="1" maxOccurs="unbounded"/> 2805
 </sequence> 2806
 </extension> 2807
 </complexContent> 2808
 </complexType> 2809
 2810
 2811
 <complexType name="tChoreography"> 2812
 <complexContent> 2813
 <extension base="cdl:tExtensibleElements"> 2814
 <sequence> 2815
 <element name="relationship" type="cdl:tRelationshipRef" 2816
 maxOccurs="unbounded"/> 2817
 <element name="variableDefinitions" 2818
 type="cdl:tVariableDefinitions" minOccurs="0"/> 2819
 <element name="choreography" type="cdl:tChoreography" 2820
 minOccurs="0" maxOccurs="unbounded"/> 2821
 <group ref="cdl:activity"/> 2822
 <element name="exceptionBlock" type="cdl:tException" 2823
 minOccurs="0"/> 2824

 <element name="finalizerBlock" type="cdl:tFinalizer" 2825
 minOccurs="0" maxOccurs="unbounded"/> 2826
 </sequence> 2827
 <attribute name="name" type="NCName" use="required"/> 2828
 <attribute name="complete" type="cdl:tBoolean-expr" 2829
 use="optional"/> 2830
 <attribute name="isolation" type="boolean" 2831
 use="optional" default="false"/> 2832
 <attribute name="root" type="boolean" use="optional" 2833
 default="false"/> 2834
 <attribute name="coordination" type="boolean" use="optional" 2835
 default="false"/> 2836
 </extension> 2837
 </complexContent> 2838
 </complexType> 2839
 2840
 <complexType name="tRelationshipRef"> 2841
 <complexContent> 2842
 <extension base="cdl:tExtensibleElements"> 2843
 <attribute name="type" type="QName" use="required"/> 2844
 </extension> 2845
 </complexContent> 2846
 </complexType> 2847
 2848
 <complexType name="tVariableDefinitions"> 2849
 <complexContent> 2850
 <extension base="cdl:tExtensibleElements"> 2851
 <sequence> 2852
 <element name="variable" type="cdl:tVariable" 2853
 maxOccurs="unbounded"/> 2854
 </sequence> 2855
 </extension> 2856
 </complexContent> 2857
 </complexType> 2858
 2859
 <complexType name="tVariable"> 2860
 <complexContent> 2861
 <extension base="cdl:tExtensibleElements"> 2862
 <attribute name="name" type="NCName" use="required"/> 2863
 <attribute name="informationType" type="QName" 2864
 use="optional"/> 2865
 <attribute name="channelType" type="QName" use="optional"/> 2866
 <attribute name="mutable" type="boolean" use="optional" 2867
 default="true"/> 2868
 <attribute name="free" type="boolean" use="optional" 2869
 default="false"/> 2870
 <attribute name="silent" type="boolean" use="optional" 2871
 default="false"/> 2872
 <attribute name="roleTypes" use="optional"> 2873
 <simpleType> 2874
 <list itemType="QName"/> 2875
 </simpleType> 2876
 </attribute> 2877
 </extension> 2878
 </complexContent> 2879
 </complexType> 2880
 2881
 <group name="activity"> 2882
 <choice> 2883
 <element name="sequence" type="cdl:tSequence"/> 2884
 <element name="parallel" type="cdl:tParallel"/> 2885
 <element name="choice" type="cdl:tChoice"/> 2886
 <element name="workunit" type="cdl:tWorkunit"/> 2887

 <element name="interaction" type="cdl:tInteraction"/> 2888
 <element name="perform" type="cdl:tPerform"/> 2889
 <element name="assign" type="cdl:tAssign"/> 2890
 <element name="silentAction" type="cdl:tSilentAction"/> 2891
 <element name="noAction" type="cdl:tNoAction"/> 2892
 <element name="finalize" type="cdl:tFinalize"/> 2893
 2894
 </choice> 2895
 </group> 2896
 2897
 <complexType name="tSequence"> 2898
 <complexContent> 2899
 <extension base="cdl:tExtensibleElements"> 2900
 <sequence> 2901
 <group ref="cdl:activity" maxOccurs="unbounded"/> 2902
 </sequence> 2903
 </extension> 2904
 </complexContent> 2905
 </complexType> 2906
 2907
 <complexType name="tParallel"> 2908
 <complexContent> 2909
 <extension base="cdl:tExtensibleElements"> 2910
 <sequence> 2911
 <group ref="cdl:activity" maxOccurs="unbounded"/> 2912
 </sequence> 2913
 </extension> 2914
 </complexContent> 2915
 </complexType> 2916
 <complexType name="tChoice"> 2917
 <complexContent> 2918
 <extension base="cdl:tExtensibleElements"> 2919
 <sequence> 2920
 <group ref="cdl:activity" maxOccurs="unbounded"/> 2921
 </sequence> 2922
 </extension> 2923
 </complexContent> 2924
 </complexType> 2925
 2926
 <complexType name="tWorkunit"> 2927
 <complexContent> 2928
 <extension base="cdl:tExtensibleElements"> 2929
 <sequence> 2930
 <group ref="cdl:activity"/> 2931
 </sequence> 2932
 <attribute name="name" type="NCName" use="required"/> 2933
 <attribute name="guard" type="cdl:tBoolean-expr" 2934
 use="optional"/> 2935
 <attribute name="repeat" type="cdl:tBoolean-expr" 2936
 use="optional"/> 2937
 <attribute name="block" type="boolean" 2938
 use="optional" default="false"/> 2939
 </extension> 2940
 </complexContent> 2941
 </complexType> 2942
 2943
 <complexType name="tPerform"> 2944
 <complexContent> 2945
 <extension base="cdl:tExtensibleElements"> 2946
 <sequence> 2947
 <element name="bind" type="cdl:tBind" 2948
 minOccurs="0" maxOccurs="unbounded"/> 2949
 <element name="choreography" type="cdl:tChoreography" 2950

 minOccurs="0" maxOccurs="1"/> 2951
 </sequence> 2952
 <attribute name="choreographyName" type="QName" use="required"/> 2953
 <attribute name="choreographyInstanceId" type="cdl:tXPath-expr" 2954
use="optional"/> 2955
 </extension> 2956
 </complexContent> 2957
 </complexType> 2958
 2959
 <complexType name="tBind"> 2960
 <complexContent> 2961
 <extension base="cdl:tExtensibleElements"> 2962
 <sequence> 2963
 <element name="this" type="cdl:tBindVariable"/> 2964
 <element name="free" type="cdl:tBindVariable"/> 2965
 </sequence> 2966
 <attribute name="name" type="NCName" use="required"/> 2967
 </extension> 2968
 </complexContent> 2969
 </complexType> 2970
 2971
 <complexType name="tBindVariable"> 2972
 <complexContent> 2973
 <extension base="cdl:tExtensibleElements"> 2974
 <attribute name="variable" type="cdl:tXPath-expr" 2975
 use="required"/> 2976
 <attribute name="role" type="QName" use="required"/> 2977
 </extension> 2978
 </complexContent> 2979
 </complexType> 2980
 2981
 <complexType name="tInteraction"> 2982
 <complexContent> 2983
 <extension base="cdl:tExtensibleElements"> 2984
 <sequence> 2985
 <element name="participate" type="cdl:tParticipate"/> 2986
 <element name="exchange" type="cdl:tExchange" minOccurs="0" 2987
 maxOccurs="unbounded"/> 2988
 <element name="timeout" type="cdl:tTimeout" minOccurs="0" 2989
 maxOccurs="1"/> 2990
 <element name="record" type="cdl:tRecord" minOccurs="0" 2991
 maxOccurs="unbounded"/> 2992
 </sequence> 2993
 <attribute name="name" type="NCName" use="required"/> 2994
 <attribute name="channelVariable" type="QName" 2995
 use="required"/> 2996
 <attribute name="operation" type="NCName" use="required"/> 2997
 <attribute name="align" type="boolean" use="optional" 2998
 default="false"/> 2999
 <attribute name="initiate" type="boolean" 3000
 use="optional" default="false"/> 3001
 </extension> 3002
 </complexContent> 3003
 </complexType> 3004
 3005
 <complexType name="tTimeout"> 3006
 <complexContent> 3007
 <extension base="cdl:tExtensibleElements"> 3008
 <attribute name="time-to-complete" type="cdl:tXPath-expr" use="required"/> 3009
 <attribute name="fromRoleRecordReference" use="optional"> 3010
 <simpleType> 3011
 <list itemType="NCName"/> 3012
 </simpleType> 3013

 </attribute> 3014
 <attribute name="toRoleRecordReference" use="optional"> 3015
 <simpleType> 3016
 <list itemType="NCName"/> 3017
 </simpleType> 3018
 </attribute> 3019
 </extension> 3020
 </complexContent> 3021
 </complexType> 3022
 3023
 <complexType name="tParticipate"> 3024
 <complexContent> 3025
 <extension base="cdl:tExtensibleElements"> 3026
 <attribute name="relationshipType" type="QName" use="required"/> 3027
 <attribute name="fromRole" type="QName" use="required"/> 3028
 <attribute name="toRole" type="QName" use="required"/> 3029
 </extension> 3030
 </complexContent> 3031
 </complexType> 3032
 3033
 <complexType name="tExchange"> 3034
 <complexContent> 3035
 <extension base="cdl:tExtensibleElements"> 3036
 <sequence> 3037
 <element name="send" type="cdl:tVariableRecordRef"/> 3038
 <element name="receive" type="cdl:tVariableRecordRef"/> 3039
 </sequence> 3040
 <attribute name="name" type="NCName" use="required"/> 3041
 <attribute name="informationType" type="QName" 3042
 use="optional"/> 3043
 <attribute name="channelType" type="QName" 3044
 use="optional"/> 3045
 <attribute name="action" type="cdl:tAction2" use="required"/> 3046
 </extension> 3047
 </complexContent> 3048
 </complexType> 3049
 3050
 <complexType name="tVariableRecordRef"> 3051
 <complexContent> 3052
 <extension base="cdl:tExtensibleElements"> 3053
 <attribute name="variable" type="cdl:tXPath-expr" 3054
 use="optional"/> 3055
 <attribute name="recordReference" use="optional"> 3056
 <simpleType> 3057
 <list itemType="NCName"/> 3058
 </simpleType> 3059
 </attribute> 3060
 <attribute name="causeException" type="boolean" 3061
 use="optional" default="false"/> 3062
 </extension> 3063
 </complexContent> 3064
 </complexType> 3065
 3066
 <complexType name="tRecord"> 3067
 <complexContent> 3068
 <extension base="cdl:tExtensibleElements"> 3069
 <sequence> 3070
 <element name="source" type="cdl:tSourceVariableRef"/> 3071
 <element name="target" type="cdl:tVariableRef"/> 3072
 </sequence> 3073
 <attribute name="name" type="NCName" use="required"/> 3074
 <attribute name="causeException" type="boolean" use="optional" 3075
default="false"/> 3076

 <attribute name="when" type="cdl:tWhenType" use="required"/> 3077
 </extension> 3078
 </complexContent> 3079
 </complexType> 3080
 3081
 <complexType name="tSourceVariableRef"> 3082
 <complexContent> 3083
 <extension base="cdl:tExtensibleElements"> 3084
 <attribute name="variable" type="cdl:tXPath-expr" 3085
 use="optional"/> 3086
 <attribute name="expression" type="cdl:tXPath-expr" 3087
 use="optional"/> 3088
 </extension> 3089
 </complexContent> 3090
 </complexType> 3091
 3092
 <complexType name="tVariableRef"> 3093
 <complexContent> 3094
 <extension base="cdl:tExtensibleElements"> 3095
 <attribute name="variable" type="cdl:tXPath-expr" 3096
 use="required"/> 3097
 </extension> 3098
 </complexContent> 3099
 </complexType> 3100
 3101
 <complexType name="tAssign"> 3102
 <complexContent> 3103
 <extension base="cdl:tExtensibleElements"> 3104
 <sequence> 3105
 <element name="copy" type="cdl:tCopy" 3106
 maxOccurs="unbounded"/> 3107
 </sequence> 3108
 <attribute name="roleType" type="QName" use="required"/> 3109
 </extension> 3110
 </complexContent> 3111
 </complexType> 3112
 3113
 <complexType name="tCopy"> 3114
 <complexContent> 3115
 <extension base="cdl:tExtensibleElements"> 3116
 <sequence> 3117
 <element name="source" type="cdl:tSourceVariableRef"/> 3118
 <element name="target" type="cdl:tVariableRef"/> 3119
 </sequence> 3120
 <attribute name="name" type="NCName" use="required"/> 3121
 <attribute name="causeException" type="boolean" 3122
 use="optional" default="false"/> 3123
 </extension> 3124
 </complexContent> 3125
 </complexType> 3126
 3127
 <complexType name="tSilentAction"> 3128
 <complexContent> 3129
 <extension base="cdl:tExtensibleElements"> 3130
 <attribute name="roleType" type="QName" use="optional"/> 3131
 </extension> 3132
 </complexContent> 3133
 </complexType> 3134
 3135
 <complexType name="tNoAction"> 3136
 <complexContent> 3137
 <extension base="cdl:tExtensibleElements"> 3138
 <attribute name="roleType" type="QName" use="optional"/> 3139

 </extension> 3140
 </complexContent> 3141
 </complexType> 3142
 3143
 <complexType name="tFinalize"> 3144
 <complexContent> 3145
 <extension base="cdl:tExtensibleElements"> 3146
 <sequence> 3147
 <element name="finalizerReference" type="cdl:tFinalizerReference" 3148
 maxOccurs="unbounded"/> 3149
 </sequence> 3150
 <attribute name="name" type="NCName" use="required"/> 3151
 </extension> 3152
 </complexContent> 3153
 </complexType> 3154
 3155
 <complexType name="tFinalizerReference"> 3156
 <complexContent> 3157
 <extension base="cdl:tExtensibleElements"> 3158
 <attribute name="choreographyName" type="NCName" use="required"/> 3159
 <attribute name="choreographyInstanceId" type="cdl:tXPath-expr" 3160
 use="optional"/> 3161
 <attribute name="finalizerName" type="NCName" use="optional"/> 3162
 </extension> 3163
 </complexContent> 3164
 </complexType> 3165
 3166
 <complexType name="tException"> 3167
 <complexContent> 3168
 <extension base="cdl:tExtensibleElements"> 3169
 <sequence> 3170
 <element name="workunit" type="cdl:tWorkunit" 3171
 maxOccurs="unbounded"/> 3172
 </sequence> 3173
 <attribute name="name" type="NCName" use="required"/> 3174
 </extension> 3175
 </complexContent> 3176
 </complexType> 3177
 3178
 <complexType name="tFinalizer"> 3179
 <complexContent> 3180
 <extension base="cdl:tExtensibleElements"> 3181
 <sequence> 3182
 <element name="workunit" type="cdl:tWorkunit"/> 3183
 </sequence> 3184
 <attribute name="name" type="NCName" use="required"/> 3185
 </extension> 3186
 </complexContent> 3187
 </complexType> 3188
 3189
 <simpleType name="tAction"> 3190
 <restriction base="string"> 3191
 <enumeration value="request-respond"/> 3192
 <enumeration value="request"/> 3193
 <enumeration value="respond"/> 3194
 </restriction> 3195
 </simpleType> 3196
 3197
 <simpleType name="tAction2"> 3198
 <restriction base="string"> 3199
 <enumeration value="request"/> 3200
 <enumeration value="respond"/> 3201
 </restriction> 3202

 </simpleType> 3203
 3204
 <simpleType name="tUsage"> 3205
 <restriction base="string"> 3206
 <enumeration value="once"/> 3207
 <enumeration value="unlimited"/> 3208
 </restriction> 3209
 </simpleType> 3210
 3211
 <simpleType name="tWhenType"> 3212
 <restriction base="string"> 3213
 <enumeration value="before"/> 3214
 <enumeration value="after"/> 3215
 <enumeration value="timeout"/> 3216
 </restriction> 3217
 </simpleType> 3218
 3219
 3220
 <simpleType name="tBoolean-expr"> 3221
 <restriction base="string"/> 3222
 </simpleType> 3223
 3224
 <simpleType name="tXPath-expr"> 3225
 <restriction base="string"/> 3226
 </simpleType> 3227
 3228
 <simpleType name="tDescriptionType"> 3229
 <restriction base="string"> 3230
 <enumeration value="documentation"/> 3231
 <enumeration value="reference"/> 3232
 <enumeration value="semantics"/> 3233
 </restriction> 3234
 </simpleType> 3235
 3236
</schema> 3237

3238

	Introduction
	Notational Conventions
	Purpose of the Choreography Description Language
	Goals
	Relationship with XML and WSDL
	Relationship with Business Process Languages
	Time Assumptions

	Choreography Description Language Model
	WS-CDL Model Overview
	WS-CDL Document Structure
	Choreography Package
	Including WS-CDL Type Definitions
	WS-CDL document Naming and Linking
	Language Extensibility and Binding
	Semantics

	Collaborating Parties
	Role Types
	Relationship Types
	Participant Types
	Channel Types

	Information Driven Collaborations
	Information Types
	Variables
	Expressions
	WS-CDL Supplied Functions

	Tokens
	Choreographies
	WorkUnits
	Choreography Life-line
	Choreography Exception Handling
	Choreography Finalization
	Choreography Coordination

	Activities
	Ordering Structures
	Sequence
	Parallel
	Choice

	Interacting
	Interaction Based Information Alignment
	Interaction Life-line
	Interaction Syntax

	Composing Choreographies
	Assigning Variables
	Marking Silent Actions
	Marking the Absence of Actions
	Finalizing a Choreography

	Example
	Relationship with the Security framework
	Relationship with the Reliable Messaging framework
	Relationship with the Coordination framework
	Relationship with the Addressing framework
	Conformance
	Acknowledgments
	References
	Last Call Issues
	Issue 1
	Issue 2

	WS-CDL XSD Schemas

